Table B2.
The Sensitivity Analysis Results Within 10,000 Euros Monitoring Budgets When the Sensitivity of Agnatical Method Decreased to 98% 1 and 98% 2 for AFB1/M1 and Dioxins Separately
Contamination | FM 1 | DF 2 | MT 3 | Total DALYs reduced/ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
scenarios | Npuh,i 4 | Nsh,i 5 | NAh,i 6 | Npuh,i 4 | Nsh,i 5 | Nah,i 6 | Npuh,i 4 | Nsh,i 5 | Nah,i 6 | 100,000 population | |
S1 | AFB1/M1 | 1 | 7 | 1 | 11 | 33 | 3 | 38 | 114 | 38 | 0.03 |
Dioxins | 1 | 7 | 1 | 12 | 36 | 3 | 8 | 24 | 8 | ||
S2 | AFB1/M1 | 1 | 7 | 1 | 39 | 117 | 10 | 15 | 45 | 15 | 0.20 |
Dioxins | 1 | 7 | 1 | 16 | 48 | 4 | 8 | 24 | 8 | ||
S3 | AFB1/M1 | 4 | 28 | 4 | 36 | 108 | 9 | 8 | 24 | 8 | 0.42 |
Dioxins | 1 | 7 | 1 | 20 | 60 | 5 | 7 | 21 | 7 | ||
S4 | AFB1/M1 | 1 | 7 | 1 | 56 | 168 | 14 | 14 | 42 | 14 | 0.16 |
Dioxins | 1 | 7 | 1 | 20 | 60 | 5 | 11 | 33 | 11 | ||
S5 | AFB1/M1 | 1 | 7 | 1 | 32 | 96 | 8 | 8 | 24 | 8 | 0.36 |
Dioxins | 1 | 7 | 1 | 16 | 48 | 4 | 11 | 33 | 11 | ||
S6 | AFB1/M1 | 1 | 7 | 1 | 12 | 36 | 3 | 32 | 96 | 32 | 0.12 |
Dioxins | 1 | 7 | 1 | 8 | 24 | 2 | 6 | 18 | 6 | ||
S7 | AFB1/M1 | 3 | 21 | 1 | 32 | 96 | 8 | 9 | 27 | 9 | 0.32 |
Dioxins | 1 | 7 | 1 | 19 | 57 | 5 | 16 | 48 | 16 | ||
S8 | AFB1/M1 | 1 | 7 | 1 | 1 | 3 | 1 | 30 | 90 | 30 | 0.07 |
Dioxins | 1 | 7 | 1 | 12 | 36 | 3 | 8 | 24 | 6 | ||
S9 | AFB1/M1 | 1 | 7 | 1 | 48 | 144 | 12 | 14 | 42 | 14 | 0.26 |
Dioxins | 1 | 7 | 1 | 12 | 36 | 3 | 7 | 21 | 7 |
Expert opinion (personal communication).
Lascano‐Alcoser et al. (2013)
Optimal number of production units sampled at each control point for each chemical.
Optimal number of samples collected at each control point for each chemical.
Optimal number of analysis samples at each stage for each chemical.