
Received: 23 January 2020 Revised: 23 September 2020 Accepted: 29 September 2020

DOI: 10.1002/sim.8778

R E S E A R C H A R T I C L E

The implications of noncompliance for randomized trials
with partial nesting due to group treatment

Chris Roberts

Centre for Biostatistics, Division of
Population Health, School of Health
Sciences, University of Manchester,
Manchester, UK

Correspondence
Chris Roberts, Centre for Biostatistics,
Division of Population Health, School of
Health Sciences, University Place,
University of Manchester, Oxford Road,
Manchester M13 9PL, UK.
Email: chris.roberts@manchester.ac.uk

Analyses of trials of group administered treatments require an identifier for ther-
apy group to account for clustering by group. All patients randomized to receive
the group administered treatment could be assigned an intended group identifier
following randomization. Alternatively, an actual group could be based on those
patients that comply with group therapy. We investigate the implications for
intention-to-treat (ITT) analyses of using either the intended or actual group to
adjust for the clustering effect. We also consider causal models using the actual
group. A simulation study showed that ITT estimates based on random effects
models or GEE with an exchangeable correlation matrix performed much better
when using the intended group than the actual group. OLS with robust stan-
dard errors performed well with both. Most compliance average causal effect
(CACE) models performed well. While practical constraints of the clinical set-
ting may determine the choice between an intended or actual group analyses,
it is desirable to record both. An ITT analysis using mixed models can then be
fitted using the intended group with data generation assumptions checked by
a causal model using the actual group. Where an ITT analysis is based on the
actual group, worse outcome for never-takers than compliers may allow one to
infer that some estimators are biased toward no treatment effect. The work here
is motivated and illustrated by a trial of a group therapy, but also has relevance
to trials with treatment related clustering due to therapist examples of which
include physical and talking therapies or surgery.
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1 INTRODUCTION

Where treatment is administered to patients in groups rather than individually, for example, exercise classes for the treat-
ment of musculo-skeletal disorders,1 group therapies for psychological problems,2,3 and self-help groups for smoking
cessation4 or alcohol problems,5 outcome for patients in the same group may correlated due to shared experience of deliv-
ery and interaction between patients.6 Ignoring the possible clustering effect of group treatment has been recognized as
being statistically nonconservative as standard errors may be too small. Design and analysis of trials of group therapies
should therefore assume that between-therapy group variation in outcome is possible, which has implications for design
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and statistical analysis.7,8 Similar clustering of patient outcomes by health professional may occur for talking, physical or
surgical therapies, where factors such as experience or caseload may result in variation between healthcare professionals9

sometimes called the therapist effect. Such trials generally use individual randomization, so the clustering effect is due to
the delivery of the treatment, not the method of randomization.10 As the clustering effect derives from treatment, it may
differ between trial arms. This paper examines the implications of noncompliance in this setting.

The motivating example for this work is a trial of a group administered intervention for lower back-pain.11 Patients
were randomized to a new group cognitive behavioral therapy or control. Patients in the control arm received an educa-
tional pack for self-management of back pain that was also given to group therapy patients. Clustering applied to just one
randomized treatment arm so this trial had a partially nested design.12,13

In this article, we assume that compliance is binary with patients either receiving or not receiving group therapy. Based
on this assumption, one can identify four latent classes of patients: (i) never-takers, that is, patients who do not receive
the intervention irrespective of randomization, (ii) always-takers, who always receive the group intervention irrespective
of randomization, (iii) compliers who always adhere to the randomly allocated treatment, and (iv) defiers who always
receive the opposite of their random allocation. First, we assume that there are no defiers whose exclusion is referred to
as the monotonicity assumption in causal inference.14 Knowledge of compliance means that never-takers can be identified
in the intervention arm, but not in the control arm, and always-takers can be identified in the control arm, but not in
the intervention arm. We will also assume that randomization can only influence patient outcome by the receipt of the
group treatment, an assumption referred to as the exclusion restriction. This assumption means that the outcome for
never-takers in the control arm is the same as that for never-takers in the intervention arm, because they never receive the
intervention. Similarly, the outcome for always-takers is the same in both arms as they always receive the intervention. In
the motivating example, the new group therapy was only available to patients randomized to that intervention, so there
were no always-takers.

Analyses of group therapies that take account of clustering require an identifier for the therapy group.1 One option
would be the intended group, assigned for all patients randomized to group therapy. To guarantee that this is complete, it
would need to be assigned at randomization. Let IG(i) be the identifier of the intended therapy group for the ith patient
in the intervention arm. For a partially nested design, we require IG(i) to identify all patients in the control arm using
a unique identifier for each patient. If there is noncompliance, some patients randomized to group treatment will not
receive group treatment and so will not share the group experience. If we believe clustering is due to treatment, their
outcome should not correlate with others assigned to the same group. Where compliance status is known, we can define
actual group, say AG(i), identifying the therapy group for patients that adheres to group treatment. For all other patients,
that is those in the control arm and all patients in the intervention arm that do not adhere to group treatment, AG(i)
should be a unique identifier.

When the lower back pain trial was being planned, it was decided that a new therapy group would be initiated once
sufficient numbers of patients had been randomized to the group intervention at a trial site. The particular group in which
a patient received their treatment was recorded as each therapy group was initiated, but some patients randomized to the
group therapy declined group treatment and so were not assigned to a therapy group. The identifier AG(i) was recorded,
but not IG(i). In other trials, where IG(i) and compliance is recorded as a binary variable, AG(i) could be constructed
retrospectively.

This article considers the following four questions:

1. How do methods for estimating intention-to-treat (ITT) effects using actual group AG(i) perform?
2. How do methods for estimating ITT effects using intended group IG(i) perform?
3. Where both IG(i) and AG(i) are recorded, which should be used for estimating ITT effects?
4. How do methods for estimating the compliance average causal effect (CACE) perform?

In Section 2, we present statistical methods for estimating ITT effects using either the intended or actual group. We
then consider possible limitations of actual and intended group analyses. In Section 3, we will present methods for esti-
mating the CACE introducing a new model for partially nested data utilizing a normal mixture distribution. In Section 4,
simulation will be used to investigate the performance of methods listed in Sections 2 and 3. In Section 5, we apply these
methods to data from the lower back pain trial that motivated this work. Finally, in Section 6, we discuss some of the
implications of this work for design and analysis of this type of trial. Consistent with the motivating example, the work
focuses on the situation where there are only two latent compliance classes, compliers and never-takers. We consider the
situation where there are also always-takers in the discussion and Appendix A.
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2 INTENTION TO TREAT ANALYSES FOR GROUP THERAPY TRIALS
WITH NONCOMPLIANCE

2.1 Analysis methods

Consider a continuous outcome measure yi for the ith patient. Suppose that ri is an indicator variable for random assign-
ment to group therapy. Where ri = 0, IG(i) is a unique identifier of each subject. Define the indicator variable ti equal to
one if a patient adheres to the group intervention and zero otherwise. If there are no always-takers, ti = 0 in the control
arm. Where ti = 0, AG(i) is a unique identifier of each subject.

Suppose 𝛿 is the ITT effect. A simple analysis that takes no account of the clustering due to therapy group would be
to fit the OLS model as follows,

yi = 𝛼i + 𝛿ri + e(1)i (1)

with e(1)i ∼ N[0, 𝜎2
e ]. The term 𝛼i could be a constant or could depend on baseline covariates. Robust standard errors15

could be used to adjust for the effect of clustering using IG(i) for an intended group analysis or AG(i) for an actual group
analysis. We refer to these methods as OLS(Rob-Int) and OLS(Rob-Act), respectively. An alternative would be to fit a
GEE model16 with an exchangeable correlation matrix, again using robust standard errors with either intended or actual
cluster that we refer to as GEE(Int) or GEE(Act).

One extension of Equation (1) is to fit a random intercept model using either the intended or actual group identifier
as follows,

yi = 𝛼i + 𝛿ri + u(2)
IG(i) + e(1)i , (2)

where u(2)
IG(i) ∼ N[0, 𝜎2

u] for an intended group analysis or

yi = 𝛼i + 𝛿ri + u(2)
AG(i) + e(1)i , (3)

where u(2)
AG(i) ∼ N[0, 𝜎2

u] for an actual group analysis. We will refer to these methods as RI(Int) and RI(Act). Both mod-
els constrain the total variance to equal 𝜎2

u + 𝜎2
e in both arms and the partitioning of the variance of subjects in the

control arm is not identified. If the variance is misspecified, estimates of the random effect variances can be biased
affecting test size.7 Despite these limitations, we will include both models in our simulation work below as they are
sometimes used. To deal with the problem of variance misspecification in the control arm, Equations (2) and (3) can be
replaced by

yi = 𝛼i + 𝛿ri + u(2)
IG(i)ri + e(1)0i (1 − ri) + e(1)1i ri (4)

or

yi = 𝛼i + 𝛿ri + u(2)
AG(i)ti + e(1)0i (1 − ri) + e(1)1i ri, (5)

with e(1)0i and e(1)1i having variances 𝜎2
e0 and 𝜎2

e1. We will refer to these methods as RE(Int) and RE(Act). In Equation (5), the
variance of never-takers in the intervention arm is 𝜎2

e1 and the variance for subjects receiving group treatment is 𝜎2
u + 𝜎2

e1,
thereby constraining group therapy subjects to have greater variance than never-takers in the intervention arm, if 𝜎2

u > 0.
To deal with this limitation, the residual variance for compliers and never-takers in the group intervention arm can be
allowed to differ by the model

yi = 𝛼i + 𝛿ri + u(2)
AG(i)ti + e(1)0i (1 − ri) + e(1)1i ti + e(1)2i ri(1 − ti), (6)

with e(1)0 , e(1)1 , and e(1)2 having variances 𝜎2
e0, 𝜎2

e1, and 𝜎2
e2. We will refer to this method as RE(Act-Het).
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2.2 Possible limitation of methods of analysis

To investigate possible limitations of these methods, we will consider a data generation model based on the two latent
compliance classes, compliers and never-takers. Let us suppose that the mean outcome for compliers in the control arm
is 𝜇. If 𝜏 is the CACE, the mean outcome for compliers in the intervention arm is 𝜇+ 𝜏. As a consequence of the exclu-
sion restriction, we assume that the mean outcome for never-takers is 𝜇+ 𝛾 in both arms. The data generation model is
therefore:

Never − taker in both arms ∶ yi = 𝜇 + 𝛾 + e(1)Ni with e(1)Ni ∼ N[0, 𝜎2
N] (7)

Complier control ∶ yi = 𝜇 + e(1)Ci with e(1)Ci ∼ N[0, 𝜎2
C] (8)

Complier group therapy ∶ yi = 𝜇 + 𝜏 + u(2)
AG(i)ti + e(1)Ti with e(1)Ti ∼ N[0, 𝜎2

T] and u(2)
AG(i) ∼ N[0, 𝜎2

u]. (9)

The subscripts of error terms differ from Equation (6) as here they may relate to the variance of subjects in latent
classes rather than observable subsets. Specifically, the random effect e(1)Ci in Equation (8) should not be confused with e(1)0i
in Equation (6) as the former is the residual term of compliant subjects in the control arm whereas the latter is the residual
of all control arm subjects. Note also, e(1)Ni in Equation (7) is the residual term for never-takers in both arms whereas e(1)2i is
only present in the intervention arm in Equation (6).

Suppose 𝜋 is the proportion of subjects that comply. Assuming equal size therapy groups, the design effect is
D = 1+ (m− 1)𝜌 where m is the group size and 𝜌 is the ICC equal to 𝜎2

u∕(𝜎2
u + 𝜎2

T). Analyses of clustered data using GEE
with an exchangeable correlation matrix or random effects models weight subjects in clusters by 1/D. This is not an issue
for intended group analyses, as all subjects in the group therapy arm are in clusters, but it is a concern for analyses based
on actual group. Never-takers in the intervention arm will not be down weighted by 1/D as they are not in clusters. In the
control arm all subjects will have a weight of 1. Hence, compliers in the intervention arm make a smaller contribution to
the intervention arm mean than compliers in the control arm to the control arm mean. This will bias ITT estimates based
on an actual group analysis. In Appendix A, we derive an approximation for the ITT effect for an actual group analysis as:

𝛿w = 𝜋

(
𝜏 + 𝛾(1 − 𝜋)(D − 1)

𝜋 + (1 − 𝜋)D

)
. (10)

If 𝜌 = 0, the design effect D = 1 and the approximation simplifies to 𝜋𝜏, which is a standard result for the relationship
between ITT and CACE effects for trials without clustering. Where 𝜌> 0, 𝛿w ≠𝜋𝜏, except where 𝛾 = 𝜏. The bias of an
actual group estimate of the ITT treatment effect can be approximated by:

(𝛾 − 𝜏)
(
𝜋(1 − 𝜋)(D − 1)
𝜋 + (1 − 𝜋)D

)
. (11)

This suggests that an estimate of the treatment effect using an actual group analysis could be biased, if the mean
outcome of never-takers (𝜇+ 𝛾) differs from the mean outcome of compliers in the intervention arm (𝜇+ 𝜏). Expression
(11) implies that the bias is a linear function of 𝛾 equal to zero when 𝛾 = 𝜏. Where 𝛾 > 𝜏 the bias is positive, and where
𝛾 < 𝜏 the bias is negative.

Use of actual group also biases the estimation of the random effect variance, 𝜎2
u. In the data generation model

patients receiving group treatment have a mean 𝜇+ 𝜏 with 𝜎2
u being the variance about that mean. Equations (3), (5),

and (6) estimate 𝜎2
u about the mean or adjusted mean of the intervention arm. Unless 𝛾 = 𝜏, the estimates of 𝜎2

u from
Equations (3), (5), and (6) will be inflated by the square of the difference between the mean of compliers and the mean
of the intervention arm. In Appendix A, we derive the following approximation for the estimate of ICC for Equations (3)
and (5) as:

⎛⎜⎜⎜⎝
𝜌 +

(
(γ−τ)(1−𝜋)D
(𝜋+(1−𝜋)D)

)2

1 +
(

(γ−τ)(1−𝜋)D
(𝜋+(1−𝜋)D)

)2

⎞⎟⎟⎟⎠
, (12)
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which is greater than 𝜌. Since expression (11) has a positive derivative with respect to D, an upward bias of the ICC
will further accentuate the treatment effect bias. As |𝛾 − 𝜏| increases expression (11) will increasingly under-estimate the
magnitude of the treatment effect bias.

Equation (6) estimates separate variances, 𝜎2
e1 and 𝜎2

e2, for compliers and never-takers in the group intervention arm.
This introduces another source of bias as never-takers in this arm will now be weighted in proportion to 1∕𝜎2

e2. Expression
(11) can be modified by replacing D by λD, where λ = (𝜎2

e1 + 𝜎2
u)∕𝜎2

e2, to give an approximation for the bias of the treatment
effect estimated by Equation (6) as:

(𝛾 − 𝜏)
(
𝜋(1 − 𝜋)(λ D − 1)
𝜋 + (1 − 𝜋)λD

)
. (13)

Where λ> 1/D, the bias will be positive where 𝛾 > 𝜏 and will be negative where 𝛾 < 𝜏. Where 𝜆< 1/D, signs will reverse.
An approximate estimate of the ICC can be obtained by replacing D by 𝜆 D in expression (12). The misspecification of the
mean that biases 𝜎2

u will also affect the residual variance of never-takers in the intervention arm, 𝜎2
e2. In the data generation

model, this residual term is about 𝜇+ 𝛾 , but 𝜎2
e2 is estimated about the mean or adjusted mean of the intervention arm so

its value will increase as |𝛾 − 𝜏| increases. An estimate of 𝜆 could be biased where 𝛾 ≠ 𝜏 which in turn affects expression
(13), which is also affected by 𝜌 via the design effect D.

Expressions (11) and (13) are crude approximations for the possible bias of treatment effect estimates by an actual
group analysis as they take no account of the bias of the ICC, and also 𝜆 for expression (13). Nevertheless, these expressions
suggest that treatment effect estimates based on an actual group analysis, using either Equation (3), (5), or (6) could be
biased, and also suggest factors that may affect the magnitude of these biases.

Consider now an intended group analysis. Since never-takers do not receive the group experience, it seems unsatis-
factory to associate never-takers with the random effect for therapy group as happens in Equations (2) and (4). Inclusion
of the unexposed never-takers will dilute the clustering effect, so one would expect estimates of the clustering variance 𝜎2

u
and the ICC to be biased toward zero. While this will make the adjustment for clustering too small, it will be off-set by
the larger cluster size of intended group analyses. Equation (4) also constrains the variance of subjects in the intervention
arm to be 𝜎2

u + 𝜎2
e1, which could further bias 𝜎2

u.7

3 CAUSAL METHODS FOR THE ANALYSIS OF A PARTIALLY NESTED
DESIGN WITH NONCOMPLIANCE

There is a large body of literature that considers estimation of causal treatment effects in individually randomized trials
where there is no clustering.17,18 These have been extended to the estimation of causal effects in cluster randomized trial
by Jo et al19 and Schochet and Chiang.20

Above we define the variable ti that identifies those patients that receive treatment. In the current setting, with no
always-takers, this identifies compliance status in the intervention arm. A standard method that can be used to estimate
the causal treatment effect is instrumental variables regression.21 In a comparison of methods of analysis of cluster ran-
domized trials with noncompliance, Moerbeek and van Schie22 used instrumental variables with robust standard errors to
control for the effects of clustering. This method15 can also be used to protect test size in this setting. An alternative would
be the use of an instrumental variable model with a random effect23 for group therapy. We will refer to these methods as
IV, IV(Rob), and RE-IV, respectively.

A second method of estimation of the causal effect is the Bloom CACE estimator24 to which a random effect can be
added. Define si equal to 1 for a never-taker in the group therapy arm, and zero otherwise, so that si = (1− ti)ri. For the
ith subject

yi = 𝛼i + 𝛽tti + 𝛽ssi + u(2)
AG(i)ti + e(1)0i (1 − ri) + e(1)1i ti + e(1)2i si, (14)

with e(1)0i , e(1)1i , and e(1)2i having variances 𝜎2
e0, 𝜎2

e1, and 𝜎2
e2. The Bloom CACE estimate of the treatment effect is then (𝜋 𝛽t +

(1 − 𝜋)𝛽s)∕𝜋, where 𝜋 is the estimate of the rate of compliance determined from the intervention arm. We will refer to
this estimator as RE-BLM.

Another method of estimation of causal effects in randomized trials is to use a normal mixture model to differentiate
the latent classes of compliers and never-takers in the control arm.25 Jo adapted this method for the analysis of cluster
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randomized trials.19,26 We can use a similar approach here. For simplicity of presentation, we will give separate equations
for the intervention and control arms. Where there is no clustering, the intervention arm model is

yi = 𝛼i + 𝜏ti + 𝛾(1 − ti) + e(1)Ci ti + e(1)Ni (1 − ti), (15)

with eCi ∼ N[0, 𝜎2
C] and eNi ∼ N[0, 𝜎2

N] and ti is the indicator variable for compliance with a Bernoulli distribution B(𝜋)
where 𝜋 is the compliance rate. For the control arm

yi = 𝛼i + 𝜉
(1)
i , (16)

where 𝜉
(1)
i is the normal mixture model 𝜉(1)i ∼ N[0, 𝜎2

C].𝜋 + N[𝛾, 𝜎2
N].(1 − 𝜋). We will refer to this as method MM. One way

to account for clustering is to use robust standard errors, which we refer to as MM(Rob). Another approach would be to
add a random effect to Equation (15) making the model for the intervention arm

yi = 𝛼i + 𝜏ti + 𝛾(1 − ti) + u(2)
AG(i)ti + e(1)Ci ti + e(1)Ni (1 − ti), (17)

with u(2)
AG(i) ∼ N[0, 𝜎2

u], which will be referred to as RE-MM.
The models presume the same variance for compliers in the control and treated arms, but treatment may change

the variance of treated subjects. This heteroscedasticity could be modeled by adding a third level 1 variance term, say
eTi ∼ N[0, 𝜎2

T] to replace e(1)Ci in Equations (15) and (17). We will refer to these models as MM(Het), MM(Het-Rob), and
RE-MM(Het).

Where clustering has been considered, the causal models above all use the actual group identifier, AG(i). While one
could replace this by the intended group identifier IG(i), this does not correspond to the causal model of clustering define
by Equation (9). Use of a random effects term u(2)

IG(i)ri in place of u(2)
AG(i)ti, would not identify the variance components

of never-takers in the control arm. Given that the purpose of these models is to investigate the data generation model,
we have not considered causal models with u(2)

IG(i)ri as they do not correspond to the causal pathway of the clustering
effect.

4 SIMULATION STUDY TO EVALUATE ITT AND CAUSAL METHODS

4.1 Simulation study design

The objectives of the simulation study were to investigate possible bias due to noncompliance of estimates of (i) the
treatment effect, (ii) the intra-cluster correlation coefficient of group treatment, and (iii) the coverage of a 95% confidence
interval of the methods listed in Sections 2 and 3. In the setting of full compliance, it has been shown that between
arm heteroscedasticity may bias estimates of the intra-cluster correlation, and hence coverage, and so it is recommended
that this is modeled.7 Where there is noncompliance the exclusion restriction implies that the variances of never-takers
in intervention arm equals that of the control arm. Heteroscedasticity could occur between never-takers and compliers
and this could differ between treatment arms. Inclusion of heteroscedasticity between never-takers and compliers in the
control arm was felt to be of less interest than between never-takers and compliers in the intervention arm as the latter
is confounded with the clustering effect. Therefore, we set the variance of never-takers in either arm and compliers in
the control arm equal to 1. Above, we defined 𝜆 as the ratio of the variance of the compliers in the intervention arm to
the variance of never-takers in the control arm. Three values of 𝜆 were considered: equality of variance (𝜆= 1), reduced
variance of complying subjects in the intervention arm (𝜆= 2/3), and increased variance of complying subjects (𝜆= 3/2).

Without loss of generality, we will specify the mean of compliant subjects in the control to be zero so that the mean of
the never-takers is 𝛾 . Data generation was based on the latent data structure using Equations (7), (8), and (9) with 𝜇 = 0,
𝜎2

N = 𝜎2
C = 1, 𝜎2

T = [0, (1 − 𝜌)λ], and 𝜎2
u = 𝜌λ. Compliance class was determined by a Bernoulli distribution B(𝜋) where 𝜋

is the rate of compliance.
For the causal treatment effect estimates bias can be defined as the difference between the estimate and the data

generating value of 𝜏. For the ITT treatment effect bias can be defined as the difference between the estimate and 𝜋𝜏.
Expressions (11) and (13) suggest that the treatment effect bias will be zero where 𝛾 equals𝜏. Different values of 𝜏 would
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simply move figures side-ways on the scale of 𝛾 . To reduce the number of scenarios, the work presented here was restricted
𝜏 = 0 as we felt that extensive simulation work with other values of 𝜏 would add little.

To examine the effect of 𝛾 on bias and coverage, we chose nine values (𝛾 =− 1, − 0.75, − 0.5, − 0.25, 0, 0.25, 0.5, 0.75,
1). We also considered an intra-cluster correlation for group therapy (𝜌) of 0.05 and 0.1 and compliance rate (𝜋) of 80% and
70%. The actual group identifier AG(i) was constructed from the intended group IG(i) by replacing the group identifier
with the patient identifier for noncompliant subjects. Constructed in this way actual therapy groups are nested in intended
groups. We considered intended groups of size 5 or 10, which are plausible for a clinical group intervention. Hence, the
expected actual group sizes were 4 and 8 for 80% compliance and 3.5 and 7 for 70% compliance. Where all members of
a group were noncompliant, the number of clusters reduced by 1. Where just one members of a cluster complied, this
subject was analyzed according to their compliance status as a cluster of size 1. Since the data generating model for that
subject was the same as other compliant subjects in the intervention arm, this will not bias the estimate of 𝜎2

u.
In pilot work, we found that the simulation failure rate depended on sample size per arm. When a sample size of 100

subjects per arm was used, it gave a failure rate of 0.4%, whereas a sample size of 200 per arm gave a rate of 0.2%. We
therefore used a sample size of 200 per arm to minimize possible bias due to simulation failures.

For each scenario, we carried out 10 000 simulations, which gives a power of greater than 90% to detect an absolute
1% change in the coverage of a 95% confidence interval. Simulation work, carried out using Stata version 15,27 took
approximately 3 months using all 4 cores of a quad core Windows 10 PC. All methods were fitted using the standard Stata
procedure except those based on mixture models, where bespoke algorithms using Stata’s maximum likelihood procedure
were written. The code for data generation and statistical analyses are given in Appendix 3 in Supporting Information.
All methods of analysis are listed in Table 1 together with the Stata procedure name and the estimation equation where
they are defined. It was assumed that compliance status was only observed in the intervention arm. All simulation work
assumed outcome data was complete.

4.2 Actual group analyses: Intention-to-treat

4.2.1 Treatment effect

Figure 1 plots the simulation estimates against the mean of the never-takers (𝛾) where m = 5, 𝜌 = 0.05, 𝜏 = 0, and
𝜋 = 0.8 with separate panels for each value of the variance ratio (𝜆= 2/3, 1, 3/2). Figure 1A gives the mean of esti-
mates of the null treatment effect for four methods of analysis using actual group and the OLS estimate. OLS(Rob-Act)
has not been shown as the estimate are identical to OLS. As would be expected, OLS showed negligible bias as all
subjects are weighted equally. The plots of estimates for GEE(Act), RI(Act), and RE(Act) all had a positive gradient
against 𝛾 , which is consistent with expression (11). They also had negligible bias where 𝛾 = 0. When cluster size was
increased to 10, (see Appendix 2, figure A1, in Supporting Information), the bias for GEE(Act), RI(Act), and RE(Act) all
increased substantially. Increasing the ICC from 0.05 to 0.1 also increased the bias. In all cases, the plots were monotone
increasing.

The plots of bias for RE(Act-Het) also had negligible bias where 𝛾 = 0. Where 𝜆 = 2/3 the plots had either a negligible
or negative gradient (figure A1), in contrast to GEE(Act), RI(Act), and RE(Act). Where 𝜆 = 1 or 3/2 and the cluster size
was 5, the plot of bias was not monotone. For 𝜆= 1 or 3/2 and a cluster size of 10, the bias was similar to that of GEE(Act),
RI(Act), and RE(Act).

Appendix figure A2 compares the empirical bias of the treatment effect for RE(Act) and RE(Act-Het) with the approx-
imations given by expressions (11) and (13), for cluster sizes of 5 and 10 and intra-cluster correlations of 0.05 and 0.1. The
nonmonotone behavior of RE(Act-Het) observed in Figure 1A and figure A1 can now be clearly seen in 4 of the 12 panels.
Expressions (11) and (13) are labeled Predicted RE(Act) and Predicted RE(Act-Het), respectively. So that we can observe
behavior close to 𝛾 = 0, we have allowed the vertical scale to change between figures. Expression (11) does not contain
the variance ratio 𝜆 so it is the same in each panel of each figure, whereas the gradient of expression (13) increases as 𝜆
increases equaling expression (11) when 𝜆 = 1. Where |𝛾 | was small, the lines define by expressions (11) and (13) were
close to the empirical values, but as |γ| increased the predicted and observed values diverged. As suggested in Section 2.2
expression (11) will under-estimate the bias and this was observed in figure A2, whereas expression (13) both over and
under estimate the bias. Neither expression is a good predictor, but they give some insight into the cause of the treatment
effect bias.
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T A B L E 1 Simulation study analysis methods

Method of analysis Clustering Stata procedure Acronym
Equation
number in text

Intention to treat

Linear model Ignored regress OLS (1)

Linear model with robust standard errors Intended /Actual regress OLS(Rob-Act) /
OLS(Rob-Int)

(1)

GEE model with an exchangeable correlation
matrix and robust standard errors

Intended /Actual xtgee GEE(Act)/
GEE(Int)

(1)

Random intercept model Intended /Actual xtreg RI(Act) / RI(Int) (2)/(3)

Random effects model with between arm
heteroscedasticity

Actual /Intended xtmixed RE(Act) /
RE(Int)

(4)/(5)

Random effects model with heteroscedasticity
between arms and within intervention arms

Actual xtmixed RE(Act-Het) (6)

Causal models

Instrumental variables regression with or without
robust standard errors

Ignored / Actual ivregress IV, IV(Rob) Not given. See
Section 3

Instrumental variables regression with a random
effect

Actual xtivreg RE-IV

Bloom CACE estimator with random effects Actual xtmixed RE-BLM (14)

Mixture model without /with robust standard
errors

Ignored /Actual bespoke Stata code MM MM(Rob) (15) and (16)

Mixture model with between arm
heteroscedasticitya without/ with robust
standard errors

Ignored /Actual bespoke Stata code MM(Het)
MM(Het-Rob)

(15) and (16)

Mixture model with a random effect without
/with heteroscedasticitya for compliers

Actual bespoke Stata code RE-MM /
RE-MM(Het)

(16) and (17)

a To allow for heteroscedasticity eCi ∼ N[0, 𝜎2
C] is replace by eTi ∼ N[0, 𝜎2

T] in the intervention arm.

Figure 2A compares the bias for 70% and 80% compliance. Reduction in the rate of compliance from 80% to 70%
increased the gradient. For GEE(Act), RI(Act), and RE(Act), the magnitude of the bias increased, whereas for RE(Act-Het)
a negative bias was attenuated.

4.2.2 Intra-cluster correlation

Figure 1B illustrates the ICC for those methods that estimate this term. The plots have a “quadratic” shape as suggested
by expression (12). For all methods, there was a change in the magnitude of the ICC as the variance ratio changed. This
was particularly apparent for the random intercept model, RI(Act), which is expected as this method has been shown to
be sensitive to between arm heteroscedasticity even with full compliance.7 When the cluster size was increased from 5 to
10 or when the data generating ICC increased from 0.05 to 0.1, the bias of the ICC was greater (see appendix figure A3).
In Figure 2B, the bias was greater for 70% compliance than 80% for all methods.

4.2.3 Coverage

Figure 1C shows the coverage of a 95% C.I. for all six methods. Those methods that showed bias in Figure 1A,B
had reduced coverage indicating that the intervals were too narrow making the procedure nonconservative. This was
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F I G U R E 1 Actual group: 200 subjects per arm
(Group size 5, ICC 0.05, 80% compliance with a panel
per variance ratio). A, Bias in estimate of a null
treatment effect. B, Intra-cluster correlation for group
therapy where the data generating ICC, 𝜌 = 0.05. C,
Empirical coverage of a 95% C.I

(i) Bias in estimate 
of a null 
treatment effect

(ii) Intra-cluster 
correlation for 
group therapy 
where the data 
generating ICC, 
ρ = 0.05 

(iii) Empirical 
coverage of a 
95% C.I.

particularly so for those including a random effect. OLS with robust SE based on the actual group had the correct cov-
erage. Increasing cluster size from 5 to 10 or increasing the intra-class correlation coefficient from 0.05 to 0.1 increased
these effects (see appendix figure A4). Due to the effect of clustering, OLS became more nonconservative, whereas OLS
with robust standard errors maintained satisfactory coverage. In Figure 2C, we see that reducing compliance from 80%
to 70% gave worse coverage for the random effects methods and GEE, but did not affect OLS with robust standard
errors.

4.3 Intended group analyses: Intention-to-treat

4.3.1 Treatment effect

Figure 3A shows the bias for the ITT effect for intended group methods. OLS(Rob-Int) has not been plotted as it
gives the same estimated of the treatment effect as OLS. The vertical scale is now very different to that for the actual
group analyses in Figure 1A. All methods gave almost identical estimates of bias and these were much smaller. Had
there been variation in intended group size we would expect there to be slightly larger differences between methods.
Figure 4A compares a compliance rate of 70% with 80%. As with 80% compliance, there was no evidence of bias for 70%
compliance.
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(i) Bias in estimate of a 
null treatment effect

(ii) Intra-cluster 
correlation for group 
therapy where the 
data generating ICC, 
ρ = 0.05 

(iii) Empirical coverage of 
a 95% C.I.

F I G U R E 2 Actual group: Comparison of 70% and
80% compliance (200 subjects per arm, Group size 5, ICC
0.05, equal variance). A, Bias in estimate of a null
treatment effect. B, Intra-cluster correlation for group
therapy where the data generating ICC, 𝜌 = 0.05. C,
Empirical coverage of a 95% C.I

4.3.2 Intra-cluster correlation

Figure 3B shows the intra-cluster correlation of those methods that estimate this term. All values were reduced com-
pared to the data generating value of 5%. This is to be expected as the clustering effect will be diluted by noncompliance.
The RI(Int) and GEE(Int) estimates of the ICC were affected by heteroscedasticity whereas the RE(Int) estimates were
more stable, which is consistent with the literature.7 Similar patterns were seen for larger cluster size and/or larger
ICC (see appendix figure A6). Reducing compliance from 80% to 70% reduced the intra-cluster correlation further (see
Figure 4B).

4.3.3 Coverage

In Figure 3C, coverage is considered. There was less evidence of bias than for actual group analyses with the lowest
coverage occurring for OLS, and also the random intercept model, RI(Int) where the variance ratio is 3:2. Poor coverage
of OLS is to be expected as it takes no account of clustering. The reduction in the coverage for RI(Int) can be explained by
biased estimate of the ICC seen in Section 4.3.2. The random effects model RE(Int) gave coverage closest to the desired
value and GEE and OLS with robust standard errors also performed well. The corresponding results for larger cluster
size and/or larger ICC are given in appendix figure A7, where again RE(Int) was the best performing method, although
coverage was slightly lower for a larger cluster size and/or a larger ICC. Reduction in compliance from 80% to 70% did
not appear to affect coverage (Figure 4C).
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F I G U R E 3 Intended group: 200 subjects per arm
(Group size 5, ICC 0.05, 80% compliance with a panel
per variance ratio). A, Bias in estimate of a null
treatment effect. B, Intra-cluster correlation for group
therapy where the data generating ICC, 𝜌 = 0.05. C,
Empirical coverage of a 95% C.I
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of a null 
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correlation for 
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where the data 
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0.05 

(iii) Empirical 
Coverage of a 
95% C.I.

4.4 Comparison of actual and intended group analyses

For an actual group analysis, the only method with acceptable coverage across the range of parameter values tested was
OLS(Act). For intended group analysis, a random effects model allowing for between arm heteroscedasticity (RE(Int))
performed best in terms of coverage. OLS and GEE with robust standard errors also performed well. The treatment effects
estimates were the same for all four methods. Two of the four methods gave estimates of the ICC with RE(Int) giving
better estimates than GEE(Int). In Figure 5, we compare coverage of all four methods. Coverage tended to be better for
the smaller cluster size. Averaging across simulation scenarios, the mean coverage of 95% confidence intervals were 94.7%
for OLS(Act), 94.6% for RE(Int), and 94.2% for OLS(Int) and GEE(Int).

4.5 Causal methods

4.5.1 Treatment effect

In Figure 6A, we see that there was substantial bias for estimates of the treatment effect using the random effects instru-
mental variable regression method (RE-IV). This bias increased dramatically with increased cluster size, but less so with
increased intra-cluster correlation (see appendix figure A8). Instrumental variable methods use two regression models. In
this setting, the dependent variable of the random effects instrument model is equal to 1 in clusters and is zero otherwise so
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(i) Bias in estimate of a 
null treatment effect
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F I G U R E 4 Intended group: Comparison of 70%
and 80% compliance (200 subjects per arm, Group size 5,
ICC 0.05, equal variance). A, Bias in estimate of a null
treatment effect. B, Intra-cluster correlation for group
therapy where the data generating ICC, 𝜌 = 0.05. C,
Empirical coverage of a 95% C.I

that all the variation of the instrument is between clusters implying an intra-class correlation of 1. As a consequence, the
instrument model gives much greater weight to never-takers in intervention arm in the treatment effect model explaining
this bias. This also explains why doubling cluster size had a much greater adverse effect than doubling the intra-cluster
correlation coefficient in figure A8 as it is the trial design rather than the ICC of the outcome measure that affects the
instrument model. We surmize that this implementation of an IV regression model with a random effect in the instrument
model is unsuitable for this design.

The mixture models that failed to account for any difference between the variance of the compliers and non-
compliers in the group treatment arm (MM and RM-MM) also showed bias where 𝜆≠ 1. The magnitude of the bias
was almost identical for methods with or without a random effect suggesting that the bias was associated with het-
eroscedasticity between the compliers and never-takers rather than the effect of clustering. This was confirmed by
appendix figure A8 as the bias associated with MM and RE-MM did not change with increased cluster size and/or ICC.
Figure A11(i) compares 70% and 80% compliance for all methods except RE-IV. Noting the scale change compared to
Figure 6A all methods performed well, although there is slight evidence that reduced compliance increased the bias
of RE-MM.

4.5.2 Intra-cluster correlation

In contrast to other causal methods, estimates of the intra-cluster correlation for RE-IV had a “quadratic” shape and a
substantial bias, particularly where 𝜆= 2/3 (see Figure 6B). The bias of RE-IV increased with increased cluster size and/or
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F I G U R E 5 Comparison of 95% C.I. Coverage for Actual and Intended group methods (200 subjects per arm, 80% compliance and a
panel per variance ratio)

ICC (appendix figure A9). In contrast, the three other methods were not affected by the mean of never-takers, but the
random effects mixture model (RE-MM) estimates were biased where 𝜆≠ 1. The estimates for the RE-MM that allows for
heteroscedasticity (RE-MM(Het)) and the Bloom CACE (RE-BLM) were both close to the data generating value. Figure
A11(ii) compares 70% and 80% compliance where 𝜆= 1 for all methods except RE-IV. Compliance did not appear to affect
estimates of the ICC.

4.5.3 Coverage

Figure 6C illustrates coverage for causal methods. The random effects instrumental variables model was excluded due
to its substantial bias for the treatment effect and the ICC that resulted in dramatically reduced coverage. Where 𝜆 = 1,
all other methods had coverage close to 95% with those methods that take account of clustering either by inclusion
of a random effect or the use of robust standard errors tending to be better. Where 𝜆≠ 1, coverage was reduced for
those methods with treatment effect bias. Results for larger clusters size and/or ICC are given in appendix figure A10.
As cluster size and/or the ICC increased the coverage of some methods deteriorated including all those that did not
account for clustering. The instrumental variable method with robust standard errors (IV(Rob)), the random effects based
Bloom estimator (RE-BLM), the heteroscedastic mixture model with robust standard errors MM(Het-Rob), and the het-
eroscedastic random effects model (RE-MM(Het)) all maintained good coverage. Figure A11(iii) compares 70% and 80%
compliance where 𝜆= 1 for all methods except RE-IV from which it can be seen that compliance did not appear to affect
coverage.
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F I G U R E 6 Causal models with actual group (200
subjects per arm, group size 5, ICC 0.05, 80% compliance
with a panel per variance ratio). A, Bias in estimate of a
null treatment effect. B, Intra-cluster correlation for
group therapy where the data generating ICC, 𝜌 = 0.05.
C, Empirical coverage of a 95% C.I

5 EXAMPLE: LOWER BACK PAIN TRIAL

Our motivating example was a randomized trial testing a group therapy for the treatment of lower back pain in which
only actual group was recorded. Table 2 gives the estimates of the treatment effect for a visual analog (VAS) estimate of
pain at 9 months for OLS and those methods of analysis using actual group. All data used for these analyses are listed in
Appendix 4 in Supporting Information. VAS scores were square root transformed to remove skewness, so estimates are
not comparable with the published report11, where the outcome data were not transformed. Data were available for 203 of
234 randomized subjects. All analyses used 203 subjects. Of these 105 patients had been randomized to group treatment
of whom 71 adhered to the intervention, so the compliance rate was 68% (71/105) among patients with outcome data.
Group therapy was delivered by 17 groups. The mean actual group size was 4.18 (71/17), which is similar to one of the
cluster sizes in the simulated study.

From the simulation work, we have seen that the Bloom CACE estimator with random effects (RE-BLM) and the
mixture model with random effect with heteroscedasticity (RE-MM(Het)) gave good estimates of the ICC. For these
data, the estimates of the ICC were 0.119 and 0.120, respectively, which were smaller than the estimates of the ICC for
the RI(Act), RE(Act), RE(Act-Het)), but larger than the GEE estimate. The ICC estimate for the instrumental variables
method with random effects (RE-IV) was 0.181, which was larger than other methods consistent with the simulation
results in Section 4.5.2.

Considering the treatment effect, those methods that adjust for clustering (GEE(Act), RI(Act), RE(Act), RE(Act-Het))
were reduced in magnitude compared to the ITT methods that weight subjects equally (OLS, OLS(Rob-Act)). GEE had the
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T A B L E 2 Lower back pain trial outcome measure—square root transformed visual analog scale (VAS) pain at 9 months adjusted
for baseline VAS pain (for all analyses n = 203)

Method Treat. Effect SE z/t p rho

Intention to treat

Linear model OLS −0.428 0.366 −1.17 0.244

Linear model with robust standard errors OLS (Rob-Act) −0.428 0.386 −1.11 0.270

GEE model with exchangeable correlation matrix & robust
standard errors

GEE(Act) −0.370 0.380 −0.97 0.330 0.100

Random intercept model RI(Act) −0.340 0.394 −0.86 0.388 0.155

Random effects model with between arm heteroscedasticity RE(Act) −0.306 0.383 −0.80 0.424 0.134

Random effects model with heteroscedasticity between
arms and within intervention arms

RE(Act-Het) −0.337 0.386 −0.87 0.383 0.150

Causal Models

Bloom CACE estimator with random effects RE-BLM −0.690 0.563 −1.23 0.220 0.119

Instrumental variables regression with or without robust
standard errors

IV −0.645 0.546 −1.18 0.239

IV(Rob) −0.645 0.573 −1.13 0.262

Instrumental variables regression with a random effect RE-IV −0.587 0.703 −0.83 0.404 0.181

Mixture model without or with robust standard errors MM −0.563 0.549 −1.020 0.306

MM(Rob) −0.563 0.628 −0.900 0.370

Mixture model with between arm heteroscedasticity for
compliers without or with robust standard errors

MM(Het) −0.554 0.537 −1.030 0.302

MM(Het-Rob) −0.554 0.587 −0.940 0.345

Mixture model with a random effect without or with
heteroscedasticity for compliers

RE-MM −0.593 0.581 −1.020 0.307 0.072

RE-MM(Het) −0.589 0.568 −1.040 0.300 0.120

smallest reduction, which can be explained by its smaller ICC estimate. From the parameter estimates of the RE-MM(Het)
model, the difference between never-takers and compliers (𝛾-𝜏) is 1.32. This can be substituted into expression (11) to
obtain a prediction of the treatment effect bias of the RE(Act) model of 0.097. This was smaller than the observed differ-
ence between the RE(Act) model and the OLS estimate of 0.122 (see Table 2), which is consistent with the results of the
simulation study. From the parameter estimates of the RE(Act-Het) model the variance ratio (𝜆) is 1.02. Substitution into
expression (13) gives a prediction of the bias of the RE(Act-Het) model of 0.125. This was rather larger than the observed
difference between RE(Act-Het) and OLS of 0.091, which is an illustration of the inconsistency of expression (13) also
observed in the simulation work. The treatment effect estimates based on causal methods have greater magnitude as one
would expect, but there are some differences with the Bloom CACE estimator being the largest and the mixture model
(MM(Het) /MM(Het-Rob)) being the smallest.

In this trial adjustment for clustering by using actual group has biased the ITT treatment effect estimates toward the
null, but this may not always be true. If the outcome for never-takers had been better than those receiving the group
intervention, the bias could have been away from the null.

6 DISCUSSION

The work here was motivated by a trial of a group administered treatment for lower back pain. We suggest that it may also
have relevance to trials of other forms of treatment related clustering such as talking and physical therapies and surgery
where there is partial nesting and noncompliance, but cluster sizes may be larger or more variable than here.

Theoretical considerations suggest that some ITT methods used to account for clustering may be biased where an
actual group analyses is used. It is suggested that this bias depends on the design effect, the rate of noncompliance, and
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the difference in outcome between never-takers and compliers in the intervention arm (𝛾-𝜏). This bias has been confirmed
by a simulation study for random effects models and a GEE model with an exchangeable correlation matrix. What is more
the magnitude of this bias was dependent on heteroscedasticity.

Random effects models and a GEE model using an exchangeable correlation matrix and actual group were unbiased
in under certain conditions, but it is unlikely that one would know whether these applied prior to data analysis, so these
methods are not recommended. In contrast, there was no evidence of treatment effect bias for OLS estimates and the use
of robust standard errors based on actual group gave acceptable coverage.

We also considered ITT analyses based on the intended group. These models violate the notion that the clustering
effect arises from group administration of treatment. Nevertheless, they showed no evidence of bias for the treatment
effect. It has previously been shown that estimates of the clustering effect based on a random intercept models are biased
in the presence of heteroscedasticity and use of a random effects model that allows for this is recommended.7,12 This is
supported by our simulation work. We would advise against the use of a random intercept model for an analyses based
on the intended group. The random effects model (RE(Int)) gave slightly better coverage than the GEE model, and also
the OLS model with robust standard errors. For a smaller cluster size and smaller intra-cluster correlation coverage of
the RE(Int) model was close to the desired value. There was a suggestion of reduced coverage for larger cluster size and
intra-cluster correlation, which might be a concern if groups were larger or the intra-cluster correlation greater than the
values considered here.

We also considered methods by which the causal treatment effect can be estimated. We saw that a standard imple-
mentation of an instrumental variable model with random effects performed very badly. A standard instrumental
variables method with robust standard errors gave unbiased estimates of the treatment effect and good coverage, as
did the Bloom CACE estimator that also gave an estimate of the clustering effect close to the desired value. Meth-
ods based on mixture models performed well provided they modelled heteroscedasticity and used robust standard
errors (MM(Het-Rob)) or a random effect (RE-MM(Het), with the random effects model giving an unbiased estimate
of the ICC.

Among ITT methods, our simulation work showed that OLS with robust standard errors using the actual group
(OLS(Act)) gave the best coverage, but this was only a slight improvement over three methods using the intended clus-
ters, a random coefficient model allowing for heteroscedasticity between arms (RE(Int)), OLS with robust standard
errors(OLS(Int)), and GEE with an exchangeable correlation matrix (GEE(Int)). The small difference in coverage suggests
that other considerations may be a more important for the choice of analysis method.

Where trials follow subjects over time, analyses based on longitudinal mixed models are recommended to address
bias due to missing data. This suggests that there may be benefits of assigning therapy group membership at random-
ization so that intended group analyses can be applied using a mixed model. It should be noted, nevertheless, this work
has made some assumptions that could favor an intended group analyses, which may not apply in practice. We have
assumed that patients in the control arm did not receive the group intervention, so there are no always-takers. Failure
to take account of this by an intended group analysis could bias coverage as clustering in the control arm would not
be included. We have also that patients in the intervention arm cannot switch between therapy groups. Where there is
switching Walwyn and Roberts13 suggest used of multiple membership models.28 Roberts and Walwyn29 investigated the
use of multiple membership models in the context of a partially nested design and showed that switching leads to under-
estimation of the clustering effect that adversely affects coverage. This suggests that trial protocols should prevent access
to the group treatment by patients in the control arm and prevent switching between groups in the intervention arm.
Where possible, compliance and the actual group in which a patient receives treatment should be recorded to confirm
the robustness of an intended group analysis. This would also enable a causal model to be fitted as a sensitivity analysis
to check the underlying data generation model. Such a sensitivity analysis could also be used where the ITT analysis has
to be based on actual group, as worse outcome among never-takers than compliers could allow one to infer that some ITT
estimates are biased toward the null including GEE(Act), RI(Act), and RE(Act), although not RE(Act-Het) as the direc-
tion of treatment effect bias was inconsistent. It should be noted that it may not be possible or appropriate to fit causal
models as compliance may not be recorded or be recordable on a binary scale and the assumptions of such models may not
be satisfied.18

Schweig and Pane30 investigated the effects of noncompliance in a partially nested design motivated by a randomized
controlled trial of an educational intervention. In the intervention arm of their hypothetical study students attended
summer training programs administered in classes that were nested in school, whereas students in the control arm were
un-clustered as they had independent summer experiences. Schweig and Pane’s simulation work included always-takers
as well as never-takers, as do we in Appendix A. They tested the effect of noncompliance on four methods of analysis.
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The first implements an intended group analysis (model A)30 similar to Equation (4). The second (model E)30 is similar
to the random effects model defined by Equation (5). Their two other models (models F and G)30 include the variables
for never-taker or always-taker used to generate data. These compliance variables are only partially observed in real data
as the never-taker variable is only observed in the intervention arm and the always-taker variable only in the control, so
models F and G cannot be fitted to trial data. Instead, it requires the use of mixture models where compliance data cannot
be observed.

Schweig and Pane30 found that there was bias for their model E where they simulated very substantial heteroscedas-
ticity, but this is only a partial explanation. A limitation of their simulation study is that they did not investigate the effect
of differences between compliers, never-takers, and always-takers. In Appendix A, we derived an expression for the treat-
ment effect bias where there are compliers, never-takers, and always-takers. Expression (A3) suggests that this bias is a
function of two terms; the difference between never-takers and compliers and the difference between always-takers and
compliers. Schweig and Pane’s models F performed well as heteroscedasticity was modeled, which is consistent with our
simulation work based on the mixture model, RE-MM(Het). Schweig and Pane’s models F appeared to be affected by
heteroscedasticity as was the corresponding mixture model in our study, RE-MM.

The ITT methods of analysis that we have considered here could be applied to the setting where there are always-takers
as well as never-takers. Models using robust standard errors could be implemented with minimal adaption. Random
effects and GEE models with an exchangeable correlation matrix based on actual group need to consider the implica-
tions of the bias suggested by expression (A3) in Appendix A. As mentioned above, inclusion of always-takers may affect
coverage of intended group analyses. Considering causal methods, the Bloom CACE method described by Equation (14)
would require an additional indicator variable identifying the always-takers in the control arm and an additional residual
variance term for this sub-group to account for heteroscedasticity. The mixture model methods would require a second
mixture model in the intervention arm to separate the always-takers from compliers.

In this study, we have seen that the weighting of data by the methods of analysis may induce bias where the out-
come of subjects in clusters differs from those that are not. This can be viewed as an example of informative clustering,
which introduces bias because the pattern of clustering differs between treatment arms. In some settings, the weighting
of subjects by the design effect should not cause bias. For example, in cluster randomized trials, the method of allocation
provides protection against informative cluster size as the characteristics of clusters should be balanced between trial
arms. In observational data, informative cluster size and the intra-cluster correlation are more problematic, as it could be
confounded with the study effect of interest in ways that could cause bias.31,32

The issues raised in this article are due in part to such trials not being fully randomized. In a tightly controlled designed
experiment, subjects would be randomized to therapy group as well as intervention arm and then the analysis based on
the experimental factors. The ability to do this would resolve some of the issues, but such designs are rarely feasible in a
clinical setting.

We conclude by emphasizing the importance of considering the analysis implications of noncompliance at the design
stage. While practical constraints of the clinical setting may determine the choice between an intended or actual group
analyses, there could be benefits of recording both so that a primary ITT analysis could use the intended group, while a sen-
sitivity analysis based on actual group might check the data generating mechanism if compliance. Finally, it should always
be remembered that reducing the rate of noncompliance is desirable for internal validity and maintaining statistical power,
whichever method is used.
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APPENDIX A. TREATMENT EFFECT BIAS IN AN ACTUAL GROUP ANALYSIS OF PARTIAL
NESTING DESIGN

We assume monotonicity so there are just three compliance classes, compliers, never-takers, and always-takers.14 Ran-
domization means that the prevalence of each category is the same in each arm, say 𝜋c, 𝜋n, and 𝜋a. We also assume that
randomization only influences the patient’s outcome by the receipt of the group treatment, an assumption referred to as
the exclusion restriction, so the mean outcome for never-takers and always-takers is independent of randomization.

Let us suppose that the mean outcome for the subjects in the control arm is 𝜇 and the causal effect of treatment
is𝜏 so the mean outcome for compliers in the intervention arm is 𝜇+ 𝜏. Let us assume the mean outcome is 𝜇+ 𝛾n for
never-takers and𝜇+ 𝛾a + 𝜏 for always-takers. Suppose 𝜌 is the data generating ICC for group therapy with 𝜌 = 𝜎2

u∕(𝜎2
u + 𝜎2

T)
as define by Equations (9). Assuming equal size therapy groups, say m, the design effect D = 1+ (m− 1)𝜌.

Random effects models fitted using maximum likelihood estimation and GEE, down-weight subjects in clusters by
1/D compared to nonnested subjects in the intervention arm. The mean outcome for each arm can be expressed as a
weighted mean, from which we can obtain an approximation to the estimated ITT effect, say 𝛿w.

𝛿w =
(𝜇+𝜏)𝜋c

D
+ (𝜇 + γn)𝜋n + (𝜇+γa+𝜏)𝜋a

D
𝜋c
D
+ 𝜋n + 𝜋a

D

−
𝜇𝜋c + (𝜇 + γn)𝜋n + (𝜇+γa+𝜏)𝜋a

D

𝜋c + 𝜋n + 𝜋a
D

. (A1)

After some rearrangements, we obtain the expression

𝛿w = 𝜋c

(
𝜏D + γn𝜋nD(D − 1) + γa𝜋a(D − 1)
(1 − 𝜋n + 𝜋nD)(𝜋a + (1 − 𝜋a)D)

)
. (A2)

If subjects were weighted equally, the intentions-to-treat effect would be 𝛿e = 𝜏𝜋c. Bias of random effects models or
GEE compared to equal weighting of subjects is therefore

𝛿w − 𝛿e = 𝜋c

(
γn𝜋nD(D − 1) + γa𝜋a(D − 1) + 𝜏D
(1 − 𝜋n + 𝜋nD)(𝜋a + (1 − 𝜋a)D)

− 𝜏

)
. (A3)

Assuming 𝜌> 0, the denominator of (A2) and (A3) are positive as are D and D−1. The approximation 𝛿w is therefore
a linear function increasing in 𝛾n and 𝛾a.

In the design we are considering here there are no always-takers, that is, 𝜋a = 0. Replacing γn with 𝛾 , 𝜋c with 𝜋 and
substituting 𝜋n = 1−𝜋 gives Equation (10) in the main text

𝛿w = 𝜋c

(
𝜏 + 𝛾(1 − 𝜋)(D − 1)

𝜋 + (1 − 𝜋)D

)
. (A4)

Similarly

𝛿w − 𝛿e = (γ − 𝜏)
(
𝜋(1 − 𝜋)(D − 1)
𝜋 + (1 − 𝜋)D

)
, (A5)

which is Equation (11) in the main text.
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Equations (3), (5), and (6) estimate 𝜎2
u about the mean or adjusted mean of the intervention arm. Unless 𝛾 = 𝜏, the

estimate of 𝜎2
u based on Equations (3), (5), and (6) could be inflated by the square of the difference between the mean of

compliers in the intervention arm and the mean of the intervention arm. From the first term on the right hand side of
Equation (A3), the mean of the intervention arm is given by

𝜇 +
(
𝜋𝜏 + 𝛾(1 − 𝜋)D
𝜋 + (1 − 𝜋)D

)
.

The data generating mean of the compliers in the intervention arm is 𝜇+ 𝜏. Hence the difference between the
intervention arm mean and the data generating mean of compliers in the intervention arm can be approximated by:

𝜇 +
(
𝜋𝜏 + 𝛾(1 − 𝜋)D
𝜋 + (1 − 𝜋)D

)
− (𝜇 + 𝜏),

which simplifies to

(
(𝛾 − τ)(1 − 𝜋)D
𝜋 + (1 − 𝜋)D

)
.

If 𝜎2
u is inflated by this difference squared, the estimated the estimate of 𝜌 for Equations (3) and (5) will be

⎛⎜⎜⎜⎝
𝜌 +

(
(γ−τ)(1−𝜋)D
(𝜋+(1−𝜋)D)

)2

1 +
(

(γ−τ)(1−𝜋)D
(𝜋+(1−𝜋)D)

)2

⎞⎟⎟⎟⎠
, (A6)

which is expression (12) in the main text. For Equation (6), we can replace D by 𝜆 D, where λ = (𝜎2
e1 + 𝜎2

u)∕𝜎2
e2.

This is a crude approximation as biased estimation 𝜎2
u would affect estimates of other variance terms. It does

nevertheless suggest that that any estimation bias of 𝜎2
u could be a quadratic in 𝛾 .


