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Recent applications of retention modelling in liquid chromatography (2015–
2020) are comprehensively reviewed. The fundamentals of the field, which date
back much longer, are summarized. Retention modeling is used in retention-
mechanism studies, for determining physical parameters, such as lipophilic-
ity, and for various more-practical purposes, including method development
and optimization, method transfer, and stationary-phase characterization and
comparison. The review focusses on the effects of mobile-phase composition
on retention, but other variables and novel models to describe their effects are
also considered. The five most-common models are addressed in detail, i.e.
the log-linear (linear-solvent-strength) model, the quadratic model, the log–
log (adsorption) model, the mixed-mode model, and the Neue–Kuss model.
Isocratic and gradient-elution methods are considered for determining model
parameters and the evaluation and validation of fitted models is discussed.
Strategies in which retention models are applied for developing and opti-
mizing one- and two-dimensional liquid chromatographic separations are dis-
cussed. The review culminates in some overall conclusions and several concrete
recommendations.
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1 INTRODUCTION

LC is one of the most essential and pervasive techniques
in the toolbox of analytical chemists. Retention model-
ing serves as a useful technique available for analytical
chemists to rapidly develop methods. In LC, an analyte is
distributed between a non-moving stationary phase and a
moving mobile phase. The time it takes for the analyte to
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migrate through the column is referred to as the retention
time, 𝑡𝑅, which can be expressed as

𝑡𝑅 = 𝑡0 (1 + 𝑘) (1)

where 𝑡0 is the dead time or hold-up time of the column
and 𝑘 is the analyte retention factor, which is related to the
distribution coefficient (K) through

𝑘 =
𝑞𝑠
𝑞𝑚

=
𝑐𝑠
𝑐𝑚

𝑉𝑠
𝑉𝑚

= 𝐾
𝑉𝑠
𝑉𝑚

(2)

where 𝑞𝑚 and 𝑞𝑠 are the total mass of analyte in the
mobile and the stationary phase, respectively, 𝑐𝑚 and 𝑐𝑠
are the analyte concentrations in the two phases, and 𝑉𝑚
and 𝑉𝑠 are the total volumes of each phase in the col-
umn. The retention factor is dependent on many differ-
ent parameters, such as pH, temperature, and mobile-
phase composition (volume fractions of strong solvent,
φ). Many equations have been described to relate 𝑘

to one or more of these parameters and are typically
referred to as retention models. Retention modeling is
the process of fitting such a model to the experimental
data.
LC can be performed in isocratic or gradient mode.

In isocratic mode, the mobile-phase composition is not
changed over the course of the run, which means that
the total mass of analyte in both phases does not change,
with the result of a constant retention factor. This is
not the case in gradient mode, where the mobile-phase
strength is increased over the run. This increases the
total mass of analyte in the mobile phase and thus
decreases the retention factor. To relate 𝑘 to the sol-
vent strength in gradient elution, the gradient equation
has to be used. When a compound elutes before the
start of the gradient, the retention time can be calcu-
lated through Equation 1, in which 𝑘 is the retention
factor at the initial organic-modifier concentration. If a
compound elutes during the gradient, the retention time
can be calculated with the general equation of linear
gradients [1].

1

𝐵

φ𝑖𝑛𝑖𝑡+𝐵(𝑡𝑅−τ)

∫
φ𝑖𝑛𝑖𝑡

𝑑φ

𝑘 (φ)
= 𝑡0 −

𝑡𝑖𝑛𝑖𝑡 + 𝑡𝐷
𝑘𝑖𝑛𝑖𝑡

(3)

In this equation, 𝑘(φ) is the retention model (see
Section 2.1), describing the relationship between the
retention (𝑘) and the organic modifier concentration
(φ). The change in φ as a function of time (i.e. the slope
of the gradient) is shown with 𝐵 (φ = φ𝑖𝑛𝑖𝑡 + 𝐵𝑡) and τ is
the sum of the dwell time (𝑡𝐷), the time before the start of
the gradient (𝑡𝑖𝑛𝑖𝑡), and the dead time (𝑡0). In the case that

the analyte elutes after the gradient, the retention time
can be calculated by

1

𝐵

φ𝑓𝑖𝑛𝑎𝑙

∫
φ𝑖𝑛𝑖𝑡

𝑑φ

𝑘 (φ)
+
𝑡𝑅 − τ − 𝑡𝐺
𝑘𝑓𝑖𝑛𝑎𝑙

= 𝑡0 −
𝑡𝑖𝑛𝑖𝑡 + 𝑡𝐷
𝑘𝑖𝑛𝑖𝑡

(4)

in which 𝑡𝐺 represents the gradient time.
Retention modeling is mostly used to facilitate rapid

and efficient method development in many modes of LC
and supercritical-fluid chromatography (SFC). The appli-
cations of retention modelling in method development
can be divided in several areas. Retention models can be
used to characterize newly developed stationary phases
and to establish the underlying retention mechanism.
In method optimization retention modelling is used to
achieve better separations. In method transfer, methods
developed or implemented on different systems are har-
monized with the aid of retention models. Retention mod-
els are used to better understand and more-accurately
describe retention. Additionally, retention modeling is
applied outside the field of chromatography, for example
in pharmaceutical and environmental science, to deter-
mine the octanol–water partition coefficient (log 𝑘𝑜𝑤) of
a newly synthesized product or to determine the persis-
tence of a pollutant in the ecosystem [2,3]. There are differ-
ent strategies to perform retention modelling, depending
on the aim of the study. The general form of a retention
model can be described as a relation between a retention
parameter and a function combining system and analyte
parameters.
In a specific set of models, called linear-free-energy rela-

tionships (LFER), the function consists the sum of a small
number (typically five) of product terms, each consisting
of a system parameter (𝑠𝑖) and an analyte parameter (𝑎𝑖).

log 𝑘𝑖,𝑠 =

𝑛∑
𝑖=1

𝑎𝑖 𝑠𝑖 (5)

Each term is loosely connected with a specific type
of interaction between analyte and the stationary phase.
Examples are the hydrophobic-subtraction model of Sny-
der (HSM) [4,5] and the model of Abraham [6,7]. Snyder
defined the stationary-phase parameters in his model as
hydrophobicity, steric hindrance, hydrogen-bond acidity
and basicity, and cation-exchange activity [4,5]. Abraham
identified contributions of molar refraction, solute polar-
izability, effective hydrogen-bond acidity and basicity, and
the McGowan characteristic volume [6,7]. In either case,
the values of the system parameters depend on the values
assigned to a set of reference analytes. The goal of these
models is not to predict retention, but to characterize and
classify stationary phases. The model does not describe
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the effect of themobile-phase composition. Characterizing
analytes is laborious (requiringmeasurements on different
columns), but characterizing systems is easy. Despite the
influence of the mobile phase, system parameters are usu-
ally interpreted as column or stationary-phase parameters
and values formany stationary phases have been tabulated
[8,9].
A different angle to retention modeling is the use of

quantitative structure-retention relationships (QSRR) that
are statistically derived relationships between a number of
structural descriptors of an analyte and its retention [10].
Such models, based on large sets of structural parame-
ters and retention data of many compounds, can be used
to predict retention of new compounds if their structural
parameters can be computed. Similar approaches have
been applied to evaluate the pharmacological activity and
physicochemical parameters of compounds (quantitative
structure-activity relationships, QSAR, and quantitative
structure-property relationships, QSPR, respectively). The
most-important structural descriptors are identified in the
process [11].
A third approach utilizes artificial neural networks

(ANNs) to describe retention for (very large) input data
sets. An ANN is a computational modeling tool that is
inspired by the architecture of the human brain. It con-
sists of an input and an output layer, with one or more hid-
den layers in between [12], and ANNmodels are known to
require a vast data set [13].
The final approach to retention modeling is based on

(semi-) empirical models that contain abstract parame-
ters to describe retention. Different models have been
developed for and applied to many specific modes of LC.
Few input data are needed to describe retention and to
predict new data through inter- or extrapolation. This
renders the class of (semi-) empirical models eminently
useful to assist in LC method development [14–17] and
the remainder of this review will focus solely on such
models.
Empirical retention models typically feature several

parameters that are abstract (i.e. not linked to a specific
interaction/mechanism in chromatography), yet which
relate analyte- and measurement parameters (e.g. volume
fraction of organicmodifier, salt concentration, pH, etc.) to
𝑘. Often the common logarithm or the natural logarithm of
the retention factor, i.e. log10 k or ln 𝑘, is used. Other vari-
ables that are not represented by the model (e.g. the sta-
tionary phase, temperature) must be kept constant at spec-
ified values for the model to remain valid. The model is
typically fitted through all data points available.
With increasing computer resources, in silico tech-

niques become much-more attractive than exhaustive
trial-and-error experiments for LC method development.
In this review, recent developments in and applications

of retention modelling will be discussed, with focus on
method optimization, method transfer, stationary-phase
characterization, understanding and describing retention,
and lipophilicity determination.

2 BACKGROUND THEORY

Several models have been developed and applied for
retention modeling. In most cases, the volume fraction
of modifier (φ) is the most-important variable. Only a
handful of two- or three-parameter models have been
used extensively, viz. the linear-solvent-strength model
(LSS), the quadratic model (Q), the adsorption model
(ADS), the mixed-mode model (MM), and the Neue-
Kuss model (NK). Optimization programs, such as Dry-
lab [18], PEWS2 [19], and MOREPEAKS [20], rely on
one or more of these retention models, which are all
based on the volume fraction of the modifier (φ) and
are two- or three-parameter models. In the following sec-
tion, the models and their applications will be briefly
discussed. The requirements for input data will also be
discussed, such as the elution mode and the number of
datapoints.

2.1 Models

2.1.1 Linear solvent strength model

The log-linear model for RPLC was introduced by Sny-
der et al. to describe retention as a function of mobile-
phase composition (φ) [21]. It is often referred to as the LSS
model (occasionally it is also referred to as the partitioning
model). The common form of the model is

ln 𝑘 = ln 𝑘0 − 𝑆𝐿𝑆𝑆φ (6)

where ln 𝑘 is the natural logarithm of the retention fac-
tor at a specific modifier concentration, ln 𝑘0, often also
denoted ln 𝑘𝑤, refers to the isocratic retention factor of
a solute in pure water, φ refers to the volume frac-
tion of the (organic) modifier in the mobile phase, and
the slope 𝑆𝐿𝑆𝑆 is related to the interaction of the solute
and the (organic) modifier. The LSS model parameters
can be calculated from the retention of an analyte in
two isocratic runs with different φ. Of the 90 references
found for the LSS model in the last six years (2015-2020),
55% concern 1D RPLC, leaving the rest for other appli-
cations such as two-dimensional liquid chromatography
(2DLC), hydrophilic interaction chromatography (HILIC),
and supercritical-fluid chromatography (SFC), shown in
Figure 1A.
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F IGURE 1 Application to different modes of chromatography for all five models. The data are based on the total number of references
published from 2015 to 2020

2.1.2 Quadratic model

Schoenmakers et al. introduced the quadratic model (Q),
which can be seen as an extension of the log-linear model
with another parameter. This renders the relation between
the ln 𝑘 and φ convex rather than linear [22].

ln 𝑘 = ln 𝑘0 + 𝑆1φ + 𝑆2φ
2 (7)

In this and subsequent retention-model equations, 𝑆1
and 𝑆2 are empirical coefficients used to describe the influ-
ence of the organicmodifier on the retention of the analyte.
The other parameters in the Qmodel are identical to those
of the LSSmodel.Of the 45works reported in literature that
use the Q model in the past six years (2015–2020), summa-
rized in Figure 1B, themain application is RPLC (47%). The
Q model has also been investigated for describing HILIC
retention (23%).

2.1.3 Adsorption model

The adsorption model (ADS) was introduced by multiple
researchers during the 1960s and 1970s. Soczewinksi et al.
[23], Jandera et al. [24], and Snyder et al. [25] all presented
the model in their work on normal-phase LC (NPLC), and
thin-layer chromatography (TLC). The model, which was
designed to account for adsorption, has also been described
as the log–log model or the Snyder–Soczewinksi model
[23–26].

ln 𝑘 = ln 𝑘0 − 𝑛 ln φ (8)

In this model, the n parameter is the so-called solva-
tion number, which represents the ratio of surface areas
occupied by adsorbed molecules of the strong eluent com-
ponent and the analyte. In contrast to the log-linear LSS

model, here ln 𝑘 is linearly correlated with ln φ (log–log
model). While the model was initially intended for NPLC
(12%), it is now mainly used for retention modeling in
HILIC (35%) and RPLC (30%) (Figure 1C).

2.1.4 Mixed-mode model

The mixed-mode model (MM) was developed by Jin et al.
to describe retention in HILIC. The idea is that it can
account for both retentionmodes of HILIC and RPLC. The
model is a combination of the LSS and ADS models [27].

ln 𝑘 = ln 𝑘0 + 𝑆1φ + 𝑆2 ln φ (9)

Jin et al. related𝑆1 to the solute’s interactionwith the sol-
vents and 𝑆2 to the solute’s interaction with the stationary
phase [27]. The model will be discussed more extensively
in Section 3.3.2. The main application of the MMmodel is
for HILIC (69%), as shown in Figure 1D.

2.1.5 Neue–Kuss model

The most recent of the five main models is the three-
parameter Neue–Kuss (NK) model that was based on
another model described by Nikitas et al. [28,29].

ln 𝑘 = ln 𝑘0 − ln (1 + 𝑆1φ) −
φ𝑆2

1 + 𝑆1φ
(10)

where the 𝑆1-parameter represents the slope and the 𝑆2
-parameter represents the curvature of the ln 𝑘 versus φ
plot. When integrating this equation to obtain gradient-
elution retention times an exact solution can be found.
Neue [30] suggested that thismodel could describe the cur-
vature observed in ln 𝑘 versus φ relationships. Later, Neue
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and Kuss published the following version of the model in
2010 [31].

ln 𝑘 = ln 𝑘0 + 2 ln (1 + 𝑆1φ) −
φ𝑆2

1 + 𝑆1φ
(11)

Note that the only differences between Equations 10
and 11 are the sign before and the factor 2 in the second
term. In Equation 11, the 𝑆1 parameter represents the slope
and the 𝑆2 parameter represents the curvature of the ln 𝑘
versus φ plot. The NK model was developed for gradi-
ent RPLC, which is clear from the number of applications
(45%). However, it is also often applied to HILIC (25%), as
shown in Figure 1E.

2.2 Measurement and use of data

The way in which these empirical models can be used
depends on the number and type (isocratic or gradient) of
data points that are used to fit the model.

2.2.1 Isocratic or gradient data

All the empirical models covered in this review have been
used for optimizing both isocratic and linear-gradient sep-
arations. Isocratic data points would need to be collected
at different organic-modifier concentrations. This can be a
tedious task, since not all compounds elute at a reasonable
time for every value of φ. Many organic-modifier concen-
trations are often required to calculate the model param-
eters for every compound in a mixture. One way to get
around this problem is to use gradient elution. This allows
all analytes to be eluted within one run in a reasonable
time. To compute the gradient-elution retention time or
the organic-modifier concentration at the time of elution
during or after the gradient, the retentionmodel usedmust
be numerically integrated in the gradient equation (Equa-
tions 3 and 4) [20]. Here 𝑘(φ) in Equations 3 and 4 refers to
one of the above retention models. To use gradient-elution
experiments (known as scanning gradients) to establish
model parameters, this process must be followed in oppo-
site order. It is necessary to vary the effective steepness of
the gradient between experiments. The effective steepness
(b) is the product of the slope of the ln k versus φ curve
(e.g., SLSS), the slope of the gradient (B = Δφ /Δt) and the
hold-up time of the column (t0)

𝑏𝐿𝑆𝑆 = 𝑆𝐿𝑆𝑆 𝐵 𝑡0 =
𝑆𝐿𝑆𝑆𝐵𝑉0

𝐹
(12)

where V0 is the hold-up volume and F is the flow rate.
The effective slope can be varied by changing one of three

parameters (i) the slope of the gradient (B), (ii) the column
volume, or (iii) the flow rate.
The accuracy of prediction is influenced by the selected

elution mode. An error-analysis approach was described
by Vivó-Truyols et al. for translating gradient data to iso-
cratic elution or vice versa [32]. The authors concluded that
input data obtained using isocratic experiments yielded
the most accurate predictions [32]. Isocratic elution could
also be predicted using models constructed based on gra-
dient experiments, but suchmodels were only found accu-
rate across limited ranges of solvent composition [32–35].
Gradient retention data can be predicted from gradient-
scanning experiments [36–38], but little research has been
performed on the requirements for the experimental data.
In a recent paper it was shown that the prediction accu-
racy of themodel depended onmany factors, including the
proximity of the slope of the predicted gradient to that of
the scanning gradients, whether interpolation or extrapo-
lation is applied, and the experimental precision [39].

2.2.2 Number of input datapoints and
model evaluation

When calculating the parameters of the empirical models
of section 2.1, referred to as retention parameters, there is
a limitation as to the minimal number of input datapoints.
Generally, the number of parameters determines the num-
ber of necessary input runs. Two-parameter models, such
as ADS and LSS, need at least two datapoints for each com-
ponent, while three-parameter models, such as MM, NK,
and Q, require at least three. Some of these models, for
example, NK, have mostly been used with larger numbers
of data [31].
Adding more parameters to a model increases the risk

that the model will overfit the data. When multiple mod-
els are tested on a dataset, the number of parameters may
betray the actual quality of the model. To correct for this
bias, the Akaike Information Criterion (AIC) can be used,
which contains a penaltywhenmore parameters are added
[40].

𝐴𝐼𝐶 = 2𝑝 + 𝑛

[
ln

(
2π ⋅ 𝑆𝑆𝐸

𝑛

)
+ 1

]
(13)

The AIC value is calculated upon fitting the data to the
model. The sum-of-squares error (SSE) is corrected by the
number of parameters (p) and the number of observations
(n). A lower (more negative) value represents a better fit,
thus aiding in the selection of a correct model [15,41–45].
Another way of choosing between two- or three-

parameter models is to perform an F-test of regression to
examine whether adding a third term is significant. This
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F IGURE 2 Overview of workflows of the main application domains of retention modelling in recent literature. At the top of the figure,
the different aims are shown with the starting point indicated directly below. All domains will require input data which is obtained in the scan
step. Next, the different processes are shown in their matching color underneath. The number of models used is indicated in the box and the
final goal, whether it is a method, a number or a degree of similarity, is indicated with the colored line around the box. Beneath the workflows,
the section number of the corresponding paragraph can be found. The workflows indicated in the figure are generalized and individual works
may deviate from it

test does not evaluate the goodness-of-fit, but only the dif-
ference between a three-parameter model and its reduced
form. From the five empirical models, the F-test of regres-
sion can be performed on (i) the Q and the LSSmodels, (ii)
the MM and the LSS model, and (iii) the MM and the ADS
model. These three combinations have been examined by
Roca et al. for modeling the retention of peptides in HILIC
[37]. Baczek et al. performed an F-test on the LSS and Q
models in RPLC [46].

3 METHODS

Upon reviewing the literature, we have identified fivemain
domains where retention modelling is applied, and these
will be discussed. These five domains and their workflows
are summarized in Figure 2. For reference, the lower sec-
tion of the figure contains a reference to the corresponding
paragraphs in the text.

3.1 Method optimization

In the development and optimization of an LC method,
retention modeling can be an important tool. In this sec-

tion, we review recent literature on method optimization
with the aid of retention modeling. The next two sec-
tions focus on 1D and 2D methods, whereas a final section
addresses elaborate strategies and optimization packages.

3.1.1 Optimization of one-dimensional
separations

After the mobile-phase components and the stationary
phase have been selected, retention modeling can be used
to optimize separations. For example, for a separation of
a vegetable oil employing a porous-graphitic-carbon col-
umn, Zhang et al. used the LSS model to optimize the
separation with an isopropanol-toluene gradient [47]. The
authors tested the effect of the toluene fraction (φ𝑇𝑜𝑙) on
the retention of through the SLSS-parameter, which was
found to be similar for all triacylglycerols, resulting in
the same selectivity at all toluene concentrations. Con-
versely, differences between SLSS-parameters can indicate
to what extent the modifier concentration can be used to
optimize selectivity. Fekete et al. reported very large SLSS
values for proteins (calculated from two scanning gradi-
ents) and a tenfold decrease in retentionwhen the organic-
modifier concentration was increased by 0.8% [48]. Such
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high SLSS values are one of the reasons why gradient elu-
tion is indispensable in RPLC of proteins. Selectivity could
be improved by serially coupling columns with increas-
ing retentive capacity and applying multistep gradients
[49,50].
Apart from the mobile-phase composition, the sample

solvent should be considered. A large difference in elu-
tion strength between the eluent and the sample solvent
may lead to incidents such as breakthrough or peak defor-
mation [51,52]. Jeong et al. simulated separations to study
the effect of an injection with a high-elution-strength sol-
vent into a weaker eluent [51]. The LSS and NK models
were used for calculating local retention factors. The peak
widths were predicted by considering the retention of the
analyte in the injection solvent and the in mobile phase.
The simulated chromatograms (red) were confirmed
with experimental data (black), which is indicated in
Figure 3.
Boateng et al. [53] improved a separation of three regioi-

somers of methoxyphenidine by optimizing the tempera-
ture, pH, and organic-modifier concentration. Retention
data were fitted using an ADSmodel to describe the effects
of pH, the LSS or Q model for mobile-phase composition
(φ) or the van ‘t Hoff equation for temperature (𝑇). By vary-
ing the three parameters at three different levels, produc-
ing a 3 × 3 input data set, an optimized separation was
developed with prediction errors lower than 5%. Vaňková
et al. investigated the effect of gradient steepness on peak
compressionusingLSS retentionmodels. They determined
the mobile-phase composition at time of elution (φ𝑒) and
the corresponding retention factor (𝑘𝑒) [54]. 𝑘𝑒 was then
related to the peak width. Using this information, the peak
compression by the gradient was calculated. A ratio of gra-
dient time to column dead time of 12 was found to give the
best kinetic performance for small molecules. Gritti [55]
discussed peak compression more extensively and derived
a new expression based on the NK model, predicting peak
broadening for complex gradient programs.When the peak
compression predicted by linear and non-linear models
was compared, no significant difference was observed.
Another objective of method optimization may be to

maximize the sensitivity. One way to achieve this is by on-
column focusing, retaining all analytes at the column inlet
by decreasing the solvent strength or by changing the tem-
perature [56,57]. Rerick et al. [57] used an extended form of
theNKmodel that included the effects of temperature. The
model was extrapolated to predict retention in case cool-
ing was employed. This model will be further discussed in
Section 3.4.2. Chang et al. used the retention parameters of
the LSS and ADS model for their peak-picking algorithm
[58]. Clustering based on similarity of retention behavior
and isotope ratios was performed. Using this strategy, the

F IGURE 3 Comparison of the experimental (black) and simu-
lated (red) chromatograms for isocratic separations of alkylbenzenes.
Mobile-phase composition was 30% water and 70% ACN. The injec-
tion volume was 100 μL of (A) 50%, (B) 70%, and (C) 90% ACN in
water. Reproduced from [51] with permission

authors could rapidly identify 206 precursor ions in a com-
plicated natural extract.

3.1.2 Optimization of two-dimensional
separations

Two-dimensional liquid chromatography (2DLC) is
increasingly applied [59]. Its success can be ascribed to the
combination of two different separation mechanisms (i.e.
targeting different sample dimensions) and the concurrent
increase in peak capacity. However, the combination of
two dimensions renders method optimization a more
complicated endeavor [60]. When retention modelling is
applied in the development of 2D separations, the LSS
model is often used to optimize the individual (gradient)
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dimensions [61–64]. The SLSS parameter has also been
used as a measure for orthogonality (i.e. the degree to
which the two dimensions have different selectivities)
[65,66]. SLSS is expected to be similar for compounds of
similar molecular weight, but for a given sample it may
vary. For that reason, it was decided to use the average
SLSS-parameter of all compounds in the sample of the two
separations to calculate the degree of orthogonality (𝑂𝑑).

𝑂𝑑 = γ ⋅ 𝑆𝐿𝑆𝑆,1 ⋅ 𝑆𝐿𝑆𝑆,2 ⋅ Δφ𝑒,1 ⋅ Δφ𝑒,2 (14)

It is calculated by multiplying the average SLSS for both
dimensions and the organic modifier concentration differ-
ence of the gradient of both dimensions (Δφ𝑒,1 and Δφ𝑒,2)
with the correction factor with respect to the theoreti-
cal retention area (γ). This approach was developed by
D’Attoma et al. [66] and applied to a RPLC×RPLC sepa-
ration for peptides of Iguiniz et al. [65], which was able to
separate more compounds than the prior 1DLC method.
The use of LSS parameters for the degree of orthogonality
is novel, althoughmore studies are required to validate the
approach.
One of the challenges in coupling two dimensions in

2DLC is the possibility of solvent mismatches, i.e. a weak
solvent in one mechanism can be a strong solvent in the
other. This has already been discussed to a certain extent in
Section 3.1.1. Stoll et al. modelled 2D separations with gra-
dient conditions, specifically a solvent mismatch between
the injection solvent (i.e. the 1D eluent) and the 2Dmobile
phase [67]. The loop volumes were varied (i.e. larger loops)
and different loop fillings were employed. To make these
simulations, the retention behavior was assumed to be
nonlinear following the NK model. Muller et al. tried
to model the effect of the dilution factor, which is often
applied to reduce the solvent strength of the 1D effluent,
when coupling HILIC to RPLC [68]. The NK and the LSS
model were used to calculate the retention factor at the
time of elution (𝑘𝑒) and the retention factor in the sam-
ple solvent (𝑘𝑠𝑠). The effect of several chromatographic
parameters of these two retention factors are modelled to
find the optimal setup for HILIC×RPLC. It was found that
the predictions of 𝑘𝑠𝑠 and 𝑘𝑒 made with LSS and NK are
similar.

3.1.3 Optimization programs and
strategies

Many tools and software packages have been developed
for LC optimization because of growing computing power.
These strategies have been developed over the years with
increasing knowledge of the parameters influencing reten-
tion. An example of this is the development of the Drylab,

ChromSword, and PEWS2 method development software
[18,19,42,69–71]. Many of these papers are limited to RPLC,
but there are three software packages that can be used for
liquid chromatography in general.
Fasoula et al. developed a package of Excel VBAmacros

for modeling gradient retention data obtained in multilin-
ear gradients [72]. The procedure consists of three steps:
first the initial gradient retention data of each compound
is fitted to a model and the parameters of that model are
calculated. The model is then tested for accurate predic-
tion of different gradients. Lastly, the optimized gradient
method is determined. The package comprises ten reten-
tion models, of which the two-parameter models, espe-
cially the ADS model, describe simulated and experimen-
tal data very well. It was found that implementing more
parameters, such as the Q model, increases the accuracy
of the prediction, but also consumed more computational
resources. The same group published a recent paper on a
more elaborate program developed in R [73]. Next to an
optimized gradient separation, the software aids in other
aspects of the optimization such as peak shapes and base-
line correction, and it is applied to ionized solutes too.
The program contains the same 10 retention models as the
Excel package of Fasoula et al. to optimize isocratic, gradi-
ent, and multigradient separations [72,73].
Pirok et al. developed an optimization program (PIOTR)

for 2DLC separations in MATLAB [20]. With this program
both a strong ion-exchange separation (IEX) and an ion-
pair reversed-phase separation were optimized. The LSS
model was used for optimization in RPLC and the ADS
model for optimization in IEX, replacing φ by the salt
concentration [𝑐]. The input data for the program is the
retention data of two comprehensive liquid chromatogra-
phy (LC×LC) runs, of which the gradient slopes in both
dimensions differ by a factor three. The workflow of the
program is shown in Figure 4. The model gave an accurate
description of the retention time but could not account for
the band broadening. The program also served as a good
tool for peptide separation in HILIC, when the NK, the
MM, and theQmodelwere added to the software [15,37,74].
Muller et al. reported on a predictive kinetic optimization
tool for online HILIC×RPLC that allowed all chromato-
graphic parameters to be optimized simultaneously within
experimental restrictions [68]. The method was applied to
a phenolic separation, in which the retention was mod-
elled. Another approach was developed by Khalaf et al.
for the development of RPLC separations for peptides [75].
The LSS model, the van‘t Hoff equation and an analytical
solution for the mass balance on the column were com-
bined, which was successfully applied to the separation
of five different peptide mixtures. It is good to note that
optimization approaches can also be conducted differently.
For example, for RPLC specifically, multiple optimization
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F IGURE 4 Pareto optimization strategy discussed by Pirok et al. Recorded scanning gradients are used to calculate the retention param-
eters by fitting the model. By specifying the ranges and step sizes in which the method can be optimized, the program predicts the retention
for each component in each combination. The results are assessed in the Pareto plot and the best separation combination is verified through
experimental verification. Depending on the verification, more scanning gradients are performed, or the optimal method is chosen. Adapted
from [20] with permission

algorithms have been proposed. Zhang et al. developed a
new algorithm to simulate and optimize RPLC data with
the aid of genetic algorithms (GA), in which the compu-
tation mimics the genetic mechanisms in all live form to
adapt to the environment, and multi-layer perceptron arti-
ficial neural networks (MLP-ANNs) [76]. Alvarez-Segura
et al. compared the use of GAs to that of multiscale opti-
mization (MSO), in which the level of detail in the solu-
tion is increased along the search by using subdivision
schemes, for the optimization of multi-linear gradients,
simulated by the NKmodel [77]. The reason for this is that
GAs have a hard time fine-tuning themethod. It was found
that both methods yielded similar results.

3.2 Method transfer

Retentionmodeling can also be used to speed up the trans-
fer ofmethods to different hardware.When gradientmeth-
ods are transferred, analyst often run into the problem of
different dwell volumes and gradient profiles, caused by
different mixers, pumps and tubing. Bos et al. developed
a response-function-based algorithm to determine analyte
parameters with a geometry-induced deformation correc-
tion [78]. The LSS parameters for a small set of compounds
were determined on different systems with and without a
correction of gradient shape, only considering the dwell
time. This yielded a decrease of the inter-system retention
prediction error from 9.8 to 2.1% between the first and the
second system and 12.2 to 6.5% between the first and the
third system. While the study was limited to geometry-
induced deformation, the authors noted that other effects

such as those induced by solvent properties, as well as sol-
vatochromic effects still required further study.
Jandera et al. applied four different retention models

on the prediction of the retention of a series of standard
analytes in short monolithic columns with fast gradients
[79]. A prediction error between 0.7 and 1.5%was found for
1 min gradients starting at 100% water for all four models,
indicating the validity of the retention models to predict
retention in short columns. Next to that, the ADS model
provided themost accurate prediction in the fast gradients.
The predicted retention of the models is compared to the
experimental data in Figure 5.
Gritti studied the transfer of a gradient method between

two columns with similar particles but different average
pore diameter [80]. He proposed three different gradi-
ent transfer methods to maintain the selectivity, based
on either the LSS or the NK model. The first method is
the “vertical” transfer, in which it was assumed that the
LSS model applies for both models and that there is no
change in the 𝑆𝐿𝑆𝑆-parameter when changing columns.
The retention factor on the two columns would then only
vary with the change in column phase ratio (ln ϕ1

ϕ2
). The

second method was referred to as the “horizontal” trans-
fer and assumed that the new retention factor was equal to
the old retention factor after shifting the eluent composi-
tion from φ to φ + Δφ1→2 and that the shift in eluent com-
position (Δφ1→2) was unique for each compound. These
directions refer to the shift in the ln 𝑘 vs. φ plots. The third
method is the in silico approach, in which the best opti-
mal method is found by changing the gradient steepness
and the starting concentration of modifier. In Figure 6,
the reference chromatogram of the column with a pore
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F IGURE 5 Comparison of experimental and predicted chro-
matogramof one-minute gradients from (A) 0–100%ACNand (B) 50–
100% ACN. The four models used are (i) LSS model, (ii) ADS model,
(iii) model developed by Jandera et al., and (iv) the NKmodel. Repro-
duced from [79] with permission

diameter of 90 Å is shown with the initial chromatogram
in a 450 Å pore diameter column, and the three different
transfer methods. The vertical transfer was found to per-
form worst, while the in-silico approach performed best.
The reason for this was that the linearity of the LSS model
is only an approximation.

3.3 Stationary phase characterization
and comparison

Retentionmodelling is frequently used in the development
and characterization of columns and stationary phases.
Themain part of retentionmodelling in column character-
ization is performed with models such as LFER and HSM,
leading all the way to enormous column databases [81]. In
these methods, the extent of different interactions occur-
ring in a separation and the effect of these interaction on
the total retention process are established [7,82]. The mod-
els have been more extensively described in the introduc-
tion, but its exclusive application will not further be dis-
cussed in this review. Two other approaches to compare

columns are classification of stationary phases by perform-
ing chromatographic tests or statistical tests and predicting
retention behavior with mathematical models, requiring
large amounts of data [83,84]. Since statistical tests yield
more than only retentionmodel descriptors [85] andmath-
ematical models often provide information on mechanical
and physicochemical properties, which is often not based
on any chromatographic retention data [83,86], these two
goals will not be discussed further. The fourth approach
for column characterization is the application of semi-
empirical models. In this method, the fit to a model indi-
cates which of the retention mechanisms is dominant,
such as mixed-mode [87], reversed phase [88–90], normal
phase [91], but mostly HILIC [92]. In the past years, HILIC
has gained popularity, leading to a better understanding
of the mechanism and the influence of several parameters
(see Section 3.4), which led to the development of many
additional HILIC stationary phases. Stationary phases that
can be used in the RPLC and the HILIC mode, depending
on the level of organic modifier, have also gained in popu-
larity.

3.3.1 Column comparison

New columns or stationary phase materials are often
compared to existing methods by, for example, analyz-
ing the differences in the retention of probe compounds.
A C30 bonded silica stationary phase was characterized
by Vyňuchalová et al. [93,94]. The column was com-
pared to other RPLC columns, such as C4, C8, and C18
columns, concerning the retention of homologous non-
polar alkylbenzenes with an extended LSS model. This
model included parameters for the methylene group selec-
tivity (α) and the contribution of the end group in the series
(β). In Equation 15, the constants a andm increasewith the
number of repeats (n).

log 𝑘 = log β + 𝑛 log α = α0 + α1𝑛 − (𝑚0 + 𝑚1𝑛) φ (15)

The retention parameters 𝑎0, 𝑎1, 𝑚0, and 𝑚1 were
compared between columns, and it was found that the
C30 column yielded lower parameters than the standard
RPLC columns, indicating lower contributions of methy-
lene groups and end groups and weaker effects of the
organic solvent on the decrease of methylene selectivity.
Similar stationary phases can be used for different pur-
poses, for example when performing flash purification
chromatography. Somemanufacturers are producing flash
purification stationary phases identical to the analytical
stationary phase, only adapting the geometry of the col-
umn. Héron et al. compared these with a model based on
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F IGURE 6 Gradient method transfer between two columns (2.7 μm CORTECS-triphenyl) with different pore size (90–450 Å). In the
figure, the reference gradient chromatogram is shown in black. The direct transfer to a column with a higher pore size is shown in blue.
The three different transfer methods are indicated with green (vertical transfer), brown (horizontal transfer) and red (in silico transfer).
It is visible that the black line is most similar to the red line, revealing the best gradient method transfer. Reproduced from [80] with
permission

the LSS model [95], where the change in S is describe with
ln 𝑘𝑤.

𝑆 = 𝑝 + 𝑞 ln 𝑘𝑤 (16)

𝑞 =
Δ ln α𝐶𝐻2
ln α𝐶𝐻2−𝐻2𝑂

(17)

where p and q are constant for a binary solvent system.
The q-parameter can then be correlated to the methy-
lene selectivity measured in pure water (ln α𝐶𝐻2−𝐻2𝑂)
and the decrease in selectivity due to an increase of the
organic modifier concentration (Δ ln α𝐶𝐻2 ). As an alter-
native to C18 bonded phases, graphitic carbon can sepa-
rate both polar and non-polar analytes. Lunn et al. [96]
compared this phase to other regular RPLC stationary
phases regarding its preconcentration capability at the
top of the column. The retention parameters were cal-
culated by the NK model from isocratic retention data
of small molecules on the different columns. The ln 𝑘0
parameter was used as a marker for its focusing ability,
since the extrapolated values predicts retention in 100%
water

3.3.2 Classification of new fabricated
stationary phases

With the increasing popularity of HILIC and mixed-mode
separations over the last years, there has been a rise in
the number of stationary phases developed for these two
separation modes. Most of the developments in RPLC, the
workhorse of LC, are either developments of the geomet-
rical shape of the column, such as pillar–array separa-
tions or channel shape [89,97] (discussed in Section 3.3.4),
or the addition of other separating mechanisms such as
ion-exchange, creating a mixed-mode separation [88] (dis-
cussed in this section). Few new stationary phases for
NPLC have been introduced. In 2015, Peristyy et al. inves-
tigated the retention behavior of some small molecules on
synthetic polycrystalline diamond and fitted the data on
the ADS model [91]. Examining the parameters calculated
by the model, a higher n-value (Eq. 8), the parameter that
indicates the slope of the ln 𝑘 versus ln φ plot, is found
for the more polar compounds than for the polycyclic
aromatic hydrocarbons (PAHs). This indicates hydrogen
bonding on the surface of the diamond and weak disper-
sive forces between the PAHmolecules and the flat station-
ary phase.
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F IGURE 7 Retention behavior of gallic acid showing higher
log 𝑘 values at the extreme φ values. Note that φ in this figure con-
cerns the amount of water in themobile phase, since this is the strong
solvent in HILIC. On the right side, gallic acid demonstrates HILIC
behaviour and on the right side it exhibits RP behaviour. The model
is shown in Equation 18 and the φ𝑚𝑖𝑛 is given by Equation 19. Plot
based on the data in ref. [181]

In the past years, many different stationary phases
have been developed for HILIC. To confirm the HILIC
retention mechanism, the retention of some probe com-
pounds is often measured at different levels of φ and fit-
ted to the MM model. High regression coefficients indi-
cate a good fit and thus confirm the HILIC mechanism,
which is often indicated by a U-profile retention (i.e.
high retention at φ levels close to 0 and 1, but lower
retention in between). This retention plot is shown in
Figure 7.
Since the MMmodel is built by combining both the LSS

and the ADSmodel, the retention datamay also be fitted to
these twomodels separately to find the dominant retention
mechanism [43,98–100]. Many of the developed stationary
phases for HILIC are based on a polymeric structure, such
as a hyperbranched polyethylenimine stationary phase
[101] and a poly(vinyl alcohol)-cationic cellulose copoly-
mer [102]. Other used polymer functionalized silica sta-
tionary phases for HILIC separations are based on polyg-
lycerol [103,104], polyacrylamide [105], poly(vinyl alco-
hol) [106], and poly(glycidylmethacrylate-divinylbenzene)
[99].
With the synthesis of new stationary phases, the reten-

tion mechanism is often not limited to one specific
selectivity, sometimes leading to a mixed-mode mech-
anism [87]. For example, this can be based on RPLC
with ion repulsion [88,107], using the LSS model to
describe the relation between retention and organic mod-
ifier. Another mixed-mode selectivity was prepared by

polymerizing a mixture of glycidyl methacrylate and 2-
dimethylaminoethylmethacrylate, yielding a dual reten-
tion mechanism of HILIC and IEX chromatography [108].
The mixed-mode behavior was confirmed by fitting the
retention data to the LSS, ADS, and MM model. It was
found that acidic and neutral compounds behaved purely
on an adsorption mechanism, while the basic compounds
fitted best with the MM model. A perhaps more rele-
vant and contemporary combination of selectivities is the
HILIC mechanism with a RP mechanism, dependent on
the level of organic modifier in the mobile phase. High
levels of organic modifier induce HILIC behavior, whereas
high levels of water induce RP behavior, leading to higher
retention in both ends of the φ-scale [90,109]. The dual
retention behavior can be described by the mixed-mode
model of Jin.

log 𝑘 = 𝑎 + 𝑚𝑅𝑃 ⋅ φ𝐻2𝑂
− 𝑚𝐻𝐼𝐿𝐼𝐶 ⋅ log φ𝐻2𝑂

(18)

Here, 𝑎 is related to the size of the molecule and to
the interaction between analyte and stationary andmobile
phase, 𝑚𝑅𝑃 relates to the interaction between the solutes
and the solvents and 𝑚𝐻𝐼𝐿𝐼𝐶 refers to the direct analyte-
stationary phase interaction [27,110]. The minimum of the
log 𝑘 versus φ𝐻2𝑂

plots (φ𝑚𝑖𝑛), which is shown in Figure 7,
can be calculated by the following equation and corre-
sponds to the transition between RPLC and HILIC behav-
ior of analytes. It depends on both the polarity of the sam-
ple and the stationary phase [110,111].

φ𝑚𝑖𝑛 =
0.434 ⋅ 𝑚𝐻𝐼𝐿𝐼𝐶

𝑚𝑅𝑃
(19)

3.3.3 Column comparison between SFC
and LC

SFC is experiencing a renaissance in the last years and
recently it was compared to LC [83]. Vera et al. published
two papers in 2015 on the difference in selectivity of lin-
ear polynuclear aromatic hydrocarbons in SFC and LC
[112,113]. In the first paper the retention of the hydrocar-
bons was modeled with the LSS model [112]. The effect of
the organic modifier on the 𝑆-parameter was determined
on two different stationary phases. It was found that in
SFC using a similar percentage of acetonitrile reduced the
retention time by half compared to the use of methanol.
This led to the conclusion that retention optimization in
SFC is very different from that in HPLC. In the second
paper, the same selectivities in HPLC and SFC were com-
pared and it was concluded that PAHs yield different reten-
tion between RPLC and RPSFC on the same columns [113].
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3.3.4 Comparing different column
geometries

Besides optimizing the bonded stationary phase, there also
have been improvements in the geometrical fabrication
of existing stationary phases. These developments ranged
from macrolevel to microlevel, which will be discussed in
this order. In 2018, Gilar et al. tested the chromatographic
performance of straight and serpentine microfluidic chan-
nels [97]. The LSS model was applied for the intrinsic gra-
dient steepness (𝑏 = 𝑆𝐿𝑆𝑆 × Δφ ×

𝑡0

𝑡𝑔
) to model the differ-

ence in gradient elution. A negative effect of turns on the
efficiency was found, but this was reduced when gradi-
ent mode was employed. Gritti et al. evaluated the per-
formance of conically shaped columns to standard cylin-
drical columns, where the LSS model was used for the
retention in gradient elution [114]. The research indicated
that, when in gradient mode, a conically shaped column
could be advantageous to cylindrical columns, since it
reduced peak tailing. Several scientists have devoted their
attention to (the simulation of) stationary phase gradi-
ents [51,67,115,116]. In one example, the isocratic retention
data on the gradient stationary-phase-gradient columns
was fitted to the NK model, which was then used to
predict retention in gradient elution mode [115]. It was
stated that the simulated retention fitted very well with
the experimental data. This model was then applied to
other stationary-phase gradient geometries and no large
differences between using a uniform mixed-mode or a
gradient column were found, but differences were found
in the retention depending on the orientation of the
stationary-phase gradient (i.e. the solute retention fac-
tor either increases or decreases in the direction of the
flowrate) [116].

3.4 Understanding, describing, and
predicting retention

One of the objectives of retention modelling is to obtain a
better understanding of retention mechanisms. Especially
in HILIC, retention modelling can improve the under-
standing of the mechanism and at the same time reduce
the timeneeded formethod optimization.Models that only
consider the organic-modifier concentration, however,
cannot describe the retention behavior completely. Other
parameters such as buffer concentration, pH and temper-
ature influence the separation efficiency. This section will
be subdivided in three parts. The first part will consider the
use of themodels in section 2.1 to gain a better understand-
ing of retention interactions. The second part focuses on
new proposed models to describe more parameters in the

separation besides the modifier. The third and final part
will cover approaches to perform retention modeling.

3.4.1 Using existing models for
understanding retention

Reversed-phase liquid chromatography
Inmany cases of retentionmodelling applied to RP separa-
tions the LSS model is applied. While higher-order models
often yield a better description of the data, such as the Q
and the NK model, such models also require more input
data and risk overfitting the data. Gilar et al. [17] investi-
gated this problem and compared retention prediction by
NK and the LSS model. The LSS parameters were calcu-
lated in three different ways: looking at the full experi-
mental range, only on experimental data of ln 𝑘 > 0 and
a 𝑘 range from 1 to 30, leading to significantly different
parameters. The authors concluded that nonlinear models
describe the data best. The authors also recommended that
if an LSS model is used it is better to omit data for ln 𝑘 < 0.
Tyteca et al. [117] found a similar deviation from the LSS
model for small molecules and peptides and found a better
fit for the Q and the NKmodel. Next to smaller molecules,
the retention data of proteins was also investigated, which
led to the conclusion that, because of the very steep ln 𝑘
versus φ curves, nonlinear retention behavior in proteins
could not be proven. A recent study on the use of scan-
ning gradients for RPLC optimization found that when a
limited number of input experiments was desirable, good
fits could be found for the two-parameter models (LSS and
ADS) [39]. However, with increasing number of sampled
measurements the fit was best for the ADS model. Next to
that, the research showed that the gradient-slope factor, i.e.
the ratio between slopes of the fastest and the slowest scan-
ning gradients, which is often assumed to be at least three,
is less important than the proximity of the slope of the pre-
dicted gradient to that of the scanning gradients.
For the determination of retention parameters towards

the extreme values of φ, Jandera et al. [118] developed a
three-parameter model (ABM model) to allow estimation
of retention in pure strong and pure weak solvent (φ = 0
and φ = 1).

𝑘 = (𝑎 + 𝑏φ)
−𝑚 (20)

where a, b, and m are experimental constants depending
on the solute, the stationary phase and the mobile phase
[118,119]. The authors state that in high organic-modifier
concentration, the a-parameter could be neglected. This
model allowed better prediction than the LSS or the ADS
model and could also be used for HILIC. One of the
drawbacks of the LSS model is that it cannot account for
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the non-linearity, making it only applicable to the narrow
linear range. Baeza-Baeza et al. [120] extended the LSS
model to include the elution strength changes with the
elution degree, 𝑔. This parameter was assumed equal to
1 when the solvent strength followed the LSS model. It is
larger than 1 when the elution strength decreased along
with the organic-modifier concentration and, reversely,
smaller than 1 when it increased with the organic-modifier
concentration. In this way, it affected the linearity of the
LSS model. The model could also be applied to other
modes of LC.
When performing scanning experiments, it can be

advantageous to reduce the time needed for the runs.
Baeza-Baeza et al. combined the accuracy of isocratic
data with the speed of gradient experiments by adding
solvent concentration pulses in the isocratic runs [121].
The predicted parameters were found to agree with those
obtained from isocratic experiments. Gradients have also
been investigated in this context, with reports focusing on
the fundamental equation of gradient elution [122], non-
linear gradients [123] and pre-elution of solute in the initial
mobile phase [124].

Normal-phase liquid chromatography
Because of decreased popularity, there has been little
development in the field of normal-phase liquid chro-
matography (NPLC) with respect to retention modeling.
One study compared the slight difference in the ADS
model as seen by Snyder and by Soczewinksi [125]. There
exist some different perspectives about the 𝑛-term in the
ADS model, where Soczewinksi wrote that polar solutes
and the polar solvent absorb 1:1 with the absorption sites
in the silica [23], whereas Snyder defined 𝑛 to be the ratio
of molecular area of the solute required when adsorbed
on the stationary phase versus the molecular area of the
strong solvent [25]. Wu et al. applied these models to clas-
sic NPLC bonded phases with literature data and to the
charge transfer 2,4-dinitroanilinopropyl (DNAP) column
[125]. While the Snyder model predicted better on the
classedNPLCphases, the Soczewinskimodel predicted the
charge transfer phase better.

Hydrophilic interaction liquid chromatography
With the potential of HILIC for the separations of highly
polar and ionic compounds, the number of applications of
HILIC has recently grown [126,127]. Since the actual reten-
tion mechanism of HILIC is not yet completely under-
stood, there have been many published reviews in recent
years that attempt to describe the interactions occurring in
the column [111,128–130].
Recently, papers have focused on the optimization of

a complete method, looking at different parameters such
as buffers, salts, their concentrations, pH, the organic-

modifier content, temperature, and stationary phase.
When optimizing the modifier content, a number of
studies used the LSS model [131–135], the ADS model
[100,131–136], the Q model [100,136], and the MM model
[131,133]. Often,more than onemodel is used to distinguish
for example between the partitioning mechanism and the
adsorption mechanism [110,111]. The effect of pH was only
found to significantly influence the retention in bare sil-
ica columns, since it has a major effect on the charge of
the column [100,134]. There are several other papers that
focus on the retention modelling itself. Euerby et al. [14]
applied seven existing models to describe the retention as
a function of the organic-modifier concentration and three
models to predict the effect of temperature. These mod-
els were added to the developed retention-modelling pro-
gram, in which the prediction accuracy could be assessed.
The importance of the method parameters was ranked
for retention and selectivity with statistical approaches
and it was found that for retention the observed order
of importance was organic-modifier content > stationary
phase > temperature≈pH≈buffer concentration and for
selectivity it was stationary phase > pH > buffer concen-
tration > temperature > organic-modifier content. It was
concluded that with gradient results, isocratic experiments
could not be predicted. Cesla et al. [46] applied five exist-
ing models to the retention of oligosaccharides on differ-
ent columns for which the magnitude of several mecha-
nisms occurring in the different columns was determined.
All five models fitted the retention data to a similar extent.
In different studies, the LSS, ADS, Q, MM, and NK model
were used by Rácz et al. [137] in Drylab and by Roca et al.
[37] inMOREPEAKS. The former study concernedmethod
development for a hallucinogenic mushroom extract on
the organic modifier, the pH and the temperature for dif-
ferent columns. The predicted chromatograms by the Q
model deviated more from the experimental results than
those of the LSS model [137]. In the work of Roca et al., a
tryptic digest of bovine-serum-albumin was analyzed and
retention modelling was used to determine the best com-
bination of column, organic modifier concentration, and
additive. To confirm the selection of themodel, the F-test of
regression was applied [37]. This retention modeling pro-
gram was applied by Pirok et al. to separate metabolites
with HILIC [15]. The ADS model was found to perform
best, only requiring two scanning gradients and yielded
acceptable accuracy and linearity. Next to that different
stationary-phase materials were analyzed, where the pre-
diction accuracy in diol columns was found to be better
than amide columns.
One aspect that renders the use of gradient data for the

retentionmodeling challenging is the distortion of the gra-
dient shape by the solvent-delivery system [78]. Therefore,
when such data is used to calculate the retention model
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parameters, such small errors can yield wrong φ values
and thus complicate the retention prediction. Wang et al.
[138] used a back-calculation methodology for gradient
imperfections and compared theirHILIC results to those of
RPLC. The authors concluded that columndistortion plays
a muchmore important role in HILIC retention projection
compared to RPLC.

Mixed-mode chromatography
Whenoptimizingmixed-mode separations, scientists often
discuss the dual retentionmechanism of RPLC andHILIC,
depending on the level of organic modifier. This behavior
can be described by the U-profile retention plots, shown in
Figure 7, where the minimum describes the φ where the
main retention mechanism switches from reversed phase
to HILIC (See Eq. 19) [129,139]. Obradovic et al. investi-
gated the retention of imidazoline and serotonin receptor
ligands on a mixed-mode column and were able to fit the
retention data at different mobile phase concentrations to
an MM model, thereby confirming the retention mecha-
nism [140]. Balkatzopoulou et al. applied retention mod-
elling to a mixed-mode reversed-phase and weak anion-
exchange column. It was found that the retention behavior
could be described by aU-profile plot, i.e.,MMmodel, con-
firming the RPLC and HILIC behavior of the compounds
in lower andhigher organicmodifier concentration respec-
tively [141].

Other chromatographic modes
Retentionmodelling has also been applied tomore uncom-
mon forms of LC, such as micellar LC, critical chromatog-
raphy (LCCC), and chiral chromatography. Since other
mechanisms play a role in these types of chromatography,
it is obvious that the standard retention models are not
applicable to these methods. Navarro-Huerta et al. opti-
mized micellar LC (MLC) by isocratic or gradient elution
and applied a wide range of models, some of which are
developed for RPLCor specifically forMLC [142]. Themost
accurate predictions were found from the following model
with fixed surfactant concentration:

1

𝑘
= 𝑐0 + 𝑐1φ + 𝑐2φ

2 + 𝑐3φ
3 + 𝑐4

√
φ (21)

where 𝑐0, 𝑐1, 𝑐2, 𝑐3, and 𝑐4 are the adjustable fit coeffi-
cients of the model. Hegade et al. applied the concept of
stationary-phase optimized selectivity (SOSLC), in which
the Q model was applied to the chiral separation of enan-
tiomers [143]. The prediction error of the retention of enan-
tiomers on polysaccharide stationary phases was found to
be within 2 and 7% for isocratic and 0 and 12% for gradient
elution.

SFC often follows similar retention mechanisms as LC
[83]. Vera et al. published two papers on the study of reten-
tion of polynuclear aromatic hydrocarbons on phenyl-type
stationary phases [112,113]. These papers are discussed in
Section 3.3.3. Tyteca et al. modeled SFC retention data
and applied that in computer assisted method optimiza-
tion [144]. TheMMmodel, the Qmodel and the NKmodel
were applied on isocratic and gradient data. The NK and
MMmodel yielded the best retention-prediction accuracy.
The conversion of isocratic to gradient data and vice versa
resulted inmore difficulties due to pressure differences. De
Pauw et al. [145] investigated this pressure-related prob-
lem. Pressure and temperature definition of parameters
such as fluidic CO2, volumes, volumetric flow rates, and
mobile phase fractions, may differ between systems. The
authors found that the retention in SFC could best be
described through the mass fraction instead of volume
fraction of the organic modifier.

3.4.2 Developing newmodels for
understanding retention

Reversed-phase liquid chromatography
In many retention models, the elution mode for which the
input data is measured should be the same as the preferred
elution mode for prediction. For example, when record-
ing isocratic data, the output is more reliable in isocratic
mode. The same goes for gradient elution, which has even
more restrictions, since the input gradient slopes should be
like those predicted [39]. There have been developments to
convert such data by defining the retention of analytes in
gradient and isocratic elution and transferring this infor-
mation to the data. This approach is referred to as the iso-
to-grad approach [32]. Stankov et al. tried to apply this
approach to dual-species eluent (i.e. a combination of two
organic modifiers, such as methanol and acetonitrile), and
developed and tested four isocraticmodelswith three, four,
five, and eight parameters based on the Q model and the
LSS model [146]. The authors deemed their prediction bet-
ter than those of other models, referring to an average
root-mean square error/min of 0.743 for the compounds
measured in gradient elution. Claiming a better prediction
with increasing number of parameters, the authors stated
that the models did not overfit the retention data. The best
model was as follows:

log 𝑘 = 𝑎0 + 𝑎1 ⋅ φ (𝑀𝑒𝑂𝐻) + 𝑎2 ⋅ φ (𝐴𝐶𝑁)

+𝑎3 ⋅ φ
2 (𝑀𝑒𝑂𝐻) + 𝑎4 ⋅ φ

2 (𝐴𝐶𝑁)

+𝑎5 ⋅ φ (𝑀𝑒𝑂𝐻) ⋅ φ (𝐴𝐶𝑁)
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+𝑎6 ⋅ φ
2 (𝑀𝑒𝑂𝐻) ⋅ φ (𝐴𝐶𝑁)

+𝑎7 ⋅ φ (𝑀𝑒𝑂𝐻) ⋅ φ2 (𝐴𝐶𝑁)

+𝑎8 ⋅ φ
2 (𝑀𝑒𝑂𝐻) ⋅ φ2 (𝐴𝐶𝑁) (22)

where 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, and 𝑎8 are regres-
sion coefficients for each analyte, solvent and col-
umn system. This model requires (at least) nine data
points. Tsui et al. [147] developed a three-parameter-
equilibrium constant stoichiometric displacement reten-
tion model for RPLC, which considers the interac-
tion between solute-sorbent, solute-ACN (ACN being the
mobile phase), and ACN-sorbent, leading to the following
model:

ln 𝑘 = − ln(1 + 𝐾𝑆𝐿−𝐴𝐶𝑁𝐶𝐴𝐶𝑁
𝑌
) − 𝑥 ln (1 + 𝐾𝐴𝐶𝑁𝐶𝐴𝐶𝑁)

+ ln 𝑘0 (23)

where 𝐾𝑆𝐿−𝐴𝐶𝑁 and 𝐾𝐴𝐶𝑁 are the equilibrium constants
of solute-ACN and ACN-sorbent, respectively, 𝐶𝐴𝐶𝑁 is the
free ACN concentration and 𝑥, 𝑦, and 𝑘0 are the adjustable
parameters. The authors plotted both ln 𝑘 versus𝐶𝐴𝐶𝑁 and
ln 𝑘 versus ln 𝐶𝐴𝐶𝑁 , inwhich concave upward and concave
downward curves were found, respectively. The developed
model was able to account for the nonlinearity in the full
ACN range. Unfortunately, the work was not compared
to conventional retention models, and as such its perfor-
mance is difficult to assess.
Gritti developed a solvent-retention model for the

description of retention in combined solvent- and temper-
ature gradient LC (CST-GLC) by combining the LSSmodel
with the van‘t Hoff relationship [148]. In this equation, the
retention as a factor of the organic modifier concentration
and the temperature is written as:

𝑘′ (φ, 𝑇) = 𝑘′ (0) 𝑒−𝑆𝐿𝑆𝑆(φ−φ0)𝑒

𝑄𝑠𝑡

𝑅𝑇2
0

(𝑇−𝑇0)

(24)

where 𝑘′(0) is the retention factor at the initial φ and tem-
perature, 𝑆𝐿𝑆𝑆 is the 𝑆-parameter from the LSS model, 𝑄𝑠𝑡
is the isosteric heat of adsorption specific for the analyte,
𝑇 is the temperature, and 𝑅 is the ideal gas constant. The
author stated that the model described the retention of
smaller compounds well over a modified range of temper-
ature from ambient to 90◦C. In the work of Wilson et al.
temperature-assisted on-column solute focusing (TASF)
was performed [56]. To model the effect of temperature
on the retention, three different models were employed.
Two models could be used for a fixed temperature (i.e.
1D model dependent on φ), one based on the LSS model
(Equation 25) and one on the NK model (Equation 26),

and a third model based on the NK model (Equation 27)
included a temperature dependence (i.e. 2D model depen-
dent on φ and 𝑇).

ln 𝑘 = ln 𝑘0 (𝑇) − 𝑆 (𝑇) φ (25)

ln 𝑘 = ln 𝑘0 (𝑇) + 2 ln (1 + 𝑎 (𝑇) φ) −
𝑆 (𝑇) φ

1 + 𝑎 (𝑇) φ
(26)

ln 𝑘 = ln 𝑘0 +
𝐷

𝑇
+ 2 ln (1 + 𝑎φ) −

(
𝑎 +

𝐷

𝑇

)
𝑆φ

1 + 𝑎φ

(27)

In these equations, 𝑘0 and 𝑘0(𝑇) are the retention in
pure water, 𝑆 and 𝑆(𝑇) describe the solvent strength, 𝑎
and 𝑎(𝑇) account for the curvature in the relationship
between ln 𝑘 and φ, and 𝐷 indicates the effect of tempera-
ture. It was found that from the three descriptions of reten-
tion, the second equation yielded the most accurate pre-
dictions, which was calculated by measuring the retention
at an organic modifier fraction of 0.05 at different tem-
peratures. The last model (Eq. 27), which was first pub-
lished by Neue and Kuss, was also used for the modelling
of retention in TASF by Groskreutz et al. [31,149]. Reten-
tion data of parabens and hydroxyphenones was fitted to
the model from 12 different solvent compositions and six
column temperatures, yielding an 𝑅2-value of 0.9996. It
was claimed that the model could predict retention and
shape of the peak under both isocratic and gradient elu-
tion conditions. Horner et al. evaluated three temperature-
and mobile-phase-dependent retention models, of which
one was Equation 27. The other two models were based on
the Pappa-Louisi partition (Equation 28) and Pappa-Louisi
adsorption (Equation 29) equations.

ln 𝑘 =
1

𝑇

(
𝐴φ2 + 𝐵φ + 𝐶

)
+ 𝐷φ2 + 𝐸φ + 𝐹 (28)

ln 𝑘 = 𝐴 +
𝐵

𝑇
−

φ
(
𝐶 +

𝐷

𝑇

)
𝑒
𝐸+

𝐹

𝑇

1 + φ

(
𝑒
𝐸+

𝐹

𝑇 − 1

) (29)

where both equations have six variable parameters𝐴,𝐵,𝐶,
𝐷,𝐸, and𝐹. Themodelwith the best fit, calculatedwith the
AIC value (Section 2.2.2), was Equation 29. It was followed
by Equation 28 and the worst fit was found with Equa-
tion 27. The authors found that Equation 27 (NK), with the
lowest number of parameters, still yielded a decent esti-
mate of the retention.
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When the retention of analyteswith acid-base properties
is modeled, the retention not only depends on the organic-
modifier concentration, but also on the dissociation con-
stant (K). Andrés et al. developed a simplifiedmodel, based
on a polarity-parameter model [150]. This two-parameter
model, which is a simplified form of the LFER by Abra-
ham, was originally developed for neutral compounds in
RPLC [151].

log 𝑘 = 𝑞 + 𝑝𝑃𝑁
𝑀

(30)

In this model, 𝑃𝑁𝑚 describes the polarity of the mobile
phase (related to the volume fraction and the different
organic modifiers) and 𝑝 and 𝑞 are the fitting parameters.
This model was extended to model retention of acid–base
compounds for separations with acetonitrile and validated
for separations with methanol [150,152]:

log 𝑘 = 𝑞 + 𝑝𝑃𝑁𝑚 + log [1 − 𝐷 (1 − 𝑓)] (31)

where 𝑃𝑁𝑚, 𝑝, and 𝑞 are similar to Equation 30, 𝐷 describes
the ionization degree of the analytes related to the 𝑝𝐾𝑎,
and 𝑓 is the ratio between the retention factors of the pure
ionized and the pure neutral compound. The model was
tested with different types of gradients with methanol (lin-
ear, convex, concave, and combinations of those) and at
three pH values. In Figure 8 on the left, the predicted reten-
tion times for a wide range of acid-base compounds are
plotted against the experimental retention times for the
three pH values. On the right, the residuals are shown.
From this figure, it can be seen that a higher pH lowers
the prediction error [152].
The authors claimed that the model was not size depen-

dent, since it performed as good for small as for com-
plex molecules [152]. Sasaki et al. found that the model
of Andrés et al. gave good accuracy, but it could not
model compounds that presented multiple-curved reten-
tion behavior, i.e. molecules with multiple 𝑝𝐾𝑎 values,
when changing the pH [153]. In their work, pH-modifier
models were combined in an optimization program to pre-
dict the optimal separation in pH and organic modifier,
based on the data of 33 runs. While the model of Andrés
et al. needed information a priori such as the 𝑝𝐾𝑎, the soft-
ware package of Sasaki et al. could predict retention from
the retention input data alone and needed no physiological
or chemical information of the target analyte.

Hydrophilic interaction and mixed-mode
chromatography
As could be seen in the section “Hydrophilic interaction
liquid chromatography,” HILIC is often described by the
MM model. Wang et al. [154] studied the multiple inter-
actions in HILIC further, and described the interactions

between the solute, the solvent and the stationary phase
into a stoichiometric displacement model for retention
(SDM-R), which is defined as follows:

log 𝑘 = log 𝐼 − 𝑍 log [𝑊] (32)

where log 𝐼, which represents the affinity of 1mole amount
of solute to stationary phase, and Z are both constant, and
log[𝑊] is the logarithm of the concentration of water in
themobile phase. Themodel was compared to the LSS and
ADS model, and outperformed both models on the reten-
tion prediction of proteins in HILIC.
Obradovic et al. developed a novel computational

approach to identify the optimal fitting models for dual
retention behavior of HILIC and RPLC, typically described
with a U-profile [155]. The considered models were ana-
lyzed on their predictive ability of retention and on the
accuracy of the turning point (φ𝑚𝑖𝑛). The research yielded
multiple models that outperformed the standard Q and
MM model, which were correlated to other parameters
that are influencing the separation. These parameters were
based on the average retention inHILICmode, the average
retention in RPLC mode and the average retention in the
whole range of organic modifier.

3.4.3 Approaches to perform retention
modeling

The exact method of conducting retention modelling is
not always clear. Tyteca et al. investigated fitting prob-
lems encountered when modelling retention [156]. The
LSS, ADS, NK,MM, and an extended four-parameter Neue
model, as well as combinations thereof were tested on
HILIC and SFC retention data. It was found that adding
more scanning experiments and switching to higher-order
models could improve the fitting and modeling of the
data. For highly retained compounds, the authors recom-
mended to use very slow gradients (high 𝑡𝐺∕𝑡0) or to start
at a higher organic-modifier concentration. Next to that,
modelling retention of less retained compounds benefits
from faster gradients. Another problem encounteredwhen
fitting HILIC retention data in model is that the retention
inHILIC changes as a result of small changes in themobile
phase concentration. For that reason, Tumpa et al. divided
the experimental space into different segments with an
interpolated polynomial for each part, which is known as
spline interpolation [157]. TheMM,Q,ADS, andLSSmodel
were tested in this study. The spline interpolation tech-
niquewas cross validatedwith the standard retentionmod-
eling approach, yielding the new technique with the best
values. The prediction error of the retention parameters
was below 10% for all compounds.
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F IGURE 8 Prediction retention times, calculated with the model in Equation 31, compared to experimental retention times for pH 5, 7,
and 9. On the left the two retention times are plotted for each compound and on the right the residuals of the left plot are shown. Retention
time is in minutes. Reproduced from [152] with permission

3.5 Lipophilicity determination

Lipophilicity is an important parameter to describe
physicochemical properties and is often used in quanti-
tative structure-activity relationships (QSARs) for several
classes of compounds, such as environmental pollutants,
pharmaceuticals, and bioactive compounds. It is generally
described as the logarithm of the n-octanol/water coeffi-
cient: log 𝑃. Lipophilicity is a critical parameter in drug
discovery, since it plays a crucial role in determining the
ADMET (adsorption, distribution, metabolism, excretion,
and toxicity) of the potential candidate [158]. For successful

drug discovery, drugs are assessed on their pharmacoki-
netic properties, such as biological half-life and extent
of protein binding, but next to that they are assessed on
the delivery to these target sites. After uptake, the drugs
must cross several membranes, either passively or actively.
These are generally more hydrophobic and thus prefer
compounds with higher lipophilicity. In recent years, the
average lipophilicity value of potential drugs has increased,
exposing its value and influence on the drug industry [158].
Moreover, lipophilicity plays an important role in envi-
ronmental chemistry, where it is used in the estimation
of bioaccumulation in plants and animals, the prediction
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of adsorption of pollutants in soil and sediments and the
assessment of health risks of emerging contaminants [159].
There are various methods, computational and exper-

imental, which can be divided into direct and indirect
methods, to calculate lipophilicity, but there are limita-
tions to the direct experimental methods as these (i) cost
time, (ii) are labor intensive, (iii) require a lot of sam-
ple, and (iv) are often limited by the dynamic range of
the detector [160]. For that reason, many indirect methods
have been introduced based on separations, of which the
most common approach is based on RPLC. When using
RPLC as a tool, the descriptor of lipophilicity is the loga-
rithm of the retention parameter (log 𝑘), which can be cal-
culated from the retention time and the dead time (Eq. 1)
[2]. At first, isocratic retention factors at specific organic
modifier levels were used to correlate the log 𝑃 to the log 𝑘,
but later the authors opted that the retention factor in 100%
waterwasmore demonstrative [161]. This led to theCollan-
der Equation, which is a linear dependence between log 𝑃
and log 𝑘 [162,163]:

log 𝑃 = 𝑎 log 𝑘𝑤 + 𝑏 (33)

where 𝑎 and 𝑏 are parameters that are characteristic for
the non-polar solvent used in the chromatographic separa-
tion. Performing analyses at 100% water, which is thought
to lead to major retention loss and to be catastrophic for
the column life time [164], leading to large retention times
of hydrophobic compounds and to very broad peaks, is
omitted. For that reason, often the log 𝑘𝑤 is estimated from
the Snyder–Soczewinski equation (Equation 8). When cal-
culating retention factors from 4 isocratic runs at dif-
ferent organic modifier levels, the log 𝑘𝑤 can be extrap-
olated [160]. Liang et al. [165] revised the methodology
of lipophilicity determination and argued to use gradi-
ents instead of isocratic runs to save time. If gradient
runs are performed instead of isocratic runs, the log 𝑘𝑤
found with three gradient runs agreed better with the
log 𝑘𝑤 determined with isocratic runs than if two gradi-
ent runs were used. Next to RPLC, Sobánska argues that
TLC can serve as an alternative for lipophilicity determi-
nation, since it is inexpensive, fast, and readily available
[166].
The extent to which a drug can penetrate biological

membranes, such as the blood–brain barrier, cell mem-
branes, and skin, depends heavily on the log 𝑃. A num-
ber of groups publish the lipophilicity parameters of many
newly synthesized drug candidates [167–180]. In drug dis-
covery research, the LSS model is often used to obtain
the log 𝑃, but Hawrył et al. acknowledge the concave
structure of the retention plots [169]. For this reason,
the Q model was used next to the LSS model to deter-
mine the intercept. The Q model gave more accurate

results when acetonitrile was used as organic modifier,
whereas retention data in methanol fitted better with the
LSS model [1,169]. The same quadratic relation was found
by Klose et al. for wide φ ranges [177]. However, other
authors found a linear relationship when using acetoni-
trile [174]. Sztanke et al. [167] compared modifier systems
with methanol, acetonitrile, and dioxane and found that
methanol systems yield the best experimental lipophilic-
ity indices. However, the research stresses the differences
and thus the complexity when performing these scanning
gradients.

4 DISCUSSION

In retrospect, the application of retention modelling by
means of (semi-) empirical models has led to a better
understanding of general HPLC, specifically RPLC and
HILIC. It can be stated that it plays a key-role in the differ-
ent fields of application. In the published work on reten-
tion modeling, however, a clear distinction between the
workflows of the different applications becomes evident,
which can be seen in Figures 2 and 9. For method opti-
mization and lipophilicity determination retention mod-
elling is often approached as a black box. Often only one
model is applied which is chosen by convention, although
there seems to be enough evidence that these models
have their inaccuracies. For example, with lipophilicity
determination, the ln 𝑘𝑤 is mostly determined by extrap-
olating the LSS model, while it has often been shown
that there is a clear deviation from linearity, especially
in the lower φ range [120]. For this reason, lipophilic-
ity determination is ranked with the lowest complexity
of the retention modelling, followed by the method opti-
mization (Figure 9). In stationary-phase characterization,
often more models are investigated. Any good perfor-
mance of a specific model is sometimes used as support-
ing evidence to conclude that a certain retention mecha-
nism mainly determines the selectivity. In contrast, most
work in the domain of method transfer and understanding
retention use retention modeling to a much-sophisticated
extent. Researchers also appear to implement increasingly
more parameters to conduct retention modeling in these
latter domains, attempting to describe each contributing
effect.

5 CONCLUDING REMARKS

The aim of this review was to provide a comprehensive
overview of strategies for and applications of retention
modeling.After reviewing the recent literature,we can also
make a number of recommendations.
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F IGURE 9 Overview of the different models applied per application. The total number of research papers is found under the title of the
application. On the right the degree of complexity is given for the five different application fields

∙ Studies on retention modeling are typically limited
to specific purposes, such as method optimization or
method transfer. However, from a mathematical point
of view, retention modelling is ultimately an exercise in
regression statistics and insights obtained in one study
should—in principle—be applicable for all purposes.

∙ To our surprise, numerical information on the out-
come of retention modeling (e.g. residuals) are rarely
reported. Also, in retention-modeling studies, the exper-
imental (raw) input data and relevant conditions,
such as the column dead volume and the dwell vol-
ume, are often not reported. It is repeatedly unclear
how specific regression results or model parameters
were obtained. Unfortunately, all these factors affect
the accuracy and precision of the reported retention
model parameters [32,33,39]. Therefore, it is often not
possible to reproduce or critically evaluate published
work.

∙ The main application of retention modelling lies in the
understanding, description and prediction of retention.
There is currently no consensus on the quality of reten-
tion models, which frustrates the comparison and eval-
uation of models. Reported prediction errors range from
0.1 to 10%, but almost all authors speak of “accurate” or
“good” models. Some uniformity is badly needed. Given
the high efficiency of LC separations, small variations
in retention times may result in large variations in res-
olution. Therefore, retention models for application in

method development and optimization require predic-
tions (well) within 1%.

∙ A potentially important application of retention mod-
elling is method transfer. Given the enormous diversity
in columns and the continuous innovation in instru-
mentation, method transfer is increasingly needed.
Retention (model) parametersmay facilitate a successful
transfer of existing methods without a need for renewed
method optimization.

∙ If better care is taken of the quality ofmeasurements and
reporting, model parameters may eventually be used as
system-independent retention data, which is an attrac-
tive proposition.
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