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Abstract

Objectives—To evaluate short-term test-retest repeatability of a deep learning architecture (U-
Net) in slice- and lesion-level detection and segmentation of clinically significant prostate cancer
(csPCa: Gleason grade group > 1) using diffusion-weighted imaging fitted with monoexponential
function, ADC,.

Amogh Hiremath, axh672@case.edu.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00330-020-07065-4) contains
supplementary material, which is available to authorized users.

Guarantor The scientific guarantor of this publication is Dr. Anant Madabhushi.

Conflict of interest Amogh Hiremath: Philips Research - Former Employment. Dr. Madabhushi is an equity holder in Elucid
Bioimaging and in Inspirata Inc. In addition he has served as a scientific advisory board member for Inspirata Inc, Astrazeneca, Bristol
Meyers-Squibb and Merck. Currently he serves on the advisory board of Aiforia Inc. He also has sponsored research agreements with
Philips, AstraZeneca and Bristol Meyers-Squibb. His technology has been licensed to Elucid Bioimaging. He is also involved in a NIH
U24 grant with PathCore Inc, and 3 different RO1 grants with Inspirata Inc.. The remaining authors of this manuscript declare no
relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry Dr. Anant Madabhushi, Dr. Rakesh Shiradkar and Dr. Harri Merisaari kindly provided statistical advice for
this manuscript.

Informed consent Written informed consent was waived by the Institutional Review Board.
Ethical approval Institutional Review Board approval was obtained.

Study subjects or cohorts overlap The exact study subjects or cohorts have been previously reported in Merisaari et al Magn Reson
Med. (2019) which is attached with the manuscript.

Methodology
. retrospective
. observational/experimental

. performed at one institution



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Hiremath et al. Page 2

Methods—One hundred twelve patients with prostate cancer (PCa) underwent 2 prostate MRI
examinations on the same day. PCa areas were annotated using whole mount prostatectomy
sections. Two U-Net-based convolutional neural networks were trained on three different ADC, b
value settings for (a) slice- and (b) lesion-level detection and (c) segmentation of csPCa. Short-
term test-retest repeatability was estimated using intra-class correlation coefficient (ICC(3,1)),
proportionate agreement, and dice similarity coefficient (DSC). A 3-fold cross-validation was
performed on training set (/= 78 patients) and evaluated for performance and repeatability on
testing data (/V= 34 patients).

Results—For the three ADC,, b value settings, repeatability of mean ADC,, of csPCa lesions
was ICC(3,1) = 0.86-0.98. Two CNNs with U-Net-based architecture demonstrated ICC(3,1) in
the range of 0.80-0.83, agreement of 66—72%, and DSC of 0.68-0.72 for slice- and lesion-level
detection and segmentation of csPCa. Bland-Altman plots suggest that there is no systematic bias
in agreement between inter-scan ground truth segmentation repeatability and segmentation
repeatability of the networks.

Conclusions—For the three ADC,,, b value settings, two CNNs with U-Net-based architecture
were repeatable for the problem of detection of csPCa at the slice-level. The network repeatability
in segmenting csPCa lesions is affected by inter-scan variability and ground truth segmentation
repeatability and may thus improve with better inter-scan reproducibility.

Keywords
Test-retest reliability; Neural network models; Prostate cancer; Diffusion MRI

Introduction

In recent years, deep learning (DL)-based convolutional neural networks (CNNs) have
gained tremendous attention in medical imaging especially using MRI for various
applications such as organ segmentation [1, 2], cancer detection and diagnosis [3-5], and
characterization [6, 7]. However, MRI images might be influenced by different sources of
noise variations such as scanner acquisition noise [8] and motion artifacts [9]. These
variations not only affect the visual quality of an image but may also interfere with
downstream analysis of MRI images [10].

Prostate Imaging-Reporting and Data System (PI-RADS) has standardized the diagnosis of
PCa using MRI and has shown to be effective in characterizing PCa [11]. However, it has
been found that PI-RADS-based scoring has only moderate to good inter- and intra-reader
variability [12, 13]. Recently, much attention has been drawn to machine learning (ML)
models built using radiomics-derived representations on MRI for PCa detection and
characterization [14, 15]. However, the sources of variation in MRI acquisition and
reconstruction [16-19] have shown to influence these representations [10]. Therefore, lately,
there has been an increasing interest in applying test-retest analysis to rank order radiomics
features based on their repeatability and discriminability, and build ML classifiers based on
most stable features [20, 21]. In contrast, although several DL approaches have been
presented for PCa segmentation [22, 23], detection [24, 25], and characterization [26, 27], to
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the best of our knowledge, none of them has been explicitly evaluated in the context of test-
retest repeatability.

A unique test-retest data of monoexponential fitted prostate apparent diffusion coefficient
(ADC/,) maps was used in this study. Two MRI scans were taken approximately 15 min
apart for each patient. We used only ADC,, maps and not bi-parametric MRI (T2W MRI
and ADC,,) since T2W MRI were not available for two time points. The evaluation of
repeatability of DL models trained on ADC,, maps taken at such short time span allows us
to evaluate stability of DL models against variations with respect to acquisition of images.
Additionally, it is also safe to assume that changes in tissue biology are negligible over such
a short time span.

Due to increasing popularity of the deep learning architecture, U-Net [26, 28-30] in
segmentation, detection, and classification tasks, we use U-Net-based architecture in our
study. U-Net [31] is a fully convolutional network designed for semantic segmentation tasks
with two components, an encoder and a decoder. The U-Net decoder combines both local
information and the contextual information which is required to predict a good segmentation
map. Additionally, since there is no dense layer involved in the architecture, images of
different sizes can be given as input.

Therefore, in this study, we evaluate test-retest repeatability of convolutional neural
networks using a U-Net-based architecture on three different ADC,,, b value settings for (a)
slice-and (b) lesion-level detection and (c) segmentation of clinically significant prostate
cancer (csPCa: Gleason grade group (GGG) > 1). A 3-fold cross-validation was performed
on training set (V= 78 patients) and evaluated for performance and repeatability on testing
data (V= 34 patients).

Materials and methods

MR imaging and data

This retrospective study was compliant with Health Insurance Portability and Accountability
Act (HIPAA) and approved by institutional review board. All patients, A= 115, with
diagnosed PCa signed informed consent and underwent prostate MRI before robotic-assisted
laparoscopic prostatectomy between March 2013 and February 2016 [17, 32]. All patients
underwent two prostate MR examinations (Sp and Sg) performed on the same day
approximately 15 min apart following repositioning on MR scanner table [19, 32]. The scans
were performed using a 3T MR scanner (3 Tesla Philips Ingenuity PET/MR). DWI was
performed using a single-shot spin echo—based sequence with monopolar diffusion gradient
and an echo-planar read out. Summary acquisition parameters are provided in Table E1
(supplementary), while detailed acquisition protocol was described previously [17]. We
evaluated ADC,,, maps at the voxel level with DWI data for three different b value settings:
(a) four b values in the range of 0-900 s/mm?2, Bapggo (0, 300, 500, 900 s/mm?) [33], (b) four
bvalue distribution which was previously suggested as being a potentially optimal
distribution, Bapg00 (0, 900, 1100, 2000 s/mm?) [16], and (c) two 4 values in the range of
0-1300 s/mm2, Byp1300 (0 and 1300 s/mm?2). The third option was considered to evaluate a
setting with minimal number of & values for signal-to-noise-ratio and contrast trade-off in
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the context of CNN-based classifications [16]. Three patients were excluded due to the
presence of severe motion (7= 1) and/or susceptibility artifacts (7= 2). Figure E1
(supplementary) shows the flow chart of inclusion/exclusion criteria of the patients and
splitting of the data into training and test sets. The data splits were the same as reported by
Merisaari et al [32].

Prostate capsule and lesion segmentation—A radiologist with 9 years of prostate
MRI experience in consensus with a board-certified staff urogenital pathologist (10 years of
experience in urogenital pathology) delineated the prostate capsule and cancerous regions on
DWI with whole mounts prostatectomy sections as ground truth using the Carimas (version
2.9) software. Demographic information (age, PSA), lesion distribution in different zones
(peripheral zone, central/transitional zone), GGG categories (1-5), and the distribution of
csPCa and non-csPCa (GGG = 1, benign) patches is shown in Table 1.

U-Net architecture

U-Net [31] is a fully convolutional network designed for semantic segmentation tasks with
two components, a descending encoder path and an ascending decoding path. The modified
U-Net consists of 5 encoder blocks and 5 decoder blocks. Each of the encoder blocks and
decoder blocks consists of two convolutional layers except for the last decoder block with
only one convolutional layer accounting for a total of 19 convolutional layers. The decoder
and the encoder paths consist of batch normalization layers and drop-out layers in between
the convolutional layers, with max pooling in the decoder blocks and up-sampling in the
encoder blocks. The model consists of a total of 7,852,002 trainable parameters. Figure
E2(b) shows the architectural diagram of U-Net.

U-Net training

The details of data preprocessing and data augmentation are described in the supplementary
section (S1). We define the problem of slice-wise detection of clinically significant prostate
cancer (csPCa) regions as a classification task. Each slice with prostate voxel was defined
either as containing csPCa or non-csPCa (Gleason grade grouping (GGG) = 1/benign). We
defined the ground truth labels by considering each extracted patch from ADC,,, with the
presence of csPCa lesion (GGG > 1) as a positive exemplar, all others were deemed as
negative. We used a modified network architecture (U-Net,) for the classification task. The
network architecture for U-Nety, is shown in Fig. E2(a).

For csPCa lesion detection and segmentation, the manually annotated lesion delineations
done with whole mount prostatectomy sections as reference were used as ground truth. A
transfer learning strategy was used to initialize the encoder weights of the U-Net by
transference of weights from the model U-Net,, trained for detection of csPCa at the slice-
level. The network architecture of U-Net is shown in Fig. E2(b). We used the segmentation
maps outputted by the networks to evaluate lesion detection. We defined a lesion as being
detected if > 0.2 DSC overlap existed between the network segmentation map and the
ground truth delineation of that corresponding lesion. Figure 1 depicts the training of U-
Nety,, U-Net. Other related implementation details are provided in the supplementary section
(S2). For the source code for the network training and evaluation of repeatability, see https://
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github.com/amogh3892/Test-retest-repeatability-of-U-Net-in-detecting-segmenting-
clinically-significant-prostate-cancer.

Evaluation metrics and statistical analysis

Area under the receiver operator characteristic curve (AUCSs), sensitivity and positive
predictive value (PPV), and dice similarity coefficient (DSC) were used to evaluate the
performance of slice- and lesion-level detection and segmentation of csPCa on ADCy,
respectively. Similarly, intra-class correlation coefficient (ICC(3,1)), proportionate
agreement, and DSC were used to evaluate repeatability of the networks for slice- and
lesion-level detection and segmentation of csPCa on ADC,, respectively. Ninety-five percent
confidence intervals were calculated wherever necessary and cross-validation results were
reported as mean + standard deviation. Further details and definitions of the performance
metrics are presented in the supplementary section (S3).

Experiment 1: Repeatability of U-Net,, in slice-level detection of clinically significant
prostate cancer on prostate apparent diffusion coefficient maps

For all three b value settings (Bangoo, Ban2000, and Bop1300), U-Nety, was trained for slice-
level detection of csPCa regions with 3-fold cross-validation setting on the training sets
Avrain (networks Caq, Cao, and Cag trained on the three folds of Agy,in) and Birain (networks
Cg1, Cg2, and Cgs trained on the three folds of Byr,in), and was evaluated for performance in
terms of AUC. The ensemble of classifiers from 3-fold cross-validation Cp (average
predictions from Ca1, Cap, and Ca3) and Cg (average predictions from Cg1, Cg, and Cgg)
was used to evaluate the (a) performance in terms of AUCs and (b) repeatability of the
network predictions in terms of ICCs on the test set Siest (Atest + Btest). Additionally, other
performance metrics such as accuracy, sensitivity, and specificity were reported by
calculating the optimal cutoff through Youden index [34]. We combined the test sets Aest
and Byegst Since Sp and Sg were not co-registered with respect to each other and registration
of the scans would lead to additional registration artifacts. Figure 2 shows the overall
experimental design for evaluating the repeatability of the network outputs.

Experiment 2: Repeatability of U-Net in segmentation and detection of clinically significant
prostate cancer lesions on prostate apparent diffusion coefficient maps

For all three b value settings (Bapgoo: Bab20o0: @nd Bop13go), U-Net was trained with a 3-fold
cross-validation setting on the training set, Again (networks Da1, Dao, and Dag trained on
the three folds of Ayain) and Byyain (networks Dg1, Dgo, and Dgs trained on the three folds of
Birain) for segmenting csPCa lesions on ADC,,, maps. The ensemble of segmentation
networks from 3-fold cross-validation Da and Dg (Da: Logical “OR” of segmentations from
Da1, Da2, Dag; and Dg: Logical “OR” of segmentations from Dg1, Dgo, and Dg3) was used
to obtain final segmentation maps on the test set, Steqt. VWe post-process the output
segmentations in order to remove some false positives. The details of post-processing of the
lesion segmentations are provided in the supplementary (S4).

We use the output segmentation maps to assess csPCa lesion detection performance by
evaluating the sensitivity and positive predictive value of the networks Da and Dg. The
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repeatability of csPCa lesion detection was assessed by evaluating the proportionate
agreement between the networks D and Dg.

We further evaluate (a) segmentation performance and (b) repeatability of segmentations in
terms of DSC for the detected lesions on Sest. We also assess the repeatability of network
segmented volumes and mean ADC,, value in the lesion with respect to ICC and compare
them with ground truth delineations.

Agreement of inter-scan ground truth segmentation repeatability and U-Net’s
segmentation repeatability in segmenting csPCa lesions

Results

We co-registered the scans A¢eqt and Biest and chose only the csPCa lesions that are detected
on both Aiest and Biegt for the analysis. The details of registration are provided in the
supplementary section (S5). The agreement between repeatability of ground truth
delineations and repeatability of segmentation maps obtained by Da and Dg was illustrated
using Bland-Altman plots. No systematic bias as a function of the evaluated signal was
found to be present in the Bland-Altman plots.

Experiment 1: Repeatability of U-Net,, in slice-level detection of clinically significant
prostate cancer on prostate apparent diffusion coefficient maps

Table 2 shows the performance metrics of slice-level detection of csPCa on cross-validation
and testing cohorts for networks trained on Agrain and Byr,in for three different 6 value
settings (Bapgoo, Bab2000, and Bopi3gg). For all the b value settings, we can observe that the
networks yielded an AUC of 0.81-0.85 for the cross-validation on Apjn and Byyain. The
ensemble of classifiers from 3-fold cross-validation, Ca and Cg, resulted in an AUC of
0.78-0.85 in Sieqt. A Delong test [35] between the cross-validation AUCs and AUCS 0N Siest
did not show significant difference between the results obtained (o > 0.11). Figure 3 shows
the receiver operator characteristic (ROC) curves of the networks for slice-level detection of
csPCa on prostate ADC,, maps on Bapggg for cross-validation on Agr,in and Biyain and
evaluation on Segt.

The probability scores of the ensemble classifiers Cp and Cpg are used to evaluate
repeatability on Siegt. The U-Net,,, yielded an ICC of 0.83, 95% CI (0.80-0.85); 0.80, 95%
Cl (0.77-0.83); and 0.83, 95% CI (0.80-0.85) on Bapooo, Bab2oog, and Bop13o0, respectively,
in detecting clinically significant prostate cancer regions on ADC maps.

Experiment 2: Repeatability of U-Net in segmentation and detection of clinically significant
prostate cancer lesions on prostate apparent diffusion coefficient maps

Table 3 depicts the csPCa lesion detection performance on the cross-validation set and Sest
for different b value settings (Bahoog, Ban2ooo, and Bop13oo)- The networks resulted in a
sensitivity of 55-60% and a PPV of 51-53% on the cross-validation set. The networks Da
and Dg had proportionate agreement of 66—72% in detecting csPCa lesions on S;est and the
corresponding sensitivity and PPV was in the range 63-66% and 45-57% respectively.
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Table 4 illustrates the csPCa lesion segmentation performance of the networks on detected
csPCa lesions for Bapoog, Ban2oog, and Bop13pg. The networks D and Dg resulted in DSC of
0.47-0.54 on the cross-validation set and 0.58-0.64 on Si; respectively. The DSC between
the network segmentations (repeatability) was in the range 0.68-0.72.

Figure 4 shows the overlaid segmentation maps on the ADC, (Bapgoo) images with DSC
reported in 3D. We can observe that, although some of the lesions are poorly segmented by
the networks, the repeatability in terms of DSC between the networks is high.

Table 5 shows the repeatability of volume measurement and mean ADC,, values of ground
truth delineations and U-Net-based segmentations on Si.; for different 4 value settings
(B4h900, Ban2000, and Bop1300)- U-Net obtained an ICC score of 0.89-0.92 and 0.84-0.87 for
volume and mean ADC,, value, respectively, while compared with ground truth delineations
with an ICC score of 0.92 for volume and 0.86-0.98 for mean ADC,.

Agreement of inter-scan ground truth segmentation repeatability and U-Net’s
segmentation repeatability in segmenting csPCa lesions

Figures 5 a and b show the agreement of repeatability of ground truth delineations and
network segmentations using a Bland-Altman plot on Bapggg. The mean of repeatability
between ground truth delineations and network segmentations in terms of DSC are plotted
against the difference between ground truth delineations and network segmentation DSC.
The plots suggest that the ground truth delineations are in moderate agreement with
network-based segmentations in most of the cases, with a few outliers. We can also observe
that repeatability of ground truth delineations is slightly better than network-based
segmentation repeatability. The Bland-Altman plots for B4pogoo and Bopi3gg expressed
similar agreement between the ground truth and the network results; these are illustrated in
the supplementary figure (Fig. E3).

Discussion

In this study, we evaluated repeatability of U-Net for (a) slice-and (b) lesion-level detection
and (c) segmentation of clinically significant prostate cancer (csPCa: Gleason grade group
(GGG) > 1) on prostate apparent diffusion coefficient (ADC,,) maps with three different b
value settings (Bapaoo, Ban2ooo, and Bop13og)- The U-Net-based architecture was found to be
repeatable (ICC of 0.8-0.83) for slice-level detection of csPCa regions, and moderately
repeatable in detecting (proportionate agreement of 66—72%) and segmenting (DSC of 0.68—
0.72) csPCa lesions.

High predictive power from single time point with low test-retest repeatability might be
misleading. While number of studies have looked at repeatability of radiomics features [32,
36, 37], relatively little work has been done in the context of deep learning (DL), specifically
convolutional neural networks (CNNs) [38, 39]. To the best of our knowledge, none of the
previous studies has analyzed repeatability of CNNs for detection and segmentation for
csPCa. Cole et al [38] analyzed the repeatability of a 3D-CNN in predicting brain age from
N =20 T1-Weighted MRIs and showed that the model was able to predict brain age with
high repeatability (ICC 0.9-0.98). Honsy et al [39] showed that their 3D-CNN predictions
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on CT for lung cancer prognostication had high ICC of 0.91. They analyzed repeatability of
a trained network by evaluating the network on test-retest scans. However, in this work, we
evaluated test-retest repeatability of a CNN on the testing data by training two separate
models on test and retest data. This allowed us to analyze the robustness of parameter
learning of the networks.

The patients with csPCa lesions are recommended to undergo treatments such as radiation
therapy and surgery [40, 41] while others are recommended an active surveillance strategy.
However, invasive biopsies still remain the only standard to determine GGG and identify
csPCa. Therefore, in this work, we detected slices with csPCa regions and obtained an AUC
of 0.78-0.85 on testing data. Although a few previous studies [42] presented an end-to-end
framework to identify csPCa images on multi-parametric MRI, none of these works has
analyzed the repeatability of these networks. In our study, the availability of test-retest data
enabled us to analyze the robustness of the networks and we showed that the U-Net-based
architecture is repeatable in slice-level detection csPCa regions. Additionally, the training of
a network for slice-level detection of csPCa regions further helped in initializing the network
weights for csPCa lesion segmentation. Figure 6 depicts activation maps of the networks Cp
and Cp calculated using Grad-CAM [43] on four samples, two being csPCa regions and the
other two being non-csPCa (GGG = 1/benign) regions on prostate ADC,,, maps (B2pggo). We
may observe that the networks Cp and Cg focus on similar regions to drive decisions.

Detection and segmentation of csPCa regions is vital for performing lesion-wise analysis of
PCa and stratifying patients according to different risk categories. Kohl et al [44] used
adversarial networks to detect and segment csPCa lesions and obtained a sensitivity of 55%
in detecting csPCa lesions and a dice similarity coefficient (DSC) of 0.41 in segmenting
csPCa lesions. Our model yielded a sensitivity of 63-65% in detecting csPCa lesions and a
DSC of 0.68-0.72 in segmenting csPCa lesions. Additionally, the availability of test-retest
scans allowed us to evaluate the repeatability of segmentations and detection of csPCa
lesions in terms of DSC and proportionate agreement respectively.

In order to obtain good network reproducibility, it is essential to assess the variability in the
test-retest scans themselves. Therefore, we evaluated the repeatability of volume and mean
ADC, of the csPCa lesions in terms of ICC and found that they were highly repeatable for
all three b value settings (volume: ICC = 0.92; and mean ADC,: ICC = 0.86-0.98). The
repeatability of segmentations provided by the networks may also depend on inter-scan
ground truth segmentation variability in segmenting lesions and prostate capsule. The Bland-
Altman plots suggest that inter-scan ground truth segmentation variability is in moderate
agreement with network-based segmentations.

We acknowledge that our study did have its limitations. Our work is limited to only ADCy,
maps since T2W MRI were not obtained for two time points. However, few previous studies
have shown that there are no significant differences between segmentations on T2W and
ADC [45]. The number of patients in the study was small and data was obtained from a
single institute. Since a single experienced radiologist working in consensus with pathologist
delineated the lesions, incorporating multiple reader annotations was considered to be
beyond the scope of the current study. However, we have evaluated inter-scan ground truth
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segmentation variability in segmenting csPCa lesions and its effect on networks’
performance. We have performed detection of csPCa regions and classification of other
GGG groups is left for future work. Additionally, future studies are required to evaluate the
performance of networks using different functions and/or models for prostate DW!I since we
have used only one model (diffusion-weighted imaging fitted with monoexponential
function). We evaluated repeatability of a single network architecture, and comparison with
other network architectures remains to be performed in future studies.

Conclusions

For the three ADC,, b value settings, U-Net-based architecture was repeatable in slice-level
detection of csPCa regions. The network repeatability in segmenting csPCa lesions is
affected by inter-scan variability and ground truth segmentation repeatability and may thus
improve with better inter-scan reproducibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ADC Apparent diffusion coefficient maps

ADC, Apparent diffusion coefficient maps obtained using monoexponential
fit of DWI signal decay

AUC Avrea under the receiver operating characteristic curve
CNN Convolutional neural network
csPCa Clinically significant prostate cancer
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DL Deep learning

DSC Dice similarity coefficient

FN False negatives

FP False positives

ICC Intra-class correlation coefficient
ML Machine learning

MRI Magnetic resonance imaging
PCa Prostate cancer

PI-RADS Prostate Imaging-Reporting and Data System
PPV Positive predictive value

TP True positives
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Key Points

For the three ADC,,, b value settings, two CNNs with U-Net-based
architecture were repeatable for the problem of detection of csPCa at the
slice-level.

The network repeatability in segmenting csPCa lesions is affected by inter-
scan variability and ground truth segmentation repeatability and may thus
improve with better inter-scan reproducibility.

Eur Radiol. Author manuscript; available in PMC 2021 January 22.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Hiremath et al. Page 14

Class 1: Slice with :
presence of csPCa region :

Class 2 : Slice with
absence of csPCa region

2D Slice input

A\

Fig. 1.
a Training process of a modified U-Net (U-Net,,) for detecting 2D patches with presence of

clinically significant prostate cancer (csPCa). The input to the network is a 2D patch
extracted and cropped to the prostate boundary using the manual segmentation drawn over
the prostate capsule. ADC,, patches with the presence of csPCa lesion (GGG > 1) were
considered as positive samples and others were marked negative. b Training process of U-
Net for segmentation of csPCa regions. csPCa regions delineated by an experience
radiologist was used as ground truth for lesion segmentation
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Fig. 2.

Experimental design for evaluating repeatability of CNNs for (a) slice-level classification of
clinically significant prostate cancer (csPCa: Gleason grade group (GGG) > 1) and non-
csPCa regions and (b) lesion-level detection and segmentation of csPCa regions. NV/= 112
patients scheduled for prostatectomy underwent two prostate MR examinations (Sa and Sg)
performed on the same day approximately 15 min apart. The scans, Sa and Sg, were divided
into training set (Aain and Byrain), V=78, and test set (Aest and Byest) V= 34. Two different
instances Na and Npg were trained on scans Agrain and Birain, respectively, and evaluated on a
combined test set, Sest (Atest + Btest)- The outputs P1 and P, by Na and Npg, respectively, on
Stest are used to calculate repeatability of the CNNs
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1.0

S o o
P (o)) o

True Positive Rate

©
N

P ---- Chance

o == ROC, C4 (AUC = 0.78)
= ROC, Cg (AUC = 0.79)

0.0
0.0

0.2 0.4 0.6 0.8 1.0
False Positive Rate

Receiver operating characteristic (ROC) curves for U-Nety, in slice-level detection of
clinically significant prostate cancer regions on apparent diffusion coefficient ADC,
(Bapgoo: b values (0, 300, 500, 900 s/mm?2) maps. The test-retest dataset (S and Sg) of 112
patients were divided into training set (Again and Byrain) and test set (Aegt and Byegt). a 3-fold
cross-validation was performed on the training sets Again (Ca1, Ca2, Cag trained on the
three folds of A¢rin) and Birain (Cg1, Cg2, Cpgs trained on the three folds Byy,jn). @ Mean
ROC curves, Ay, and By, for 3-fold cross-validation on Ayain and Byrain respectively. b ROC
curves for ensemble classifiers Cp (average probabilities of Ca1, Ca2, Ca3) and Cg (average
probabilities of Cg1, Cgo, Cg3) on hold-out test set, Siest (Atest + Biest)

Eur Radiol. Author manuscript; available in PMC 2021 January 22.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Hiremath et al. Page 17
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DSC=Q.73 = DSC=Q,88 . DSE=0.78 DSC=0.81 DSC=0.81
3(b) 4(a)_ 4(b)

N y O

3(d) 4(d)

DSC = 0.45 DSC = 0.48 DSC = 0.88 DSC= 0.57 DSC=0.58 DSC=0.93

Fig. 4.
Clinically significant prostate cancer (csPCa) lesion segmentation maps on ADCy, (Bapgoo:

values (0, 300, 500, 900 s/mm?) of networks Da (trained on Ayajn) and Dg (trained on
Birain)- @ Full field of view of monoexponential fitted prostate apparent diffusion coefficient
(ADC,,) maps. b Overlaid ground truth delineation (GT) and segmentation maps of D and
Dg. ¢ Dice similarity coefficient (DSC) between GT and Da. d DSC between GT and Dg. e
DSC between D and Dg. csPCa lesions (1,2) have high DSC overlap both between the
ground truth and between the networks. csPCa lesions (3,4) have high DSC overlap between
the networks even though they poorly segment the lesions. All DSC reported are evaluated
in 3D
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(b)

+1.96 SD
0.34

b o o e e

0.4 0.6
Mean of GT and Dg DSC

Bland-Altman plots between variation of ground truth delineations (DSC) and variation
between network segmentations (DSC) on ADCy, (Bapgoo: © values (0, 300, 500, 900 s/
mm?2). N'= 112 patients scheduled for prostatectomy underwent two prostate MR
examinations (S and Sg) performed on the same day approximately 15 min apart. The
scans, S and Sg, were divided into training set (Airain and Birain), V=78, and test set (Atest
and Byest) V= 34. U-Net architecture-based networks D and Dg trained on Agpain and Birain
respectively. a Bland-Altman plot between ground truth delineations and segmentation maps
of D with Byegt CO-registered to Agst.. b Bland-Altman plot between ground truth
delineations and segmentation maps of Dg With A¢egt CO-registered to Biest
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_y ‘

csPCa region

csPCa region

non- csPCa region

Fig. 6.

Activation maps of Cp and Cg on (a, b) clinically significant prostate cancer (csPCa:
Gleason grade group (GGG) > 1) regions of ADCy, (Bapggo: & values (0, 300, 500, 900 s/
mm?) maps and (c, d) non-csPCa (GGG = 1/benign) regions. The activation map shows that
networks look at a darker ADC,, region for csPCa regions compared with non-csPCa
regions where the network looks at a brighter area. Additionally, when activations are
compared between Cp and Cg, we may observe that the models focus on similar regions
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