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Abstract

Objectives—To evaluate short-term test-retest repeatability of a deep learning architecture (U-

Net) in slice- and lesion-level detection and segmentation of clinically significant prostate cancer 

(csPCa: Gleason grade group > 1) using diffusion-weighted imaging fitted with monoexponential 

function, ADCm.
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Methods—One hundred twelve patients with prostate cancer (PCa) underwent 2 prostate MRI 

examinations on the same day. PCa areas were annotated using whole mount prostatectomy 

sections. Two U-Net-based convolutional neural networks were trained on three different ADCm b 
value settings for (a) slice- and (b) lesion-level detection and (c) segmentation of csPCa. Short-

term test-retest repeatability was estimated using intra-class correlation coefficient (ICC(3,1)), 

proportionate agreement, and dice similarity coefficient (DSC). A 3-fold cross-validation was 

performed on training set (N = 78 patients) and evaluated for performance and repeatability on 

testing data (N = 34 patients).

Results—For the three ADCm b value settings, repeatability of mean ADCm of csPCa lesions 

was ICC(3,1) = 0.86–0.98. Two CNNs with U-Net-based architecture demonstrated ICC(3,1) in 

the range of 0.80–0.83, agreement of 66–72%, and DSC of 0.68–0.72 for slice- and lesion-level 

detection and segmentation of csPCa. Bland-Altman plots suggest that there is no systematic bias 

in agreement between inter-scan ground truth segmentation repeatability and segmentation 

repeatability of the networks.

Conclusions—For the three ADCm b value settings, two CNNs with U-Net-based architecture 

were repeatable for the problem of detection of csPCa at the slice-level. The network repeatability 

in segmenting csPCa lesions is affected by inter-scan variability and ground truth segmentation 

repeatability and may thus improve with better inter-scan reproducibility.
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Introduction

In recent years, deep learning (DL)-based convolutional neural networks (CNNs) have 

gained tremendous attention in medical imaging especially using MRI for various 

applications such as organ segmentation [1, 2], cancer detection and diagnosis [3–5], and 

characterization [6, 7]. However, MRI images might be influenced by different sources of 

noise variations such as scanner acquisition noise [8] and motion artifacts [9]. These 

variations not only affect the visual quality of an image but may also interfere with 

downstream analysis of MRI images [10].

Prostate Imaging-Reporting and Data System (PI-RADS) has standardized the diagnosis of 

PCa using MRI and has shown to be effective in characterizing PCa [11]. However, it has 

been found that PI-RADS-based scoring has only moderate to good inter- and intra-reader 

variability [12, 13]. Recently, much attention has been drawn to machine learning (ML) 

models built using radiomics-derived representations on MRI for PCa detection and 

characterization [14, 15]. However, the sources of variation in MRI acquisition and 

reconstruction [16–19] have shown to influence these representations [10]. Therefore, lately, 

there has been an increasing interest in applying test-retest analysis to rank order radiomics 

features based on their repeatability and discriminability, and build ML classifiers based on 

most stable features [20, 21]. In contrast, although several DL approaches have been 

presented for PCa segmentation [22, 23], detection [24, 25], and characterization [26, 27], to 
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the best of our knowledge, none of them has been explicitly evaluated in the context of test-

retest repeatability.

A unique test-retest data of monoexponential fitted prostate apparent diffusion coefficient 

(ADCm) maps was used in this study. Two MRI scans were taken approximately 15 min 

apart for each patient. We used only ADCm maps and not bi-parametric MRI (T2W MRI 

and ADCm) since T2W MRI were not available for two time points. The evaluation of 

repeatability of DL models trained on ADCm maps taken at such short time span allows us 

to evaluate stability of DL models against variations with respect to acquisition of images. 

Additionally, it is also safe to assume that changes in tissue biology are negligible over such 

a short time span.

Due to increasing popularity of the deep learning architecture, U-Net [26, 28–30] in 

segmentation, detection, and classification tasks, we use U-Net-based architecture in our 

study. U-Net [31] is a fully convolutional network designed for semantic segmentation tasks 

with two components, an encoder and a decoder. The U-Net decoder combines both local 

information and the contextual information which is required to predict a good segmentation 

map. Additionally, since there is no dense layer involved in the architecture, images of 

different sizes can be given as input.

Therefore, in this study, we evaluate test-retest repeatability of convolutional neural 

networks using a U-Net-based architecture on three different ADCm b value settings for (a) 

slice-and (b) lesion-level detection and (c) segmentation of clinically significant prostate 

cancer (csPCa: Gleason grade group (GGG) > 1). A 3-fold cross-validation was performed 

on training set (N = 78 patients) and evaluated for performance and repeatability on testing 

data (N = 34 patients).

Materials and methods

MR imaging and data

This retrospective study was compliant with Health Insurance Portability and Accountability 

Act (HIPAA) and approved by institutional review board. All patients, N = 115, with 

diagnosed PCa signed informed consent and underwent prostate MRI before robotic-assisted 

laparoscopic prostatectomy between March 2013 and February 2016 [17, 32]. All patients 

underwent two prostate MR examinations (SA and SB) performed on the same day 

approximately 15 min apart following repositioning on MR scanner table [19, 32]. The scans 

were performed using a 3T MR scanner (3 Tesla Philips Ingenuity PET/MR). DWI was 

performed using a single-shot spin echo–based sequence with monopolar diffusion gradient 

and an echo-planar read out. Summary acquisition parameters are provided in Table E1 

(supplementary), while detailed acquisition protocol was described previously [17]. We 

evaluated ADCm maps at the voxel level with DWI data for three different b value settings: 

(a) four b values in the range of 0–900 s/mm2, B4b900 (0, 300, 500, 900 s/mm2) [33], (b) four 

b value distribution which was previously suggested as being a potentially optimal 

distribution, B4b2000 (0, 900, 1100, 2000 s/mm2) [16], and (c) two b values in the range of 

0–1300 s/mm2, B2b1300 (0 and 1300 s/mm2). The third option was considered to evaluate a 

setting with minimal number of b values for signal-to-noise-ratio and contrast trade-off in 
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the context of CNN-based classifications [16]. Three patients were excluded due to the 

presence of severe motion (n = 1) and/or susceptibility artifacts (n = 2). Figure E1 

(supplementary) shows the flow chart of inclusion/exclusion criteria of the patients and 

splitting of the data into training and test sets. The data splits were the same as reported by 

Merisaari et al [32].

Prostate capsule and lesion segmentation—A radiologist with 9 years of prostate 

MRI experience in consensus with a board-certified staff urogenital pathologist (10 years of 

experience in urogenital pathology) delineated the prostate capsule and cancerous regions on 

DWI with whole mounts prostatectomy sections as ground truth using the Carimas (version 

2.9) software. Demographic information (age, PSA), lesion distribution in different zones 

(peripheral zone, central/transitional zone), GGG categories (1–5), and the distribution of 

csPCa and non-csPCa (GGG = 1, benign) patches is shown in Table 1.

U-Net architecture

U-Net [31] is a fully convolutional network designed for semantic segmentation tasks with 

two components, a descending encoder path and an ascending decoding path. The modified 

U-Net consists of 5 encoder blocks and 5 decoder blocks. Each of the encoder blocks and 

decoder blocks consists of two convolutional layers except for the last decoder block with 

only one convolutional layer accounting for a total of 19 convolutional layers. The decoder 

and the encoder paths consist of batch normalization layers and drop-out layers in between 

the convolutional layers, with max pooling in the decoder blocks and up-sampling in the 

encoder blocks. The model consists of a total of 7,852,002 trainable parameters. Figure 

E2(b) shows the architectural diagram of U-Net.

U-Net training

The details of data preprocessing and data augmentation are described in the supplementary 

section (S1). We define the problem of slice-wise detection of clinically significant prostate 

cancer (csPCa) regions as a classification task. Each slice with prostate voxel was defined 

either as containing csPCa or non-csPCa (Gleason grade grouping (GGG) = 1/benign). We 

defined the ground truth labels by considering each extracted patch from ADCm, with the 

presence of csPCa lesion (GGG > 1) as a positive exemplar, all others were deemed as 

negative. We used a modified network architecture (U-Netm) for the classification task. The 

network architecture for U-Netm is shown in Fig. E2(a).

For csPCa lesion detection and segmentation, the manually annotated lesion delineations 

done with whole mount prostatectomy sections as reference were used as ground truth. A 

transfer learning strategy was used to initialize the encoder weights of the U-Net by 

transference of weights from the model U-Netm trained for detection of csPCa at the slice-

level. The network architecture of U-Net is shown in Fig. E2(b). We used the segmentation 

maps outputted by the networks to evaluate lesion detection. We defined a lesion as being 

detected if ≥ 0.2 DSC overlap existed between the network segmentation map and the 

ground truth delineation of that corresponding lesion. Figure 1 depicts the training of U-

Netm, U-Net. Other related implementation details are provided in the supplementary section 

(S2). For the source code for the network training and evaluation of repeatability, see https://
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github.com/amogh3892/Test-retest-repeatability-of-U-Net-in-detecting-segmenting-

clinically-significant-prostate-cancer.

Evaluation metrics and statistical analysis

Area under the receiver operator characteristic curve (AUCs), sensitivity and positive 

predictive value (PPV), and dice similarity coefficient (DSC) were used to evaluate the 

performance of slice- and lesion-level detection and segmentation of csPCa on ADCm 

respectively. Similarly, intra-class correlation coefficient (ICC(3,1)), proportionate 

agreement, and DSC were used to evaluate repeatability of the networks for slice- and 

lesion-level detection and segmentation of csPCa on ADCm respectively. Ninety-five percent 

confidence intervals were calculated wherever necessary and cross-validation results were 

reported as mean ± standard deviation. Further details and definitions of the performance 

metrics are presented in the supplementary section (S3).

Experiment 1: Repeatability of U-Netm in slice-level detection of clinically significant 
prostate cancer on prostate apparent diffusion coefficient maps

For all three b value settings (B4b900, B4b2000, and B2b1300), U-Netm was trained for slice-

level detection of csPCa regions with 3-fold cross-validation setting on the training sets 

Atrain (networks CA1, CA2, and CA3 trained on the three folds of Atrain) and Btrain (networks 

CB1, CB2, and CB3 trained on the three folds of Btrain), and was evaluated for performance in 

terms of AUC. The ensemble of classifiers from 3-fold cross-validation CA (average 

predictions from CA1, CA2, and CA3) and CB (average predictions from CB1, CB2, and CB3) 

was used to evaluate the (a) performance in terms of AUCs and (b) repeatability of the 

network predictions in terms of ICCs on the test set Stest (Atest + Btest). Additionally, other 

performance metrics such as accuracy, sensitivity, and specificity were reported by 

calculating the optimal cutoff through Youden index [34]. We combined the test sets Atest 

and Btest since SA and SB were not co-registered with respect to each other and registration 

of the scans would lead to additional registration artifacts. Figure 2 shows the overall 

experimental design for evaluating the repeatability of the network outputs.

Experiment 2: Repeatability of U-Net in segmentation and detection of clinically significant 
prostate cancer lesions on prostate apparent diffusion coefficient maps

For all three b value settings (B4b900, B4b2000, and B2b1300), U-Net was trained with a 3-fold 

cross-validation setting on the training set, Atrain (networks DA1, DA2, and DA3 trained on 

the three folds of Atrain) and Btrain (networks DB1, DB2, and DB3 trained on the three folds of 

Btrain) for segmenting csPCa lesions on ADCm maps. The ensemble of segmentation 

networks from 3-fold cross-validation DA and DB (DA: Logical “OR” of segmentations from 

DA1, DA2, DA3; and DB: Logical “OR” of segmentations from DB1, DB2, and DB3) was used 

to obtain final segmentation maps on the test set, Stest. We post-process the output 

segmentations in order to remove some false positives. The details of post-processing of the 

lesion segmentations are provided in the supplementary (S4).

We use the output segmentation maps to assess csPCa lesion detection performance by 

evaluating the sensitivity and positive predictive value of the networks DA and DB. The 
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repeatability of csPCa lesion detection was assessed by evaluating the proportionate 

agreement between the networks DA and DB.

We further evaluate (a) segmentation performance and (b) repeatability of segmentations in 

terms of DSC for the detected lesions on Stest. We also assess the repeatability of network 

segmented volumes and mean ADCm value in the lesion with respect to ICC and compare 

them with ground truth delineations.

Agreement of inter-scan ground truth segmentation repeatability and U-Net’s 
segmentation repeatability in segmenting csPCa lesions

We co-registered the scans Atest and Btest and chose only the csPCa lesions that are detected 

on both Atest and Btest for the analysis. The details of registration are provided in the 

supplementary section (S5). The agreement between repeatability of ground truth 

delineations and repeatability of segmentation maps obtained by DA and DB was illustrated 

using Bland-Altman plots. No systematic bias as a function of the evaluated signal was 

found to be present in the Bland-Altman plots.

Results

Experiment 1: Repeatability of U-Netm in slice-level detection of clinically significant 
prostate cancer on prostate apparent diffusion coefficient maps

Table 2 shows the performance metrics of slice-level detection of csPCa on cross-validation 

and testing cohorts for networks trained on Atrain and Btrain for three different b value 

settings (B4b900, B4b2000, and B2b1300). For all the b value settings, we can observe that the 

networks yielded an AUC of 0.81–0.85 for the cross-validation on Atrain and Btrain. The 

ensemble of classifiers from 3-fold cross-validation, CA and CB, resulted in an AUC of 

0.78–0.85 in Stest. A DeLong test [35] between the cross-validation AUCs and AUCs on Stest 

did not show significant difference between the results obtained (p > 0.11). Figure 3 shows 

the receiver operator characteristic (ROC) curves of the networks for slice-level detection of 

csPCa on prostate ADCm maps on B4b900 for cross-validation on Atrain and Btrain and 

evaluation on Stest.

The probability scores of the ensemble classifiers CA and CB are used to evaluate 

repeatability on Stest. The U-Netm yielded an ICC of 0.83, 95% CI (0.80–0.85); 0.80, 95% 

CI (0.77–0.83); and 0.83, 95% CI (0.80–0.85) on B4b900, B4b2000, and B2b1300, respectively, 

in detecting clinically significant prostate cancer regions on ADC maps.

Experiment 2: Repeatability of U-Net in segmentation and detection of clinically significant 
prostate cancer lesions on prostate apparent diffusion coefficient maps

Table 3 depicts the csPCa lesion detection performance on the cross-validation set and Stest 

for different b value settings (B4b900, B4b2000, and B2b1300). The networks resulted in a 

sensitivity of 55–60% and a PPV of 51–53% on the cross-validation set. The networks DA 

and DB had proportionate agreement of 66–72% in detecting csPCa lesions on Stest and the 

corresponding sensitivity and PPV was in the range 63–66% and 45–57% respectively.
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Table 4 illustrates the csPCa lesion segmentation performance of the networks on detected 

csPCa lesions for B4b900, B4b2000, and B2b1300. The networks DA and DB resulted in DSC of 

0.47–0.54 on the cross-validation set and 0.58–0.64 on Stest respectively. The DSC between 

the network segmentations (repeatability) was in the range 0.68–0.72.

Figure 4 shows the overlaid segmentation maps on the ADCm (B4b900) images with DSC 

reported in 3D. We can observe that, although some of the lesions are poorly segmented by 

the networks, the repeatability in terms of DSC between the networks is high.

Table 5 shows the repeatability of volume measurement and mean ADCm values of ground 

truth delineations and U-Net-based segmentations on Stest for different b value settings 

(B4b900, B4b2000, and B2b1300). U-Net obtained an ICC score of 0.89–0.92 and 0.84–0.87 for 

volume and mean ADCm value, respectively, while compared with ground truth delineations 

with an ICC score of 0.92 for volume and 0.86–0.98 for mean ADCm.

Agreement of inter-scan ground truth segmentation repeatability and U-Net’s 
segmentation repeatability in segmenting csPCa lesions

Figures 5 a and b show the agreement of repeatability of ground truth delineations and 

network segmentations using a Bland-Altman plot on B4b900. The mean of repeatability 

between ground truth delineations and network segmentations in terms of DSC are plotted 

against the difference between ground truth delineations and network segmentation DSC. 

The plots suggest that the ground truth delineations are in moderate agreement with 

network-based segmentations in most of the cases, with a few outliers. We can also observe 

that repeatability of ground truth delineations is slightly better than network-based 

segmentation repeatability. The Bland-Altman plots for B4b2000 and B2b1300 expressed 

similar agreement between the ground truth and the network results; these are illustrated in 

the supplementary figure (Fig. E3).

Discussion

In this study, we evaluated repeatability of U-Net for (a) slice-and (b) lesion-level detection 

and (c) segmentation of clinically significant prostate cancer (csPCa: Gleason grade group 

(GGG) > 1) on prostate apparent diffusion coefficient (ADCm) maps with three different b 
value settings (B4b900, B4b2000, and B2b1300). The U-Net-based architecture was found to be 

repeatable (ICC of 0.8–0.83) for slice-level detection of csPCa regions, and moderately 

repeatable in detecting (proportionate agreement of 66–72%) and segmenting (DSC of 0.68–

0.72) csPCa lesions.

High predictive power from single time point with low test-retest repeatability might be 

misleading. While number of studies have looked at repeatability of radiomics features [32, 

36, 37], relatively little work has been done in the context of deep learning (DL), specifically 

convolutional neural networks (CNNs) [38, 39]. To the best of our knowledge, none of the 

previous studies has analyzed repeatability of CNNs for detection and segmentation for 

csPCa. Cole et al [38] analyzed the repeatability of a 3D-CNN in predicting brain age from 

N = 20 T1-Weighted MRIs and showed that the model was able to predict brain age with 

high repeatability (ICC 0.9–0.98). Honsy et al [39] showed that their 3D-CNN predictions 
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on CT for lung cancer prognostication had high ICC of 0.91. They analyzed repeatability of 

a trained network by evaluating the network on test-retest scans. However, in this work, we 

evaluated test-retest repeatability of a CNN on the testing data by training two separate 

models on test and retest data. This allowed us to analyze the robustness of parameter 

learning of the networks.

The patients with csPCa lesions are recommended to undergo treatments such as radiation 

therapy and surgery [40, 41] while others are recommended an active surveillance strategy. 

However, invasive biopsies still remain the only standard to determine GGG and identify 

csPCa. Therefore, in this work, we detected slices with csPCa regions and obtained an AUC 

of 0.78–0.85 on testing data. Although a few previous studies [42] presented an end-to-end 

framework to identify csPCa images on multi-parametric MRI, none of these works has 

analyzed the repeatability of these networks. In our study, the availability of test-retest data 

enabled us to analyze the robustness of the networks and we showed that the U-Net-based 

architecture is repeatable in slice-level detection csPCa regions. Additionally, the training of 

a network for slice-level detection of csPCa regions further helped in initializing the network 

weights for csPCa lesion segmentation. Figure 6 depicts activation maps of the networks CA 

and CB calculated using Grad-CAM [43] on four samples, two being csPCa regions and the 

other two being non-csPCa (GGG = 1/benign) regions on prostate ADCm maps (B2b900). We 

may observe that the networks CA and CB focus on similar regions to drive decisions.

Detection and segmentation of csPCa regions is vital for performing lesion-wise analysis of 

PCa and stratifying patients according to different risk categories. Kohl et al [44] used 

adversarial networks to detect and segment csPCa lesions and obtained a sensitivity of 55% 

in detecting csPCa lesions and a dice similarity coefficient (DSC) of 0.41 in segmenting 

csPCa lesions. Our model yielded a sensitivity of 63–65% in detecting csPCa lesions and a 

DSC of 0.68–0.72 in segmenting csPCa lesions. Additionally, the availability of test-retest 

scans allowed us to evaluate the repeatability of segmentations and detection of csPCa 

lesions in terms of DSC and proportionate agreement respectively.

In order to obtain good network reproducibility, it is essential to assess the variability in the 

test-retest scans themselves. Therefore, we evaluated the repeatability of volume and mean 

ADCm of the csPCa lesions in terms of ICC and found that they were highly repeatable for 

all three b value settings (volume: ICC = 0.92; and mean ADCm: ICC = 0.86–0.98). The 

repeatability of segmentations provided by the networks may also depend on inter-scan 

ground truth segmentation variability in segmenting lesions and prostate capsule. The Bland-

Altman plots suggest that inter-scan ground truth segmentation variability is in moderate 

agreement with network-based segmentations.

We acknowledge that our study did have its limitations. Our work is limited to only ADCm 

maps since T2W MRI were not obtained for two time points. However, few previous studies 

have shown that there are no significant differences between segmentations on T2W and 

ADC [45]. The number of patients in the study was small and data was obtained from a 

single institute. Since a single experienced radiologist working in consensus with pathologist 

delineated the lesions, incorporating multiple reader annotations was considered to be 

beyond the scope of the current study. However, we have evaluated inter-scan ground truth 
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segmentation variability in segmenting csPCa lesions and its effect on networks’ 

performance. We have performed detection of csPCa regions and classification of other 

GGG groups is left for future work. Additionally, future studies are required to evaluate the 

performance of networks using different functions and/or models for prostate DWI since we 

have used only one model (diffusion-weighted imaging fitted with monoexponential 

function). We evaluated repeatability of a single network architecture, and comparison with 

other network architectures remains to be performed in future studies.

Conclusions

For the three ADCm b value settings, U-Net-based architecture was repeatable in slice-level 

detection of csPCa regions. The network repeatability in segmenting csPCa lesions is 

affected by inter-scan variability and ground truth segmentation repeatability and may thus 

improve with better inter-scan reproducibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ADC Apparent diffusion coefficient maps

ADCm Apparent diffusion coefficient maps obtained using monoexponential 

fit of DWI signal decay

AUC Area under the receiver operating characteristic curve

CNN Convolutional neural network

csPCa Clinically significant prostate cancer
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DL Deep learning

DSC Dice similarity coefficient

FN False negatives

FP False positives

ICC Intra-class correlation coefficient

ML Machine learning

MRI Magnetic resonance imaging

PCa Prostate cancer

PI-RADS Prostate Imaging-Reporting and Data System

PPV Positive predictive value

TP True positives
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Key Points

• For the three ADCm b value settings, two CNNs with U-Net-based 

architecture were repeatable for the problem of detection of csPCa at the 

slice-level.

• The network repeatability in segmenting csPCa lesions is affected by inter-

scan variability and ground truth segmentation repeatability and may thus 

improve with better inter-scan reproducibility.
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Fig. 1. 
a Training process of a modified U-Net (U-Netm) for detecting 2D patches with presence of 

clinically significant prostate cancer (csPCa). The input to the network is a 2D patch 

extracted and cropped to the prostate boundary using the manual segmentation drawn over 

the prostate capsule. ADCm patches with the presence of csPCa lesion (GGG > 1) were 

considered as positive samples and others were marked negative. b Training process of U-

Net for segmentation of csPCa regions. csPCa regions delineated by an experience 

radiologist was used as ground truth for lesion segmentation
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Fig. 2. 
Experimental design for evaluating repeatability of CNNs for (a) slice-level classification of 

clinically significant prostate cancer (csPCa: Gleason grade group (GGG) > 1) and non-

csPCa regions and (b) lesion-level detection and segmentation of csPCa regions. N = 112 

patients scheduled for prostatectomy underwent two prostate MR examinations (SA and SB) 

performed on the same day approximately 15 min apart. The scans, SA and SB, were divided 

into training set (Atrain and Btrain), N = 78, and test set (Atest and Btest) N = 34. Two different 

instances NA and NB were trained on scans Atrain and Btrain, respectively, and evaluated on a 

combined test set, Stest (Atest + Btest). The outputs P1 and P2 by NA and NB, respectively, on 

Stest are used to calculate repeatability of the CNNs
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Fig. 3. 
Receiver operating characteristic (ROC) curves for U-Netm in slice-level detection of 

clinically significant prostate cancer regions on apparent diffusion coefficient ADCm 

(B4b900: b values (0, 300, 500, 900 s/mm2) maps. The test-retest dataset (SA and SB) of 112 

patients were divided into training set (Atrain and Btrain) and test set (Atest and Btest). a 3-fold 

cross-validation was performed on the training sets Atrain (CA1, CA2, CA3 trained on the 

three folds of Atrain) and Btrain (CB1, CB2, CB3 trained on the three folds Btrain). a Mean 

ROC curves, Am and Bm, for 3-fold cross-validation on Atrain and Btrain respectively. b ROC 

curves for ensemble classifiers CA (average probabilities of CA1, CA2, CA3) and CB (average 

probabilities of CB1, CB2, CB3) on hold-out test set, Stest (Atest + Btest)
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Fig. 4. 
Clinically significant prostate cancer (csPCa) lesion segmentation maps on ADCm (B4b900: b 
values (0, 300, 500, 900 s/mm2) of networks DA (trained on Atrain) and DB (trained on 

Btrain). a Full field of view of monoexponential fitted prostate apparent diffusion coefficient 

(ADCm) maps. b Overlaid ground truth delineation (GT) and segmentation maps of DA and 

DB. c Dice similarity coefficient (DSC) between GT and DA. d DSC between GT and DB. e 
DSC between DA and DB. csPCa lesions (1,2) have high DSC overlap both between the 

ground truth and between the networks. csPCa lesions (3,4) have high DSC overlap between 

the networks even though they poorly segment the lesions. All DSC reported are evaluated 

in 3D
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Fig. 5. 
Bland-Altman plots between variation of ground truth delineations (DSC) and variation 

between network segmentations (DSC) on ADCm (B4b900: b values (0, 300, 500, 900 s/

mm2). N = 112 patients scheduled for prostatectomy underwent two prostate MR 

examinations (SA and SB) performed on the same day approximately 15 min apart. The 

scans, SA and SB, were divided into training set (Atrain and Btrain), N = 78, and test set (Atest 

and Btest) N = 34. U-Net architecture-based networks DA and DB trained on Atrain and Btrain 

respectively. a Bland-Altman plot between ground truth delineations and segmentation maps 

of DA with Btest co-registered to Atest.. b Bland-Altman plot between ground truth 

delineations and segmentation maps of DB with Atest co-registered to Btest
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Fig. 6. 
Activation maps of CA and CB on (a, b) clinically significant prostate cancer (csPCa: 

Gleason grade group (GGG) > 1) regions of ADCm (B4b900: b values (0, 300, 500, 900 s/

mm2) maps and (c, d) non-csPCa (GGG = 1/benign) regions. The activation map shows that 

networks look at a darker ADCm region for csPCa regions compared with non-csPCa 

regions where the network looks at a brighter area. Additionally, when activations are 

compared between CA and CB, we may observe that the models focus on similar regions
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