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Abstract

Purpose: Many researchers have developed deep learning models for predicting clinical dose 

distributions and Pareto optimal dose distributions. Models for predicting Pareto optimal dose 

distributions have generated optimal plans in real time using anatomical structures and static beam 

orientations. However, Pareto optimal dose prediction for Intensity Modulated Radiation Therapy 

(IMRT) prostate planning with variable beam numbers and orientations has not yet been 

investigated. We propose to develop a deep learning model that can predict Pareto optimal dose 

distributions by using any given set of beam angles, along with patient anatomy, as input to train 

the deep neural networks. We implement and compare two deep learning networks that predict 

with two different beam configuration modalities.

Methods: We generated Pareto optimal plans for 70 patients with prostate cancer. We used 

fluence map optimization to generate 500 IMRT plans that sampled the Pareto surface for each 

patient, for a total of 35,000 plans. We studied and compared two different models, Model I and 

Model II. Although they both used the same anatomical structures—including the planning target 

volume (PTV), organs at risk (OARs), and body—these models were designed with two different 

methods for representing beam angles. Model I directly uses beam angles as a second input to the 

network as a binary vector. Model II converts the beam angles into beam doses that are conformal 

to the PTV. We divided the 70 patients into 54 training, 6 validation, and 10 testing patients, thus 

yielding 27,000 training, 3,000 validation, and 5,000 testing plans. Mean square loss (MSE) was 

taken as the loss function. We used the Adam optimizer with a default learning rate of 0.01 to 

optimize the network’s performance. We evaluated the models’ performance by comparing their 

predicted dose distributions with the ground truth (Pareto optimal) dose distribution, in terms of 

DVH plots and evaluation metrics such as PTV D98, D95, D50, D2, Dmax, Dmean, Paddick 

Conformation Number, R50 and Homogeneity index.

Results: Our deep learning models predicted voxel-level dose distributions that precisely 

matched the ground truth dose distributions. The DVHs generated also precisely matched the 

ground truth. Evaluation metrics such as PTV statistics, dose conformity, dose spillage (R50) and 

homogeneity index also confirmed the accuracy of PTV curves on the DVH. Quantitatively, Model 

I’s prediction error of 0.043 (confirmation), 0.043 (homogeneity), 0.327 (R50), 2.80% (D95), 

3.90% (D98), 0.6% (D50), 1.10% (D2) was lower than that of Model II, which obtained 0.076 

(confirmation), 0.058 (homogeneity), 0.626 (R50), 7.10% (D95), 6.50% (D98), 8.40% (D50), 
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6.30% (D2). Model I also outperformed Model II in terms of the mean dose error and the max 

dose error on the PTV, bladder, rectum, left femoral head, and right femoral head.

Conclusions: Treatment planners who use our models will be able to use deep learning to 

control the tradeoffs between the PTV and OAR weights, as well as the beam number and 

configurations in real time. Our dose prediction methods provide a stepping stone to building 

automatic IMRT treatment planning.

1. Introduction

Today, it is estimated that about two-thirds of all patients with cancer receive Radiation 

Therapy as a unique treatment or in combination with more complex treatment procedures.1 

One of the remarkable achievements in External Beam Radiation Therapy (EBRT) is the 

development of Intensity Modulated Radiation Therapy (IMRT),2–7 which uses variable 

beam intensities to treat cancer. IMRT allows the delivery of less dose to the organs at risk 

(OARs) and more dose to the planning target volume (PTV) than 3D conformal radiation 

therapy,8–11 but its treatment planning process is more difficult and time consuming. IMRT 

treatment planning consists of two iterative processes: first, the planner uses dose-volume 

constraints and other hyper-parameters to obtain an optimal plan to deliver as much of the 

prescribed dose to the PTV as possible while minimizing the dose to critical structures. The 

planner has to iteratively and tediously tune the hyper-parameters in a trial-and-error 

fashion. Second, the physician reviews the plan and provides further comments and feedback 

to get the outcome that achieves the best tradeoffs between PTV and OARs.12,13 These two 

processes loop until the final plan is approved. It can take from multiple hours to a week to 

generate an acceptable plan, depending on the treatment site and its complexity.

Several studies have tried to improve the treatment planning process by using mathematical 

optimization algorithms to account for various aspects. Multicriteria optimization13–15 

focuses on generating multiple plans with tradeoffs between the PTV and OARs on the 

Pareto surface, which allows the clinician to then choose the plan with their desired 

tradeoffs. Beam orientation optimization16–21 focuses on finding a suitable set of beam 

directions that improves upon manually selected or protocol-based beam orientations. Direct 

aperture optimization, also called machine parameter optimization,22–27 focuses on 

generating deliverable, high quality plans by determining the optimal aperture shapes and 

their intensities. There are many commercial software packages available based on 

mathematical optimization algorithms, such as Eclipse™ comprehensive treatment planning 

(Varian Medical systems, Palo Alto, CA, USA), Pinnacle treatment planning (Philips 

Radiation Oncology, Fitchburg, WI, USA),28 and RayPlan treatment planning system 

(RaySearch Laboratories, Stockholm, Sweden). Still, these systems require manual, tedious 

tuning of hyper-parameters, such as structure weights, beam geometries, appropriate dose-

volume constraints, and tradeoffs between the PTV and OARs. Also, treatment plans 

generated on these systems differ from planner to planner and from physician to physician 

based on their work experience and preferences. The customized tedious process, planning 

variations based on personal experiences and preferences, and the need for strong domain 

knowledge expertise could lead to suboptimal plans that compromise patient care.29–31
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A new set of methods, called knowledge-based planning (KBP),32–37 has been developed to 

address the shortcomings of mathematical optimization algorithms and improve the quality 

and efficiency of treatment planning by learning a database of carefully designed past 

clinical plans. KBP uses machine learning algorithms and is a powerful tool for guiding 

treatment planners and physicians to achieve high quality plans. RapidPlan™ is an example 

of KBP that was developed by Varian Medical Systems. This system estimates the dose 

volume histogram (DVH) for the new plan by using patient-specific geometry. Many 

researchers have reported on RapidPlan’s performance and compared it with that of 

conventional treatment planning, and they have found that, in its current state, RapidPlan is 

much faster and can generate clinically acceptable plans with higher quality than 

conventional treatment planning for about half of the cases.38–43 However, it is not fully 

automated yet, and for the remaining treatment cases, manual tuning is still necessary to 

make acceptable plans. In addition, KBP relies heavily on small datasets because datasets 

have not been integrated between different institutions, so caution should be taken when 

applying these methods to patients whose geometry falls outside the plan library.39 Also, 

before the deep learning era, KBP methods used more traditional machine learning 

algorithms, and they were limited to predicting DVH or particular dosimetric criteria from 

user-defined features.44

Deep learning has advanced many areas such as image recognition, speech recognition, 

natural language translation towards automation45 and has addressed the shortcomings of 

traditional machine learning by learning its own features from data without the need for 

human intervention. Likewise, deep learning has the potential to automate the IMRT 

treatment planning process by removing its dependence on handcrafted features. The 

development of the fully convolutional network (FCN)46 allowed for pixel-wise prediction 

using supervised learning, which opened the door for voxel-wise dose prediction and 

generation of DVH curves in treatment planning. Recently, many researchers have developed 

different deep learning models for predicting clinical dose distributions for IMRT and 

Volumetric Modulated Arc Therapy (VMAT) modalities on different treatment sites such as 

lung, prostate, and head-and-neck.47–53 However, all of these models used static beam 

orientations for their study, thus limiting their uses in the treatment planning workflow to a 

subset of common treatment plans based on protocol. One approach that uses varying beam 

angles to predict the clinical dose for lung IMRT patients has been developed recently.54

Clinical dose prediction models are often limited to a single dose predicted per patient. This 

contrasts with Pareto optimal dose prediction models, which can generate multiple plans that 

have differing tradeoffs between the different critical structures. Previous studies found that 

deep learning models that use anatomical structures and static beam orientations to predict 

Pareto optimal dose distributions could generate multiple optimal plans with differing 

tradeoffs in real time.44,55 However, Pareto optimal dose predictions for IMRT prostate plans 

with variable beam numbers and orientations have not yet been studied. In this paper, we 

present an approach that uses deep learning networks to predict Pareto optimal dose 

distributions for prostate IMRT plans that involve anatomical structures and varying beam 

numbers and orientations. Specifically, our contribution to the current literature is the 

addition of the ability to tune the beam orientations in a deep learning-based, Pareto optimal 

dose prediction model. Such a model would allow for a treatment planner to quickly explore 
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the beam orientation space, and select a beam arrangement that can even be outside of the 

typical clinical protocol. We implement and compare two deep learning networks that 

predict with two different beam configuration modalities: Model I, which uses the direct 

input of the beam angles in the network as a binary vector, and Model II, which uses the 

conformal beam dose that corresponds to the beam angles used in Model I. Model II serves 

here as a state-of-the-art model for comparison; this model is similar to the AB model 

introduced by Ana et al.,54 where beam setup information was represented by the cumulative 

dose distribution for all the beams in the plan computed by using the fluence-convolution 

broad beam (FCBB)56 dose calculation method. In our case, we used a simple algorithm to 

generate a beam conformal to the PTV structure (see section 2.2).

This work will provide treatment planners with the advantage of using deep learning to 

control the tradeoffs between the PTV and OAR weights, as well as the beam number and 

configurations, in real time.

2. Materials and Methods

For this study, we generated Pareto optimal plans for 70 patients with prostate cancer. We 

used fluence map optimization to generate 500 IMRT plans that sampled the Pareto surface 

for each patient, for a total of 35,000 plans. More details about generating the Pareto optimal 

dose distribution dataset are presented in section 2.1. The deep learning models used for 

predicting Pareto optimal dose distributions are described in section 2.3. We studied and 

compared two different models. Although they both used the same anatomical structures—

which included the planning target volume (PTV), organs at risk (OARs), and body—these 

models were designed with two different methods for representing the beam angles. For 

Model I, we directly used beam angles as a binary vector for the second input to the 

network. For Model II, we converted the beam angles into beam doses that were conformal 

to the PTV. More details about generating the conformal beam doses are provided in section 

2.2. We divided the 70 patients into 54 training, 6 validation, and 10 testing patients, 

yielding 27,000 training, 3,000 validation, and 5,000 testing plans. Detailed explanations of 

the model training, validation, and testing are presented in section 2.4.

2.1 Pareto Optimal Plans

The Pareto optimal solutions for 70 patients with prostate cancer were generated by 

minimizing the objective function defined from Equations 1–3. These resulting dose 

distributions for training are calculated after the fluence map optimization step, but before 

any machine parameter sequencing is performed. The parameters involved were anatomical 

structures and 10 different sets of 1 to 10 random beam angles. Anatomical structures 

included the planning target volume (PTV) and the organs at risk (OARs): body, bladder, 

rectum, left femoral head, and right femoral head. Shell and skin structures were also 

included in the plan as tuning structures. Pareto optimal solutions represent the various 

tradeoffs between tumor coverage and normal tissue sparing. This is associated with a 

multicriteria objective, which can be written as
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minimize
xθ

fPTV xθ , fOAR1 xθ , fOAR2 xθ , …, fOARn xθ

subject to xθ ≥ 0, θ ∈ A
(1)

where fs is the objective function and A = [θ1,…θ10] is the collection of all 10 sets of beam 

angles.

For example, 01 = [10], θ2 = [24,38],….,θ10 = [20,26,30,38,46,6,56,98,64,120] are the 

randomly generated angles, and xθ refers to the fluence map intensities to be optimized. 

Here, we use the ℓ2-norm to formulate the objective,

fs xθ = 1
2 dθ, sxθ − ps 2

2
(2)

where dθ,s is the dose influence matrix for the θth beam and the sth structure. The dose 

influence matrices were determined using 1 to 10 random coplanar beams where the beamlet 

size was 2.5 mm2 at a 100 cm isocenter. ps is the desired dose for a given structure, assigned 

as the prescription dose if s is the PTV, and otherwise 0. The dose influence calculation was 

performed using the Analytical Anisotropic Algorithm (AAA) provided by the Eclipse 

treatment planning system, using the built-in application programming interface (Varian 

Medical systems, Palo Alto, CA, USA). Now, we can reformulate the multicriteria 

optimization14,57,58 as a single-objective, convex optimization problem:

minimize
xθ

∑
s ∈ S

ws2fs xθ

subject to xθ ≥ 0, θ ∈ A
(3)

where ws are the user-defined tradeoff weights for each structure. Different Pareto optimal 

plans can be generated by varying the ws to different values. We generated many pseudo-

random plans by assigning random weights, as described below, to the organs at risk by 

using an in-house GPU-based proximal-class first-order primal-dual algorithm, Chambolle-

Pock.59 While there are some uses of the Chambolle-Pock algorithm used in radiation 

therapy60–64, any convex solver will theoretically arrive at the same solution as Chambolle-

Pock for solving the optimization problem.

The weight generation structure fell into one of three categories, as shown in Table 1.

For each patient, we created 500 plans spanning the low, extra low, and controlled weights 

categories. These bounds for the controlled weights were chosen through a trial-and-error 

method so that the plan generated would fall within clinically relevant limits, even though it 

is not necessarily acceptable by a physician. A total of 35,000 IMRT plans were created, 

each as 96 × 96 × 32 dimension arrays with a voxel size of 5 mm3 that sampled the Pareto 

surface. Table 2 shows the distribution of Pareto optimal plans generated in each weight 

category per beam set and its assignment as training, validation and testing for the study. 

Since the table shows the number of plans per beam set, and since there are 10 beam sets 

(i.e. 1-beam plan, 2-beam plan, …, 10-beam plan), in total, there are 10 times the number of 

plans shown in Table 2, which equates to 35,000 plans.
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2. Conformal Beam Dose Data

Conformal beam dose describes the high dose volume that is shaped to closely conform to 

the desired PTV structure. There are numerous ways to make a broad beam conform to the 

PTV.56,65 In this study, we used a simple method to generate a beam that is conformal to the 

PTV structure. For each beam we first selected a square field of 20 × 20 beamlets, with 

dimensions of 2.5mm × 2.5mm per beamlet. This the same beamlet data mentioned in 

section 2.1 that was generated using AAA dose calculation algorithm. We then scale this 

beam such that its mean dose contribution to the PTV is equal to the prescription dose. 

Beamlets with an integral dose contribution of less than the threshold of 1% of the 

prescription dose to the PTV are removed. The remaining beamlets then create a conformal 

beam around the PTV.

For each patient, 500 plans were generated using all 10 sets of beam angles. Representative 

images of conformal doses are shown in Figure 1.

2. 3. Network Architecture

The network architecture used in this study is depicted in Figure 2. The dose prediction 

models used a U-Net style architecture.66 We used group normalization67 instead of batch 

normalization. This network consists of three major parts: downsampling, bottom, and 

upsampling. The rectified linear unit (ReLU), group normalization and dropout were applied 

immediately after every convolution operation in the hidden layers. For the sake of clarity, 

the following paragraphs will assume these operations are included when “convolution” is 

mentioned. More details on ReLU, group normalization, and dropout are mentioned later, 

after the main network architecture description. With the exception of the strided 

convolution, all other convolutions are zero-padded before the convolution, to maintain the 

same data shape.

The downsampling part of the U-Net is constructed to contain a five-level hierarchy. We 

chose five levels with four 2 × 2 × 2 downsampling operations to halve the feature size four 

times, reducing the data from 96 × 96 × 32 voxels to 6 × 6 × 2 voxels. In each level, two 3 × 

3 × 3 convolution operations took place, followed by one downsampling operation. The 

downsampling operation is a concatenation of two other operations: 1) 2 × 2 × 2 max 

pooling and 2) 2 × 2 × 2 strided convolution with a 2 × 2 × 2 kernel. In this process, feature 

channels were doubled in each level.

The bottom part is between the downsampling and upsampling parts of the network. This 

part takes the last downsampled feature map and performs two 3 × 3 × 3 convolutions. In 

addition, for one of the models to be evaluated (Section 2.3.1), beam angle information is 

added as a binary vector that is then processed through a fully connected network. This data 

is reshaped and concatenated onto the bottom level, prior to the two convolutions.

The upsampling part of the network also consists of five levels, just like the downsampling 

part. The purpose of this part is to combine the features and spatial information through a 

sequence of upsampling 3×3×3 and convolution operations and to concatenate high 

resolution features from the downsampling part. This part consists of 4 upsampling layers, in 

addition to the final convolution output layer. In this process, feature channels are reduced 
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by half, but feature size is doubled after each convolution to maintain symmetry and original 

feature size.

All activation functions in the hidden layers are rectified linear units (ReLU), but the final 

activation function is a linear activation function. Group normalization was used in all 

hidden layers after the convolution and ReLU operations, which normalizes the weights by 

grouping feature channels of 32, 64, 128, 256, and 512 into 1, 2, 4, 8, and 16 groups, 

respectively, of 32 channels each (Fig. 2); this allows faster convergence. The dropout 

scheme, from a previous paper47, described in Table 3 was applied after each group 

normalization.

Models used in this investigation are of two types.

2. 3.1. Model I—The models used in this study are depicted in Figure 2. Model I’s 

architecture is exactly what is shown in Figure 2. Model 1 takes in 3 channels: a PTV 

channel, a body channel, and an OARs channel. Instead of just binary masks as input, we 

multiply the masks with their corresponding weights, ws, from Equation 3, such that a voxel 

is defined as ws if a voxel is defined inside a structure and 0 otherwise. The PTV and body 

channels have just their respective data, while the OARs channel contains the bladder, 

rectum, femoral heads, and tuning structures information. Mentioned in Section 2.1, the data 

was resized to 5 mm3 voxels. To maintain uniform data shape for model training, all patient 

data was filled into a 96 × 96 × 32 array. The body segmentation covers CT slices. The input 

data for Model 1 ranges from 0 to 1 since the structure weights used for optimization, ws, 

were also defined from 0 to 1. As the second input, randomly generated beam angles as a 

Boolean array of 180 elements—representing angles with 2 degrees separation—are 

concatenated in the bottom part of the network. In the Boolean array, the current selected 

beam angles are considered as ones, and all other unselected beam angles are considered as 

zeros. The Boolean array of 180 elements was the input of a fully connected layer with 

output of 2304 elements. After that a reshaped operation was applied to change the 2304 

length data to (6,6,2,n) where n was 32 (i.e., 2304 = 6 × 6 × 2 × 32). The reshaped beam 

angles were matched to the downsampling feature size, allowing for them to be concatenated 

together along the channels axis, for further processing in the network.

2. 3.2 Model II—Model II’s architecture is the same as shown in Figure 2 except without 

the beam angle binary vector input in the bottom. Model II consists of a single four-channel 

input: the first three channels are the same as Model I, and the last channel is the conformal 

dose information for a set of selected beam angles (see section 2.2). The size of each input 

channels is also 96 × 96 × 32. Analogous to Model I, the anatomical inputs range from 0 to 

1. For the additional conformal dose channel, the dose was divided by its maximum dose, to 

also range from 0 to 1.

2. 4. Model Training, Validation, and Testing

For each model, we divided the 70 patients into 54 training, 6 validation, and 10 testing 

patients, thus yielding 27,000 training, 3,000 validation, and 5,000 testing plans. We 

implemented a maximum dropout rate of 0.25 to regularize the network and, thus, avoid 

overfitting. We applied these dropout rates after group normalization so that the highest 
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group, 16, got the dropout rate of 0.25 and the lowest group, 1, got 0.125. The dropout rate 

scheme is presented in Table 3. During training, we used a batch size of 1, which was due to 

memory constraints.

The mean square loss (MSE)

MSE = 1
n ∑v

m Dtest
v − Dpred

v 2
(4)

was taken as a loss function, where v refers to the voxel index and m represents the total 

number of voxels. We used the Adam optimizer68 with a default learning rate of 0.01 to 

optimize the network’s performance. All training was performed on an NVIDIA Quadro 

P6000 GPU with 24 GB RAM. The models were trained with an early stopping scheme,69 

which is a regularization method that prevents overfitting. This scheme stops the network 

training when the model is no longer improving the validation loss after a set number of 

iterations, then it saves the model with the lowest validation loss. For our study, we trained 

the model for an additional 40,000 iterations after finding the best performing model and 

terminated the training process if no further improving was observed. The validation loss 

was checked every 100 iterations. The best models with the lowest total validation loss were 

used to work out the test data after the completion of training.

We evaluated the models’ performance by comparing their predicted dose distributions with 

the Pareto optimal dose distribution (ground truth) in terms of DVH plots and evaluation 

metrics, such as PTV D98, D95, D50, D2, Paddick Conformation Number,70 R50 and 

Homogeneity index and the structure max and mean doses (Dmax and Dmean). Readers 

should refer to the literature for more details about these evaluation metrics.47,54,71 Dmax is 

considered as the dose delivered to 2% of the structure volume, as recommended by the 

ICRU report.72 We also compared the predicted dose distributions with the ground truth 

dose distribution using dose map differences in the clinically relevant PTV and OARs 

regions.

In addition, we have shown an example of beam tuning in the treatment plan with 9 fields 

Protocol Based IMRT setup.

3. Results

The instance of Model I with the lowest validation loss was found at 356,500 iterations, 

which took about 175 hours to obtain with the early stopping scheme. The instance of Model 

II with the lowest validation loss was found at 132,300 iterations, which took about 65 hours 

to obtain. Further iterations after the lowest validation model did not improve the result. 

After training, the prediction time of each model is less than 1 second. The loss versus 

iterations evaluated for the training (blue line) and validation sets (red line) from both 

models are presented in Figure 3. Observing these loss trends gives us an idea of the models’ 

performance. We observed the decreasing trend of losses during training and validation until 

the best model was achieved. Each model achieved similar MSE losses, with training losses 

at 1.007 × 10−4 (Model I) and 1.463 × 10−4 (Model II) and validation losses at 1.251 × 10−4 

(Model I) and 1.469 × 10−4 (Model II).
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Figure 4 shows the colored dose wash distributions in the PTV and in the organs at risk. 

These distributions are overlaid with the original CT slices. Each row of dose distributions in 

Figure 4 represents a different treatment plan. Visually, the dose distributions that are 

predicted from Models I and II are similar to that of the ground truth. Particularly, they are 

better matched in the high dose region surrounding the PTV, and have less accuracy in the 

lower dose regions.

Figure 5 shows the dose map differences between the predicted dose distributions and the 

ground truth dose distributions. This treatment plan is exactly same plan as mentioned in the 

bottom row of Figure 4. Visually, the color intensity indicates that the dose differences 

predicted from Model I are better matched with the ground truth than the predicted dose 

distribution from Model II.

DVHs obtained from dose predictions for the two representative plans are presented in 

Figure 6. The DVH curves obtained from Model I corresponding to PTV are better matched 

with the ground truth than the DVH curves obtained from Model II corresponding to PTV, 

especially in the shoulder of the PTV DVH. The DVH curves corresponding to other critical 

structures except without body show the fluctuations in the prediction accuracy from both 

models. Visually, from the test cases in Figure 6, it is not fully clear whether one model 

outperforms the other in dose prediction accuracy to the OARs.

Dose evaluation metrics are calculated for all 5000 plans from each testing and predicting 

dataset. Also, these values are the mean values and deviation from the mean values from all 

the plans containing 1–10 beam orientations. The metrics presented in the Table 4 represent 

the dose coverage in the PTV, conformity, dose spillage and homogeneity. For the PTV D98, 

D95, D50 and D2, the highest mean difference we obtained from Model I was less than 4% 

and the highest mean difference we obtained from Model II was less than 9%, of the 

prescription dose. Similarly, for other parameters such as Paddick Confirmation number, 

dose spillage (R50) and PTV homogeneity, predicted mean value differences are less for 

Model I in comparison to that of Model II. Overall, the predicted mean differences obtained 

from Model I are less than that of predicted mean differences obtained from Model II.

The absolute mean dose (Dmean) and max dose (Dmax) values reported in Table 5 give us an 

idea of how the dose distributed over the voxels of PTV and other critical structures. For 

Dmean values, the highest mean difference we obtained from Model I was less than 2% and 

the highest mean difference we obtained from Model II was less than 6%, of the prescription 

dose. Similarly, for Dmax values, the highest mean difference we obtained from Model I was 

less than 5% and the highest mean difference we obtained from Model II was less than 12%, 

of the prescription dose. In all cases, the prediction errors obtained from Model I are less 

than that of Model II.

A paired t-test was used to determine if there is a statically significant difference between 

the performance of Model I and Model II, with respect to how accurately they predicted the 

ground truth Pareto optimal dose. The largest p-value that we obtained from a two tailed 

paired t-test was 6.82 × 10−63.

Bohara et al. Page 9

Med Phys. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7 was obtained based on the information presented in Table 4. This shows the errors 

for several clinical metrics evaluated from the predicted dose distributions, as compared to 

the metrics of the Pareto optimal dose distributions. Model I’s prediction error of 0.043 

(confirmation), 0.043 (homogeneity), 0.327 (R50), 2.80% (D95), 3.90% (D98), 0.6% (D50), 

1.10% (D2) was lower than that of Model II, from which we obtained 0.076 (confirmation), 

0.058 (homogeneity), 0.626 (R50), 7.10% (D95), 6.50% (D98), 8.40% (D50), 6.30% (D2). 

In terms of these dosimetric criteria, Model I performed better than Model II.

Figure 8 shows the errors for mean dose and max dose evaluated from the predicted dose 

distributions, as compared to the metrics of the Pareto optimal dose distributions. Model I 

had low prediction errors of average mean dose (Dmean) 0.871% (PTV), 0.214% (Body), 

1.10% (Bladder), 1.76% (Rectum), 2.03% (Left Femoral Head), and 1.62% (Right Femoral 

Head), and average max dose (Dmax) errors of 1.13% (PTV), 2.04% (Body), 1.41% 

(Bladder), 1.02% (Rectum), 5% (Left Femoral Head), and 3.48% (Right Femoral Head). 

Model II had relatively high prediction errors of Dmean 5.56% (PTV), 0.382% (Body), 

1.94% (Bladder), 4.60% (Rectum), 4.90% (Left Femoral Head), and 3.45% (Right Femoral 

Head), and average Dmax errors of 6.33% (PTV), 5.62% (Body), 8.98% (Bladder), 7.25% 

(Rectum), 11.54% (Left Femoral Head), and 6.89% (Right Femoral Head).

As with the dosimetric criteria shown in Figure 7, Model I outperformed Model II for both 

the mean dose and the max dose errors on PTV, Body, Bladder, Rectum, Left Femoral Head 

and Right Femoral Head.

The absolute mean dose (Dmean) values reported in Table 6 give us an idea of how the dose 

distributed over the voxels of body and 10% isodose volume. For Dmean values, the highest 

mean differences we obtained from Model I and Model II were less than 1%, of the 

prescription dose. In all cases, the prediction errors obtained from Model I are less than that 

of Model II.

Figure 9 shows the Average voxel wise dose errors for the Body and the 10% isodose 

volume obtained from the predicted dose distributions, as compared to the metrics of the 

Pareto optimal dose distributions. Model I had low prediction errors of average mean dose 

(Dmean) 0.61% (Body), 0.49% (10% isodose volume). Model II had relatively high 

prediction errors of Dmean 0.9% (Body), 0.8% (10% isodose volume). In terms of these 

dosimetric criteria as well, Model I performed better than Model II.

Figure 10 shows the errors for mean dose evaluated from the predicted dose distributions, as 

compared to the Pareto optimal dose distributions corresponding to each beam numbers in 

plan. It can be seen that that the prediction error is relatively even regardless of the number 

of beams in the plan. These values corresponding to each beam geometry set are agree with 

that of average for all 10 sets of beam geometries shown in Figure 8. Model I had low 

prediction errors of average mean dose (Dmean) 0.871% (PTV), 0.214% (Body), 1.10% 

(Bladder), 1.76% (Rectum), 2.03% (Left Femoral Head), and 1.62% (Right Femoral Head). 

Model II had relatively high prediction errors of Dmean corresponding to each beam numbers 

in plan, with less than 0.40% (Body), 2.00% (Bladder) which are uniform with average 

prediction errors for all sets of beam geometries reported in Figure 8. For PTV and the rest 
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of the OARs, the prediction errors corresponding to each beam numbers in plan are within 

6.00% (PTV), (5.00% (Rectum), 6.00% (Left Femoral Head), and 4.00% (Right Femoral 

Head) with maximum of 1% fluctuation from the average prediction errors for all sets of 

beam geometries reported in Figure 8.

Also, from the observation of prediction errors corresponding to each beam numbers in plan, 

Model I outperformed Model II for the mean dose errors on PTV, Body, Bladder, Rectum, 

Left Femoral Head and Right Femoral Head.

Figure 11 shows the colored dose wash distributions in the PTV and in the organs at risk for 

Protocol Based Setup IMRT and Tuned IMRT. The protocol based setup shows 9 equidistant 

beam angles of [0, 40, 80, 120, 160, 200, 240, 280, 320] degrees, which are also shown in 

Figure 11 with red arrows. By tuning one of the protocol based beam angles from 0 degrees 

to 30 degrees while keeping other parameters the same, we can find a better plan in near real 

time, since the model’s prediction time is under 1 second. Visually, the dose distributions 

that are predicted from Models I for Tuned IMRT are similar to that of the Protocol Based 

Setup IMRT. Particularly, they are better matched in the high dose region surrounding the 

PTV, and have less matched in the lower dose regions.

DVHs obtained from dose predictions for the protocol based setup IMRT plan and tuned 

IMRT plan are presented in Figure 12. By tuning the beam angle, we were able reduce OAR 

doses, particularly in the rectum, bladder, and right femoral head, while maintaining similar 

PTV dose. In addition, the objective values calculated using Equations 2–3 for protocol 

based setup IMRT and tuned IMRT are 34.93 and 34.56 respectively, showing that the tuned 

IMRT was able to better satisfy the objective function. From these test cases, it is fully clear 

that the tuned IMRT plan is better plan than protocol based setup IMRT plan, which can be 

obtained by tuning the beam angles in real time.

4. Discussion:

The goal of this study was to predict Pareto optimal dose distributions by using anatomical 

structures and a varying number of beams (up to 10) and beam angles. To our knowledge, 

this is the first study to implement a deep learning-based, Pareto optimal dose prediction 

method with such flexibility of beam configuration. We designed deep learning models with 

two different types of input to represent the beam angles (Fig. 2). For Model I, we directly 

represented the beam angles as a binary vector for the second input. The anatomical 

structures used as the three-channel first input were planning treatment volume (PTV), body, 

and organs at risk (OARs). For Model II, we represented the beam angles as a conformal 

beam dose and included it as a fourth channel, with the 3 anatomical structure channels, in 

the model’s single input. We generated conformal beam dose data that corresponded to the 

beam angles used in Model I (section 2.1).

Each model was trained, validated, and tested on 54, 6, and 10 patients, respectively. These 

patient data yielded a total of 27,000 training, 3,000 validation, and 5,000 testing plans. We 

used MSE as the loss function and the Adam optimizer for the model to minimize the loss 

between the ground truth dose and the predicted dose. The default learning rate of 0.01 for 
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the optimization resulted in the best model for minimizing the validation loss. To avoid 

overfitting, we applied a dropout scheme in addition to group normalization, as shown in 

Table 3. Group normalization is more effective than batch normalization at handling small 

batch sizes.67 Also, since group normalization is independent of batch sizes, using it helps to 

avoid manually selecting batch sizes for better convergence of the network.

Dose color washes in Figure 4 and the dose map differences in Figure 5 show that both 

models predicted dose distributions within the PTV more accurately than outside regions. 

This is because the PTV high-dose region is more uniform than other low-dose regions. 

Overall, our deep learning models (Model I and Model II) predicted voxel-level dose 

distributions that precisely matched the ground truth dose distributions.

The DVHs generated also precisely matched the ground truth (Fig. 6). Evaluation metrics—

such as PTV statistics, dose conformity, dose spillage (R50) and homogeneity index—also 

confirmed the accuracy of PTV curves on the DVH (Table 4). PTV dose coverage error was 

within 4% for the prediction from Model I and within 9% for the prediction from Model II 

(Fig. 7).

Similarly, the predictions of mean,max dose over the PTV and the organs at risk and the 

mean of voxel wise difference over the body and 10% isodose volume reported in Table 5 

and Table 6 respectively indicate the accuracy of both models. The average mean and max 

dose errors for the prediction from Model I were within 2% and 5%, respectively, for PTV, 

body, bladder, rectum, left femoral head and right femoral head. Likewise, the average mean 

and max dose errors for the prediction from Model II were within 6% and 12%, respectively, 

for PTV, body, bladder, rectum, left femoral head and right femoral head (Fig.8). Also, the 

mean voxel wise errors for the prediction from Model I and Model II were within 1 % for 

body and 10% isodose volume (Fig.9). All prediction errors reported in Tables 4, 5 and 6 

represent the average errors for all 10 sets of beam geometries.

In addition, the prediction errors of mean dose corresponding to each beam numbers in each 

plan (1 to 10) over the PTV and the organs at risk, shown in Figure 10, are relatively even 

regardless of the number of beams the model was using to predict. The average mean dose 

errors for the prediction from Model I corresponding to each beam numbers in plan agreed 

with average errors for all 10 sets of beam geometries. The average mean dose errors for the 

prediction from Model II corresponding to each beam numbers were uniform with Body and 

Bladder in line with the average errors reported for all 10 sets of beam geometries. For PTV 

and the rest of the OARs’ the prediction errors corresponding to each beam numbers were 

with maximum of 1% fluctuation from the average errors reported for all 10 sets of beam 

geometries.

As we know that lower numbers of beam orientations generate low quality plans, and 

because low-dose region OARs such as femoral heads are further away from the PTV and 

have higher variability in the dose distribution, prediction errors are higher in these cases. 

The low prediction errors reported despite such variability in beam angles indicate that both 

models efficiently predict Pareto optimal dose distributions with high accuracy. However, 

Model I outperformed Model II in all evaluation criteria mentioned above.
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For further verification, we performed t-tests to compare the prediction accuracy between 

the two models. In all cases, we found that p-values are extremely low (<0.001), which 

indicates that Model I’s performance is statistically significantly superior to that of Model II. 

Model I outperforming Model II seems counterintuitive at first, as Model II’s input of the 

conformal beam dose seems to be more similar to the final IMRT optimized dose that the 

model predicts. Although it is possible that including first-order priors or approximations as 

an input would improve a model’s performance, a first-order approximation tends to differ 

from its exact version only on a local scale. For example, the difference between an accurate 

dose calculation engine, such as a Monte-Carlo–based engine, and an approximate one is the 

local scatter contribution from the primary beam. In our case, the difference between our 

conformal beam dose and the IMRT optimized dose is not local, because changing a 

beamlet’s intensity affects the entire dose distribution along the beamlet’s line through the 

body. This means that the Model II must then learn how to properly add and subtract values 

from the conformal beam, on a global scale, to transform it to the IMRT dose. This may be 

equally or more difficult for the neural network than attempting to generate the dose 

distribution from scratch, as it does with Model I. In addition, Model I is easy to implement 

and does not need to evaluate the conformal beam dose, which takes extra hours of work. 

Pareto optimal plans predicted for all 70 patients in this study give physicians the advantage 

of choosing among different tradeoffs for the critical structures. Physicians can quickly 

observe multiple Pareto optimal dose predictions in real time and ask the planner for further 

modifications to obtain the desired tradeoffs. Our method could be the clinical support tool 

that allows physicians to get the right treatment plan for each patient, and it would give the 

planner the advantage of making acceptable changes earlier, which would save time in 

treatment planning.

A potential limitation of this study is the large sampling space from the beam number, beam 

angles, and the structure weights. There are currently 500 plans per patient, totaling to 35000 

plans, and deep learning models do tend to interpolate well between data within its training 

distribution. However, the true number of needed samples to adequately cover the domain is 

unknown, and it is possible the model may fail on rare edge cases. Further investigation 

would be required to determine the number of samples needed in order to prevent such edge 

failures and to improve the model performance. An alternative could be to limit the sampling 

to only be in the clinically relevant space, which would drastically reduce the number of 

required samples.

Modern protocols for prostate IMRT typically ask for 7 or 9 equidistant coplanar beams, 

while our study uses beam number sampling anywhere from 1 to 10 beam angles, so most of 

the training samples are different from the IMRT clinical situation, which can raise concerns 

on whether the model training was compromised. However, as illustrated in Figure 10, we 

have shown that Model I can predict within roughly 2% mean dose error of the prescription 

dose for each structure for any beam number setup, which is competitive to any other deep 

learning-based dose prediction method in literature47,48,50–52,54,55,73,74, most of which use 

only one type of beam geometry setup for their study. The benefit of training such a beam-

flexible model is that, during deployment, the treatment planner may now adjust the beam 

number in real-time and possibly find a beam configuration the same or better plan quality 

as before.
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Since Model I and Model II both predict well for prostate cancer, we plan to extend these 

models to other sites under the same IMRT setup. In addition, the Pareto optimal plans are 

not necessarily deliverable plans, since the machine parameters have yet to be calculated for 

the predicted dose. Since the additional sequencing steps after optimization may degrade the 

optimized plan, we plan to examine the extent of plan degradation the dose from applying a 

sequencing step, as well as investigate adding in the sequencing directly into the Pareto plan 

optimization as a direct aperture optimization. In addition, we plan to use a threshold-driven 

optimization engine called TORA,75 to create deliverable plans from our current predicted 

doses in a high quality manner. In addition, we plan to extend this work to the Pareto 

optimal dose prediction for VMAT plans, given a tunable selection of arc orientations. We 

hope that this will help us to improve our automated treatment planning system.

While modern protocols for prostate typically ask for a set number of equidistant coplanar 

beam angles, this can sometimes be varied, where some beams can be dropped or added to 

tailor the plan to a specific patient. Therefore, we designed to keep the number of beam 

angles as a flexible parameter, from 1 to 10. In addition, as a future study, we wish to 

investigate the possible number of beam angles that can be reduced by having 

mathematically optimized beam angles. This can be achieved and studied by combining our 

present model with a deep-learning–based beam orientation optimization model.21 This 

beam orientation optimization model can solve for a suitable set of beam angles, given a 

particular patient anatomy and structure weights. By combining these models, we will 

develop a framework that can provide plans that are tailored to each patient, in terms of both 

beam geometries and dosimetric criteria.

5. Conclusion:

We built U-Net–style deep learning models to predict Pareto optimal dose distributions of 

IMRT prostate plans involving anatomical structures and varying beam angles. We also 

compared dose predictions between two different beam configuration modalities. We found 

that both models efficiently predict Pareto optimal dose distributions with high accuracy. 

However, our deep learning model (Model I) that directly inputs the beam angles into the 

network as a binary vector was more accurate and robust than the state-of-the-art model 

(Model II) that inputs a conformal beam dose. Dose predictions from these models take less 

than a second, which would allow physicians to observe multiple predictions in real time and 

ask planners for further modifications to achieve the best tradeoffs. From this, planners will 

be able to make acceptable changes earlier, which will save time in treatment planning. We 

believe that our method of dose predictions will be a stepping stone to building automatic 

IMRT treatment planning.

In our future work, we plan to use a threshold-driven optimization engine to generate 

deliverable plans. By combining our dose prediction model and the beam orientation 

optimization model, we will develop a unified framework that can provide plans that are 

tailored to each patient, in terms of both beam geometries and dosimetric criteria. We will 

further concentrate on building sophisticated dose prediction and beam orientation 

optimization models that perform well in combination and that can also be independent of 

treatment sites.

Bohara et al. Page 14

Med Phys. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements:

This study was supported by the National Institutes of Health (NIH) R01CA237269. The authors thank Dr. 
Jonathan Feinberg for editing the manuscript.

7. References:

1. Gianfaldoni S, Gianfaldoni R, Wollina U, Lotti J, Tchernev G, Lotti T. An overview on 
radiotherapy: from its history to its current applications in dermatology. Open access Macedonian 
journal of medical sciences. 2017;5(4):521. [PubMed: 28785349] 

2. Webb S Intensity-modulated radiation therapy. CRC Press; 2015.

3. Webb S The physical basis of IMRT and inverse planning. The British journal of radiology. 
2003;76(910):678–689. [PubMed: 14512327] 

4. Nutting C, Dearnaley D, Webb S. Intensity modulated radiation therapy: a clinical review. The 
British journal of radiology. 2000;73(869):459–469. [PubMed: 10884741] 

5. Hong T, Ritter M, Tomé WA, Harari P. Intensity-modulated radiation therapy: emerging cancer 
treatment technology. British journal of cancer. 2005;92(10):1819. [PubMed: 15856036] 

6. Convery D, Rosenbloom M. The generation of intensity-modulated fields for conformal 
radiotherapy by dynamic collimation. Physics in medicine & biology. 1992;37(6):1359.

7. Bortfeld T IMRT: a review and preview. Physics in Medicine & Biology. 2006;51(13):R363. 
[PubMed: 16790913] 

8. Luxton G, Hancock SL, Boyer AL. Dosimetry and radiobiologic model comparison of IMRT and 
3D conformal radiotherapy in treatment of carcinoma of the prostate. International Journal of 
Radiation Oncology* Biology* Physics. 2004;59(1):267–284.

9. Kristensen CA, Kjaer-Kristoffersen F, Sapru W, Berthelsen AK, Loft A, Specht L. Nasopharyngeal 
carcinoma. Treatment planning with IMRT and 3D conformal radiotherapy. Acta Oncologica. 
2007;46(2):214–220. [PubMed: 17453372] 

10. Fenkell L, Kaminsky I, Breen S, Huang S, Van Prooijen M, Ringash J. Dosimetric comparison of 
IMRT vs. 3D conformal radiotherapy in the treatment of cancer of the cervical esophagus. 
Radiotherapy and Oncology. 2008;89(3):287–291. [PubMed: 18789828] 

11. Arbea L, Ramos LI, Martínez-Monge R, Moreno M, Aristu J. Intensity-modulated radiation 
therapy (IMRT) vs. 3D conformal radiotherapy (3DCRT) in locally advanced rectal cancer 
(LARC): dosimetric comparison and clinical implications. Radiation oncology. 2010;5(1):17. 
[PubMed: 20187944] 

12. Schreiner LJ. On the quality assurance and verification of modern radiation therapy treatment. 
Journal of Medical Physics/Association of Medical Physicists of India. 2011;36(4):189.

13. Craft DL, Hong TS, Shih HA, Bortfeld TR. Improved planning time and plan quality through 
multicriteria optimization for intensity-modulated radiotherapy. International Journal of Radiation 
Oncology* Biology* Physics. 2012;82(1):e83–e90.

14. Craft DL, Halabi TF, Shih HA, Bortfeld TR. Approximating convex Pareto surfaces in 
multiobjective radiotherapy planning. Medical physics. 2006;33(9):3399–3407. [PubMed: 
17022236] 

15. Monz M, Küfer K, Bortfeld T, Thieke C. Pareto navigation—algorithmic foundation of interactive 
multi-criteria IMRT planning. Physics in Medicine & Biology. 2008;53(4):985. [PubMed: 
18263953] 

16. O’Connor D, Yu V, Nguyen D, Ruan D, Sheng K. Fraction-variant beam orientation optimization 
for non-coplanar IMRT. Physics in Medicine & Biology. 2018;63(4):045015. [PubMed: 29351088] 

17. Nguyen D, Rwigema J-CM, Victoria YY, et al. Feasibility of extreme dose escalation for 
glioblastoma multiforme using 4π radiotherapy. Radiation Oncology. 2014;9(1):239. [PubMed: 
25377756] 

18. Nguyen D, Dong P, Long T, et al. Integral dose investigation of non‐coplanar treatment beam 
geometries in radiotherapy. Medical physics. 2014;41(1):011905. [PubMed: 24387513] 

Bohara et al. Page 15

Med Phys. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Jia X, Men C, Lou Y, Jiang SB. Beam orientation optimization for intensity modulated radiation 
therapy using adaptive l2, 1-minimization. Physics in Medicine & Biology. 2011;56(19):6205. 
[PubMed: 21891848] 

20. Breedveld S, Storchi PR, Voet PW, Heijmen BJ. iCycle: Integrated, multicriterial beam angle, and 
profile optimization for generation of coplanar and noncoplanar IMRT plans. Medical physics. 
2012;39(2):951–963. [PubMed: 22320804] 

21. Barkousaraie AS, Ogunmolu O, Jiang S, Nguyen D. A Fast Deep Learning Approach for Beam 
Orientation Optimization for Prostate Cancer IMRT Treatments. arXiv preprint arXiv:190500523. 
2019.

22. van Asselen B, Schwarz M, van Vliet-Vroegindeweij C, Lebesque JV, Mijnheer BJ, Damen EM. 
Intensity-modulated radiotherapy of breast cancer using direct aperture optimization. Radiotherapy 
and oncology. 2006;79(2):162–169. [PubMed: 16712992] 

23. Shepard D, Earl M, Li X, Naqvi S, Yu C. Direct aperture optimization: a turnkey solution for step‐
and‐shoot IMRT. Medical physics. 2002;29(6):1007–1018. [PubMed: 12094970] 

24. Men C, Romeijn HE, Taşkın ZC, Dempsey JF. An exact approach to direct aperture optimization in 
IMRT treatment planning. Physics in Medicine & Biology. 2007;52(24):7333. [PubMed: 
18065842] 

25. Cassioli A, Unkelbach J. Aperture shape optimization for IMRT treatment planning. Physics in 
Medicine & Biology. 2012;58(2):301. [PubMed: 23257284] 

26. Bedford JL, Webb S. Constrained segment shapes in direct‐aperture optimization for step‐and‐
shoot IMRT. Medical physics. 2006;33(4):944–958. [PubMed: 16696471] 

27. Ahunbay EE, Chen G-P, Thatcher S, et al. Direct aperture optimization–based intensity-modulated 
radiotherapy for whole breast irradiation. International Journal of Radiation Oncology* Biology* 
Physics. 2007;67(4):1248–1258.

28. Perumal B, Sundaresan HE, Ranganathan V, Ramar N, Anto GJ, Meher SR. Evaluation of plan 
quality improvements in PlanIQ-guided Autoplanning. Reports of Practical Oncology & 
Radiotherapy. 2019;24(6):533–543. [PubMed: 31641339] 

29. Nelms BE, Robinson G, Markham J, et al. Variation in external beam treatment plan quality: an 
inter-institutional study of planners and planning systems. Practical radiation oncology. 
2012;2(4):296–305. [PubMed: 24674168] 

30. Moore KL, Schmidt R, Moiseenko V, et al. Quantifying unnecessary normal tissue complication 
risks due to suboptimal planning: A secondary study of RTOG 0126. International Journal of 
Radiation Oncology* Biology* Physics. 2015;92(2):228–235.

31. Fan J, Wang J, Zhang Z, Hu W. Iterative dataset optimization in automated planning: 
Implementation for breast and rectal cancer radiotherapy. Medical physics. 2017;44(6):2515–2531. 
[PubMed: 28339103] 

32. Zhu X, Ge Y, Li T, Thongphiew D, Yin FF, Wu QJ. A planning quality evaluation tool for prostate 
adaptive IMRT based on machine learning [published online ahead of print 2011/04/02]. Med 
Phys. 2011;38(2):719–726. [PubMed: 21452709] 

33. Zhang J, Wu QJ, Xie T, Sheng Y, Yin FF, Ge Y. An Ensemble Approach to Knowledge-Based 
Intensity-Modulated Radiation Therapy Planning [published online ahead of print 2018/04/05]. 
Frontiers in oncology. 2018;8:57. [PubMed: 29616187] 

34. Yuan L, Ge Y, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantitative analysis of the factors which 
affect the interpatient organ-at-risk dose sparing variation in IMRT plans [published online ahead 
of print 2012/11/07]. Med Phys. 2012;39(11):6868–6878. [PubMed: 23127079] 

35. Nwankwo O, Mekdash H, Sihono DSK, Wenz F, Glatting G. Knowledge-based radiation therapy 
(KBRT) treatment planning versus planning by experts: validation of a KBRT algorithm for 
prostate cancer treatment planning. Radiation Oncology. 2015;10(1):111. [PubMed: 25957871] 

36. Ge Y, Wu QJ. Knowledge-based planning for intensity-modulated radiation therapy: A review of 
data-driven approaches [published online ahead of print 2019/04/10]. Med Phys. 
2019;46(6):2760–2775. [PubMed: 30963580] 

37. David EW, Marie d. A Call for Knowledge-Based Planning. AI Magazine. 2001;22(1).

Bohara et al. Page 16

Med Phys. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



38. Wu H, Jiang F, Yue H, Li S, Zhang Y. A dosimetric evaluation of knowledge-based VMAT 
planning with simultaneous integrated boosting for rectal cancer patients [published online ahead 
of print 2016/12/09]. J Appl Clin Med Phys. 2016;17(6):78–85. [PubMed: 27929483] 

39. Tol JP, Delaney AR, Dahele M, Slotman BJ, Verbakel WF. Evaluation of a knowledge-based 
planning solution for head and neck cancer [published online ahead of print 2015/02/15]. 
International journal of radiation oncology, biology, physics. 2015;91(3):612–620.

40. Ma C, Huang F. Assessment of a knowledge-based RapidPlan model for patients with 
postoperative cervical cancer. Precision Radiation Oncology. 2017;1(3):102–107.

41. Kubo K, Monzen H, Ishii K, et al. Dosimetric comparison of RapidPlan and manually optimized 
plans in volumetric modulated arc therapy for prostate cancer [published online ahead of print 
2017/07/15]. Physica medica : PM : an international journal devoted to the applications of physics 
to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB). 
2017;44:199–204.

42. Fogliata A, Reggiori G, Stravato A, et al. RapidPlan head and neck model: the objectives and 
possible clinical benefit [published online ahead of print 2017/04/30]. Radiation oncology 
(London, England). 2017;12(1):73.

43. Chang ATY, Hung AWM, Cheung FWK, et al. Comparison of Planning Quality and Efficiency 
Between Conventional and Knowledge-based Algorithms in Nasopharyngeal Cancer Patients 
Using Intensity Modulated Radiation Therapy [published online ahead of print 2016/06/16]. 
International journal of radiation oncology, biology, physics. 2016;95(3):981–990.

44. Nguyen D, Barkousaraie AS, Shen C, Jia X, Jiang S. Generating Pareto optimal dose distributions 
for radiation therapy treatment planning. arXiv preprint arXiv:190604778. 2019.

45. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. [PubMed: 
26017442] 

46. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Paper 
presented at: Proceedings of the IEEE conference on computer vision and pattern recognition2015.

47. Nguyen D, Long T, Jia X, et al. A feasibility study for predicting optimal radiation therapy dose 
distributions of prostate cancer patients from patient anatomy using deep learning. Scientific 
Reports. 2019;9(1):1076. [PubMed: 30705354] 

48. Nguyen D, Jia X, Sher D, et al. 3D radiotherapy dose prediction on head and neck cancer patients 
with a hierarchically densely connected U-net deep learning architecture. Physics in Medicine & 
Biology. 2019;64(6):065020. [PubMed: 30703760] 

49. Mahmood R, Babier A, McNiven A, Diamant A, Chan TC. Automated treatment planning in 
radiation therapy using generative adversarial networks. arXiv preprint arXiv:180706489. 2018.

50. Kearney V, Chan JW, Haaf S, Descovich M, Solberg TD. DoseNet: a volumetric dose prediction 
algorithm using 3D fully-convolutional neural networks. Physics in Medicine & Biology. 
2018;63(23):235022. [PubMed: 30511663] 

51. Kajikawa T, Kadoya N, Ito K, et al. A convolutional neural network approach for IMRT dose 
distribution prediction in prostate cancer patients. Journal of radiation research. 2019;60(5):685–
693. [PubMed: 31322704] 

52. Fan J, Wang J, Chen Z, Hu C, Zhang Z, Hu W. Automatic treatment planning based on three‐
dimensional dose distribution predicted from deep learning technique. Medical physics. 
2019;46(1):370–381. [PubMed: 30383300] 

53. Chen X, Men K, Li Y, Yi J, Dai J. A feasibility study on an automated method to generate patient‐
specific dose distributions for radiotherapy using deep learning. Medical physics. 2019;46(1):56–
64. [PubMed: 30367492] 

54. Barragán‐Montero AM, Nguyen D, Lu W, et al. Three‐Dimensional Dose Prediction for Lung 
IMRT Patients with Deep Neural Networks: Robust Learning from Heterogeneous Beam 
Configurations. Medical physics. 2019.

55. Nguyen D, McBeth R, Sadeghnejad Barkousaraie A, et al. Incorporating human and learned 
domain knowledge into training deep neural networks: A differentiable dose volume histogram 
and adversarial inspired framework for generating Pareto optimal dose distributions in radiation 
therapy [published online ahead of print 2019/12/11]. Med Phys. 2019.

Bohara et al. Page 17

Med Phys. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



56. Lu W, Chen M. Fluence-convolution broad-beam (FCBB) dose calculation. Physics in Medicine & 
Biology. 2010;55(23):7211. [PubMed: 21081826] 

57. Jahn J Scalarization in multi objective optimization In: Mathematics of multi objective 
optimization. Springer; 1985:45–88.

58. Breedveld S, Craft D, Van Haveren R, Heijmen B. Multi-criteria optimization and decision-making 
in radiotherapy. European Journal of Operational Research. 2019;277(1):1–19.

59. Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to 
imaging. Journal of mathematical imaging and vision. 2011;40(1):120–145.

60. Nguyen D, O’Connor D, Ruan D, Sheng K. Deterministic direct aperture optimization using 
multiphase piecewise constant segmentation. Medical Physics. 2017;44(11):5596–5609. [PubMed: 
28834556] 

61. Nguyen D, Ruan D, O’Connor D, et al. A novel software and conceptual design of the hardware 
platform for intensity modulated radiation therapy. Medical Physics. 2016;43(2):917–929. 
[PubMed: 26843252] 

62. Nguyen D, Thomas D, Cao M, O’Connor D, Lamb J, Sheng K. Computerized triplet beam 
orientation optimization for MRI-guided Co-60 radiotherapy. Medical Physics. 2016;43(10):5667–
5675. [PubMed: 27782726] 

63. Nguyen D, Lyu Q, Ruan D, O’Connor D, Low DA, Sheng K. A comprehensive formulation for 
volumetric modulated arc therapy planning. Medical Physics. 2016;43(7):4263–4272. [PubMed: 
27370141] 

64. Nguyen D, O’Connor D, Yu VY, et al. Dose domain regularization of MLC leaf patterns for highly 
complex IMRT plans. Medical Physics. 2015;42(4):1858–1870. [PubMed: 25832076] 

65. Lu W A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning. Physics 
in Medicine & Biology. 2010;55(23):7175. [PubMed: 21081819] 

66. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image 
segmentation. Paper presented at: International Conference on Medical image computing and 
computer-assisted intervention2015.

67. Wu Y, He K. Group normalization. Paper presented at: Proceedings of the European Conference on 
Computer Vision (ECCV)2018.

68. Kingma D, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 
2014.

69. Yao Y, Rosasco L, Caponnetto A. On early stopping in gradient descent learning. Constructive 
Approximation. 2007;26(2):289–315.

70. Paddick I A simple scoring ratio to index the conformity of radiosurgical treatment plans. J 
Neurosurg. 2000;93(Suppl 3):219–222. [PubMed: 11143252] 

71. Greenspan H, Van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: 
Overview and future promise of an exciting new technique. IEEE Transactions on Medical 
Imaging. 2016;35(5):1153–1159.

72. Grégoire V, Mackie T. State of the art on dose prescription, reporting and recording in intensity-
modulated radiation therapy (ICRU report No. 83). Cancer/Radiothérapie. 2011;15(6–7):555–559.

73. Nguyen D, Barkousaraie AS, Shen C, Jia X, Jiang S. Generating Pareto Optimal Dose 
Distributions for Radiation Therapy Treatment Planning. Lecture Notes in Computer Science. 
2019;11769:59–67.

74. Babier A, Boutilier JJ, McNiven AL, Chan TC. Knowledge‐based automated planning for 
oropharyngeal cancer. Medical physics. 2018;45(7):2875–2883. [PubMed: 29679492] 

75. Long T, Chen M, Jiang S, Lu W. Threshold-driven optimization for reference-based auto-planning. 
Physics in Medicine & Biology. 2018;63(4):04NT01.

Bohara et al. Page 18

Med Phys. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Conformal dose corresponding to different beam angles (1–10).
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Figure 2: 
Deep learning models used in the study.
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Figure 3: 
Training vs. Validation loss as a function of iterations for both models. Top row plots are for 

Model I, and bottom row plots are for Model II. Left column plots represent the actual 

training and validation loss, and the right column plots represent the smooth training and 

validation losses obtained by using the moving average method.
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Figure 4. 
Ground truth dose distribution vs. dose distribution predicted by Models I and II. The figures 

in the first column represents the ground truth dose distributions for two different treatment 

plans. The second column and third column distributions were predicted by Model I and 

Model II, respectively.
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Figure 5. 
Dose map differences between the Model I and Model II predicted dose distributions and the 

ground truth dose distribution. These differences are obtained taking the differences between 

Model I and Ground truth, and Model II and Ground truth as shown in second row of Figure 

4.
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Figure 6. 
DVH plots obtained from Model I (top row) and Model II (bottom row). The top row plots 

were obtained from Model I, and the bottom row plots were obtained from Model II. The 

solid lines correspond to the ground truth dose, and the dashed lines correspond to the 

predicted dose.
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Figure 7: 
Prediction errors obtained from Models I and II for conformation, high dose spillage (R50), 

homogeneity, and PTV dose coverage on the test data. Error bar represents the 99% 

confidence interval (x− ± 2.576* σ
n ), where x− and σ are mean and standard deviation, 

respectively.
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Figure 8: 
Average error in the mean dose (top plot) and the max dose (bottom plot) for the PTV and 

the organs at risk. Error bar represents the 99% confidence interval (x− ± 2.576* σ
n ), where x−

and σ are mean and standard deviation, respectively.
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Figure 9: 
Average voxel wise dose error for the Body and the 10% isodose volume. Error bar 

represents the 99% confidence interval (x− ± 2.576* σ
n ), where x−and σ are mean and 

standard deviation, respectively.
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Figure 10: 
Average error in the mean dose for the PTV and the organs at risk obtained from Model I 

and II corresponding to number of beams in plan geometry (1–10).
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Figure11: 
Protocol Based Setup IMRT and Tuned IMRT dose distribution predicted by Models I.
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Figure 12: 
DVH plot obtained from Model I. The solid lines correspond to the Tuned IMRT, and the 

dashed lines correspond to the Protocol Based Setup IMRT.
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Table 1:

Weight generation categories for the organs at risk. The function rand(LB,UB) creates a uniform random 

number between a lower bound (LB) and an upper bound (UB). In all categories, the PTV weights were 

assigned 1.

Category Description

Low weights ws = rand(0,0.1) ∀s ∈ OAR

Extra low weights ws = rand(0,0.05) ∀s ∈ OAR

Controlled weights

wbladder = rand(0,0.2)
wrectum = rand(0,0.2)
wlt fem head = rand(0,0.1)
wrt fem head = rand(0,0.1)
wshell = rand(0,0.1)
wskin = rand(0,0.3)
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Table 2:

Distribution of Pareto plans. 40% of plans were assigned with low weights, 20% of plans were assigned extra 

low weights, and 40% of plans were assigned with controlled weights. The total number of plans in each 

category is 10 times the value shown, since there are a total of 10 beam sets (i.e. 1-beam plan, 2-beam plan, 

…, 10-beam plan).

Weights Training Plans per beam set Validation Plans per beam set Testing Plans per beam set

Low 1080 120 200

Extra Low 540 60 100

Controlled 1080 120 200
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Table 3:

Dropout rate scheme used in the networks.

U-net Hierarchy Level Groups Dropout Rate

1 1 0.125

2 2 0.148

3 4 0.176

4 8 0.210

5 16 0.250
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Table 4:

Means and standard deviations (Mean ± SD) for clinical DVH metrics of ground truth (Pareto optimal) dose, 

predicted dose, absolute difference between the predicted dose and the ground truth, conformation, high dose 

spillage (R50) and homogeneity obtained from Model I and Model II.

Model I Model II Model I Model II

Pareto optimal dose Predicted dose Predicted dose |Predicted – Ground 
truth|

|Predicted – Ground 
truth|

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

PTV D98 0.75±0.08 0.75±0.09 0.69±0.09 0.04±0.03 0.07±0.05

PTV D95 0.82±0.06 0.83±0.06 0.76±0.06 0.03± 0.03 0.07±0.05

PTV D50 0.99±0.01 0.99±0.01 0.90±0.03 0.01±0.01 0.08±0.02

PTV D2 1.02±0.04 1.03±0.04 0.96±0.02 0.01±0.01 0.06±0.05

Paddick Confirmation 
number

0.63±0.25 0.66±0.26 0.59±0.21 0.04±0.04 0.08±0.07

R50 5.2±1.3 5.0±1.4 5.4±1.2 0.33±0.23 0.63±0.55

PTV Homogeneity 0.29±0.11 0.29±0.12 0.30±0.10 0.04±0.04 0.06±0.05
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Table 5:

Mean and standard deviation (Mean ± SD) of maximum and mean values of the Pareto optimal dose 

distribution, the predicted dose distribution, and the absolute difference between the predicted dose 

distribution and the ground truth received on the PTV and other critical structures.

Model I Model II Model I Model II

Pareto optimal dose Predicted dose Predicted dose |Predicted – Ground truth| |Predicted – Ground 
truth|

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

PTV 1.02±0.04 1.03±0.04 0.96±0.02 0.01±0.01 0.06±0.05

Body 0.54±0.01 0.53±0.15 0.52±0.12 0.02± 0.02 0.06±0.05

Dmax Bladder 0.96±0.08 0.97±0.08 0.88±0.06 0.01±0.01 0.09±0.06

Rectum 1.00±0.05 1.00±0.05 0.93±0.04 0.01±0.01 0.07±0.05

Left fem 0.47±0.30 0.46±0.30 0.47±0.25 0.05±0.06 0.12±0.11

Right fem 0.35±0.28 0.33±0.27 0.32±0.23 0.03±0.04 0.07±0.08

PTV 0.87±0.08 0.87±0.08 0.82±0.07 0.01±0.01 0.06±0.03

Body 0.03±0.01 0.03±0.01 0.03±0.01 0.00±0.00 0.00±0.00

Dmean Bladder 0.22±0.11 0.22±0.10 0.20±0.10 0.01±0.01 0.02±0.02

Rectum 0.51±0.14 0.51±0.14 0.48±0.12 0.02±0.02 0.05±0.04

Left fem 0.18±0.15 0.18±0.15 0.19±0.14 0.02±0.03 0.05±0.05

Right fem 0.16±0.16 0.16±0.15 0.16±0.15 0.02±0.02 0.03±0.04
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Table 6:

Mean and standard deviation (Mean ± SD) of the Body and 10 % isodose volume of the absolute voxel based 

dose differences between predicted and ground truth dose distribution.

Voxel Wise Dose Difference Model I Model II

D-mean |Predicted – Ground truth| (Mean± std) |Predicted – Ground truth| (Mean± std)

Body 0.0061±0.0018 0.0090±0.0029

10% isodose volume 0.0049±0.0011 0.0088±0.0022
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