
RESEARCH ARTICLE Open Access

Comparing tuberculosis gene signatures in
malnourished individuals using the
TBSignatureProfiler
W. Evan Johnson1,2,3*† , Aubrey Odom1,2,3†, Chelsie Cintron4, Mutharaj Muthaiah5, Selby Knudsen4, Noyal Joseph6,
Senbagavalli Babu6, Subitha Lakshminarayanan6, David F. Jenkins1,2,3, Yue Zhao1,2,3, Ethel Nankya1,2,3,
C. Robert Horsburgh7, Gautam Roy6, Jerrold Ellner8, Sonali Sarkar6, Padmini Salgame8† and
Natasha S. Hochberg4,7,9†

Abstract

Background: Gene expression signatures have been used as biomarkers of tuberculosis (TB) risk and outcomes.
Platforms are needed to simplify access to these signatures and determine their validity in the setting of
comorbidities. We developed a computational profiling platform of TB signature gene sets and characterized the
diagnostic ability of existing signature gene sets to differentiate active TB from LTBI in the setting of malnutrition.

Methods: We curated 45 existing TB-related signature gene sets and developed our TBSignatureProfiler software
toolkit that estimates gene set activity using multiple enrichment methods and allows visualization of single- and
multi-pathway results. The TBSignatureProfiler software is available through Bioconductor and on GitHub. For
evaluation in malnutrition, we used whole blood gene expression profiling from 23 severely malnourished Indian
individuals with TB and 15 severely malnourished household contacts with latent TB infection (LTBI). Severe
malnutrition was defined as body mass index (BMI) < 16 kg/m2 in adults and based on weight-for-height Z scores
in children < 18 years. Gene expression was measured using RNA-sequencing.

Results: The comparison and visualization functions from the TBSignatureProfiler showed that TB gene sets performed
well in malnourished individuals; 40 gene sets had statistically significant discriminative power for differentiating TB
from LTBI, with area under the curve ranging from 0.662–0.989. Three gene sets were not significantly predictive.

Conclusion: Our TBSignatureProfiler is a highly effective and user-friendly platform for applying and comparing
published TB signature gene sets. Using this platform, we found that existing gene sets for TB function effectively in
the setting of malnutrition, although differences in gene set applicability exist. RNA-sequencing gene sets should
consider comorbidities and potential effects on diagnostic performance.
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Background
Tuberculosis (TB) is the leading cause of death due to an
infectious disease worldwide, killing 1.6 million people in
2017 [1]. The EndTB strategy aims to reduce TB deaths by
95% and to cut new cases by 90% between 2015 and 2035
[2]. A critical component of this strategy is early identifica-
tion of individuals with TB and prevention of transmission.
Although the roll-out of GeneXpert has facilitated rapid TB
diagnosis, the test has limitations (e.g., lower sensitivity if
low bacillary burden, in children, and in extra-pulmonary
disease) [3–5]. Furthermore, not all individuals with pos-
sible pulmonary TB are able to produce sputum [6]. Newer
blood-based diagnostics using gene expression profiles have
the potential to address the limitations of GeneXpert and
other sputum-based tests [7].
Over the past several years, researchers have been able

to identify nearly four dozen gene expression signatures
that distinguish TB disease from latent TB infection
(LTBI) [8, 9], TB from other infections [10–12], incipient
pre-symptomatic TB disease and/or the future develop-
ment of TB disease in those with LTBI [13–15], and
response to therapy [16, 17]. Signatures can be used to
understand the heterogeneous response to TB and help
identify the pathways and underlying biology of TB dis-
ease progression. These signatures have been developed
using multiple profiling technologies (microarray, RNA-
sequencing, rt-PCR) and using a diverse set of computa-
tional and machine learning prediction algorithms. Some
of these signatures were developed using direct training or
cross-validation approaches on a single study, while others
were developed using a meta-analytical approach [17, 18].
Furthermore, several of these gene signatures have been
validated by independent research teams on diverse co-
horts in different settings and using multiple computa-
tional algorithms [19–21]. Importantly, recent studies
have systematically compared the performance of TB sig-
natures, and their associated gene sets and original pre-
dictive models, across a multiple of TB datasets to
compare the performance of these signatures to predict
TB outcomes [20, 21]. However, despite this work, there is
not a single resource of compiled signature gene lists,
methods or biomarkers to apply to new datasets, and most
gene sets have not been independently validated using al-
ternative computational methodologies.
Existing studies of blood-based TB diagnostics have

another important limitation: most have not evaluated
the impact of comorbidities on the modulation of the
TB signature. In high-TB burden settings, much of the
population has comorbidities that affect host immune
response, and likely alter gene signatures of TB disease.
Some of these have been directly studied (e.g., diabetes,
HIV) [22–24] and others have not (e.g., malnutrition,
pregnancy, parasites). In particular, the role of malnutri-
tion, which is known to modulate the innate and

adaptive immune responses, has not been explored [25,
26]. Malnutrition affects much of the population in TB en-
demic countries including one-third of the adult population
in India, the country with 27% of the world’s TB cases [1].
It is the most common secondary immunodeficiency and
has been termed nutritional acquired immunodeficiency
syndrome [27, 28]. Undernutrition appears to impact both
the innate and adaptive immune systems [29], and so can
conceivably alter gene expression in these patients in sig-
nificant ways. For example, undernourished individuals
have been noted to have decreased expression of Th1 cyto-
kines and increased concentrations of Th2 cytokines, which
hobbles the Th1 response against Mtb [30, 31]. Prior re-
search has also suggested that undernutrition may also di-
minish the effectiveness of TB vaccines. Furthermore, a
study over two decades in the United States found that a
BMI < 18.5 kg/m2 was associated with an adjusted hazard
ratio of 12.43 (CI: 95% CI: 5.75, 26.95) for developing TB
disease as compared to those with BMI greater than 18.5.
In India, more than 50% of TB cases are attributable to un-
dernutrition in most states [32]. Because of the significant
TB risk malnutrition poses and the gap in current know-
ledge, we sought to determine whether the published gene
lists indicating TB disease accurately discriminate TB from
LTBI in the setting of malnutrition in India.
In this work, we curated almost four dozen existing TB-

related signature gene sets and developed our TBSignature-
Profiler software toolkit. We also added two single-gene
biomarkers to this comparison that were compared in a
previous meta-analysis [21]. This platform was used to
evaluate the function of these signatures for distinguishing
between TB and LTBI in severely malnourished individuals.
We applied the TBSignatureProfiler to this condition to de-
termine whether existing TB gene sets work in a severely
malnourished population. While it is unlikely that these sig-
natures will be implemented in clinical practice for detect-
ing TB disease, we do note that many existing signatures
were developed for this purpose. Thus, comparisons
between prevalent and latent TB is the logical first step in
evaluating and validating these signature gene sets in the
setting of malnutrition. Once these signatures are estab-
lished and validated, they can be used for more innovative
and useful applications, such as predicting risk of progres-
sion or worsening disease, monitoring treatment efficacy,
or the diagnosis of extrapulmonary disease.

Methods
Collection of published TB signature gene sets
Our goal was to compile a comprehensive set of multi-
gene signature gene lists and make them available
through our TBSignatureProfiler platform. The only cri-
teria for inclusion in this study was that the signature
gene set consisted of at least two genes and was used
and presented as a biomarker of a TB outcome (disease,
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risk, treatment, etc) in a peer reviewed publication. We
collected a set of 45 previously published gene sets in total
(Table 1). References for these gene sets are available in
the Supplementary Materials and from the TBSignature-
Profiler software documentation. These gene sets were de-
rived from multiple studies, using several transcriptional
profiling platforms, and using disparate predictive methods
and algorithms. As such, we defined the term “gene sets”
or “signature” as the collection of genes that were used in
the predictive model in its original study. We then define
the “gene set/signature strength” or “gene set/signature
score” by the single sample gene set enrichment score for
that set. For presentation gene signatures are labeled using
the first author’s last name and the number of genes in the
signature (e.g., Berry_393). Gene sets that focus on the
presence of comorbidity with TB and another disease have
additional labels. Details for these naming conventions are
available in the Supplementary Methods. We also included
two previously proposed single gene biomarkers, NPC2
[33] and BATF2 [34, 35], using their gene expression
counts in our comparison.

TBSignatureProfiler platform
The 45 previously published gene sets of TB outcomes are
included in our TBSignatureProfiler, a novel R package that
allows users to quickly and easily perform single sample
pathway enrichment analysis using our set of TB signature
gene sets and multiple scoring methods, including ssGSEA,
GSVA, PLAGE, combining Z-scores, ASSIGN and singscore
[36–41] (these methods are detailed in the Supplementary
Methods). This workflow can then be used for profiling and
visualizing these gene sets/pathways and plotting functions
in our TBSignatureProfiler R package. The R package is
available on GitHub (https://github.com/compbiomed/
TBSignatureProfiler) and through Bioconductor (https://bio-
conductor.org/packages/release/bioc/html/TBSignaturePro-
filer.html). Additional details for the scoring visualization,
and comparison functions are detailed in the Supplementary
Methods and in the software package vignette.

Malnourished individuals from RePORT-India
Our malnourished samples came from the Regional Pro-
spective Observational Research in TB (RePORT)-India
cohort based at Jawaharlal Institute of Postgraduate Med-
ical Education and Research (JIPMER). The study is con-
ducted in collaboration with Boston Medical Center and
Rutgers-New Jersey Medical School. Ethical approval was
obtained by the JSAC and IEC committees of JIPMER and
the institutional review boards of Boston Medical Center
and Rutgers University. This household contact study en-
rolls newly-diagnosed smear-positive, culture-confirmed
pulmonary TB cases identified at Revised National TB
Control Programme clinics as well as their household con-
tacts; additional study details have been previously

reported [19, 42–44]. In brief, index cases are visited at
enrollment, 1, 2, 6 and 12months and household contacts
at enrollment, 12 and 24months. Blood is collected in
PaxGene RNA sequencing tubes at each time point.
Household contacts undergo tuberculin skin testing (TST)
for LTBI and are monitored for symptoms of active TB;
sputum testing is done on symptomatic individuals.
In addition to demographic characteristics, question-

naires address relevant comorbidities that affect host re-
sponse and TB risk including HIV, diabetes, renal failure,
other immunosuppressive conditions, alcohol use (and at-
risk alcohol use based on the Alcohol Use Disorders Identi-
fication Test [45], tobacco use, and other parameters. These
values are summarized in Table 2. Participant BMI is mea-
sured at baseline and categorized into severe malnutrition
(BMI < 16 kg/m2), malnutrition (16–18.4), and normal/
overweight (> 18.4) henceforth referred to as well-
nourished. In individuals less than 18 years of age, BMI was
categorized based on standard deviations relative to the
World Health Organization median: children whose BMI
was more than two standard deviations away from the me-
dian for their age were categorized as malnourished [46]. In
index cases, blood samples are taken to diagnose diabetes
mellitus (random blood sugar > 200mg/dL) and HIV.

RNA-sequencing data generation and processing
We analyzed RNA-seq data from enrollment PaxGene
tubes from a subset of 23 severely malnourished individ-
uals with TB and 15 severely malnourished tuberculin
skin test positive (TST ≥5 mm) household contacts as
previously described [19]. The data were batch corrected
using ComBat-Seq [47, 48] (Supplementary Figure 1).
Differential expression between TB and LTBI samples
produced 6706 differentially expressed features using an
adjusted p-value (FDR) cutoff of 0.01, including 4913
protein coding genes, 1052 lncRNAs, 135 T cell recep-
tive elements, 19 immunoglobulin genes, and 13 miR-
NAs. The list of protein coding genes was used to
develop a list of differentially expressed genes and path-
ways of TB vs LTBI. Detailed methods for the processing
of the PaxGene tubes, RNA-sequencing, and data ana-
lysis are available in the Supplementary Methods.

Results
Analysis and overlap of existing TB signature gene sets
The 45 TB signature gene sets described in Table 1 con-
sist of between 2 and 700 unique UCSC gene symbol an-
notations. Overall, these gene sets include 1513 unique
TB associated genes. Most genes (965, 63.8%) are listed
in a single gene set and 96.8% (1465 genes) are listed in
four or fewer gene sets; only 48 (3.2%) genes are listed in
five or more gene sets (Fig. 1). Individual genes that
occur frequently include FCGR1A, GBP5, GBP6, C1QB,
FCGR1B, SEPT4, and ANDKRD22 (in 14, 14, 13, 12, 11,
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Table 1 Details for gene signatures curated and available in the TBSignatureProfiler. References for these signatures are available in
the (Additional file 1) and from the TBSignatureProfiler software documentation (?TBSignatures)

Differential expression Area under the ROC curve

Signature P-value -10 Log10 P LowerAUC AUC UpperAUC LowerCISunXu UpperCISunXu

Bloom_OD_144 0 212.4 0.961 0.989 1 0.967 1

Thompson_9 0 198 0.954 0.983 1 0.948 1

NPC2 0 214 0.9417 0.98 1 0.947 1

Blankley_5 0 225.3 0.942 0.977 1 0.931 1

Tornheim_RES_25 0 181.1 0.93 0.972 1 0.926 1

Roe_OD_4 0 198.3 0.919 0.969 1 0.916 1

Gjoen_7 0 114.8 0.911 0.966 1 0.917 1

Kaforou_27 0 178.7 0.908 0.966 0.995 0.915 1

Tornheim_71 0 193.5 0.921 0.966 0.997 0.919 1

Blankley_380 0 154.7 0.921 0.963 0.997 0.913 1

Sambarey_HIV_10 0 172.4 0.897 0.96 1 0.905 1

Walter_51 0 138.5 0.905 0.957 0.991 0.903 1

Jacobsen_3 0 158 0.872 0.946 0.991 0.881 1

Gliddon_OD_3 0 154.9 0.875 0.943 0.986 0.873 1

Zak_RISK_16 0 128.3 0.868 0.94 0.989 0.872 1

Sweeney_OD_3 0 116.4 0.849 0.938 0.983 0.868 1

BATF2 0 138 0.863 0.935 0.986 0.863 1

Roe_3 0 112.3 0.84 0.929 0.988 0.847 1

Esmail_203 0 125 0.861 0.926 0.983 0.849 1

Kaforou_OD_53 0 122.7 0.826 0.921 0.978 0.831 1

Rajan_HIV_5 0 118.4 0.842 0.906 0.986 0.81 1

Esmail_82 0 111.7 0.797 0.895 0.972 0.781 1

Berry_393 0 114.2 0.812 0.886 0.958 0.784 0.989

Anderson_OD_51 0 101.8 0.797 0.884 0.962 0.779 0.988

Huang_OD_13 0 106.9 0.778 0.884 0.964 0.775 0.992

Maertzdorf_OD_100 0 112.7 0.785 0.872 0.956 0.756 0.988

Singhania_OD_20 0.0001 93.4 0.755 0.861 0.958 0.737 0.985

Kaforou_OD_44 0.0001 90.8 0.76 0.852 0.937 0.734 0.971

Gjoen_10 0.0001 93.8 0.747 0.849 0.943 0.729 0.97

Verhagen_10 0.0001 94 0.747 0.844 0.921 0.722 0.965

Gliddon_OD_4 0 103.8 0.739 0.838 0.926 0.714 0.962

Jenum_8 0.0001 90.4 0.724 0.838 0.936 0.712 0.964

Esmail_OD_893 0.0002 83.8 0.719 0.835 0.919 0.704 0.966

Suliman_4 0.0002 86.9 0.689 0.83 0.917 0.697 0.962

Berry_OD_86 0.0003 82.1 0.716 0.821 0.941 0.686 0.956

Thompson_RES_5 0.0005 76.2 0.696 0.798 0.911 0.656 0.941

Thompson_FAIL_13 0.0008 71.3 0.698 0.787 0.89 0.642 0.932

Walter_PNA_47 0.0046 53.8 0.643 0.773 0.897 0.624 0.922

Walter_PNA_119 0.002 62.1 0.643 0.77 0.902 0.602 0.938

Leong_24 0.0115 44.6 0.576 0.73 0.843 0.564 0.896

Leong_RISK_29 0.0315 34.6 0.589 0.716 0.857 0.546 0.886

Anderson_42 0.324 11.3 0.522 0.662 0.78 0.482 0.853
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11, and 10 of the signature gene sets, respectively). Our pre-
viously evaluated biomarkers, NPC2 and BATF2 appeared
in 1 and 9 signature gene sets, respectively. Additional file 4
provides a matrix of overlap between the individual multi-
gene sets. While some smaller gene sets significantly over-
lap with larger ones (e.g. 15/16 genes from Zak_RISK_16
are present in Berry_393), most gene sets were largely non-
overlapping from the single gene perspective. However,
despite the small number of overlapping individual genes,
there are many common functional families that are repre-
sented across multiple gene sets. Most of these are associ-
ated with host inflammatory response and immune
regulation (see Discussion section).

Demographics of malnourished TB cases and controls
(Table 2). Overall, 16/23 (69.6%) of the individuals with
TB were male compared to 7/15 (46.7%) of those with
LTBI (p-value = 0.19). The median age of those with TB

was 47 years (range 15–67), compared to 13 (range 10–
23) for those with LTBI (p-value< 0.001). There were 14
(60.9%) of those with TB who reported drinking alcohol,
of which 10 (43.5%) reported at-risk alcohol use. There
was no alcohol or tobacco use reported by those with
LTBI. None of the participants had HIV infection.

Analysis of TB signatures in malnourished individuals
Differential gene/pathway expression
We found 4913 significant differentially expressed pro-
tein coding genes using an FDR threshold of 0.01; 56.9%
of the genes from the 45 TB signature gene sets were
present in that list. A pathway enrichment analysis using
the 1000 most significant genes resulted in multiple rele-
vant enriched pathways, including the NF-kappa B sig-
naling pathway, cytokine-cytokine receptor interaction,
and multiple infection response pathways (including
response to TB). We used the 500 most differentially

Table 2 Demographic characteristics of new smear-positive pulmonary tuberculosis patients and household contacts, India (n = 38)

Malnourished Index Case
(n=23)

Malnourished Household
Contact (n=15)

P-value

RNA-seq Processing Batch

Batch 1 8 1

Batch 2 15 14

Demographic Characteristics

Male, n(%) 16 (69.6) 7 (46.7) 0.1903

Age, median (range) 47 (15-67) 13 (10-23) <0.0001

Any alcohol use, n (%) 14 (60.9) 0 <0.0001

Risky alcohol use, n (%) 10 (43.5) 0 <0.0001

Ever a smoker, n (%) 15 (56.5) 0 <0.0001

BMI, median (range) 14.8 (11.5-15.9) 15.1 (13.7-15.8) 0.2221

Clinical Characteristics

AFB smear grade, n(%)

1+ 10 (43.5) --

2+ 5 (21.7) --

3+ 8 (34.8) --

MGIT time to positive, median (range) 6 (3-14) --

Duration of cough before treatment, median (range) 4 (2-5) --

Tuberculin Skin Test Millimeters of Induration, median (range) -- 7 (5-15)

Table 1 Details for gene signatures curated and available in the TBSignatureProfiler. References for these signatures are available in
the (Additional file 1) and from the TBSignatureProfiler software documentation (?TBSignatures) (Continued)

Differential expression Area under the ROC curve

Signature P-value -10 Log10 P LowerAUC AUC UpperAUC LowerCISunXu UpperCISunXu

Suliman_RISK_4 0.024 37.3 0.538 0.662 0.814 0.486 0.842

Qian_OD_17 0.1615 18.2 0.514 0.611 0.757 0.421 0.801

Sloot_HIV_2 0.1 23 0.515 0.605 0.744 0.421 0.789

Maertzdorf_4 0.8307 1.9 0.515 0.58 0.757 0.376 0.783

Lee_4 0.3019 12 0.511 0.511 0.695 0.322 0.678
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expressed genes to create an unsupervised, clustered
heatmap (Supplementary Figure 2), which separated the
majority of those with TB from those without.
We applied the TBSignatureProfiler to evaluate the

performance of existing TB signature gene sets on our
data. We used the SignatureHeatmap() function with
ssGSEA scoring to evaluate the scores for all 45 gene
sets simultaneously (Fig. 2). Similar plots using the
GSVA and PLAGE scores are available in Supplementary
Figures 3 and 4. The heatmap illustrates that the scores
are highly concordant across samples and that the signa-
ture gene sets are able to classify TB from LTBI. Specif-
ically, the top four clusters segregated by the
dendrogram consisted of one cluster with generally low

gene set scores comprising only LTBI samples (n = 9),
two clusters with the highest gene set scores for most
pathways consisting of only TB samples (n = 11 and 8),
and a fourth cluster consisting of mild to moderate
scores for most pathways that consisted of both LTBI
(n = 7) and TB samples (n = 3). Despite general agree-
ment, it is clear that the signature gene sets are not
completely concordant, and that all the signature gene
sets provide more classification accuracy than each indi-
vidual signature gene set.

Evaluation of individual signature gene set performance
The performance of signature gene sets can be evaluated
using boxplots of individual gene set scores. We used

Fig. 1 Overlap of genes in the TB signature cohort listed in 5 or more signatures. Of the 1513 unique genes in the 45 signatures, 48 are listed in
5 or more signatures. Most of these signature genes are contained in the large Esmail_893 gene, Berry_393 gene, and Blankley_380
gene signatures
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the signatureBoxplot() function to generate a matrix of
boxplots for ssGSEA (Fig. 3a), GSVA (Supplementary
Figure 5), and PLAGE (Supplementary Figure 6) scores
for each gene set. Each pair of boxplots compares the
individual signature gene set scores for the TB (red) vs
LTBI (blue) samples. The tableAUC() and compareBox-
plots() functions evaluated the predictive accuracy and
compared gene sets (Fig. 3b and Supplementary Table 1).
These boxplots and table values are generated by boot-
strapping gene set scores and calculating the AUC of the
ROC plot. The ROC curves for these were also gener-
ated using the signatureROCplot_CI() function (Supple-
mentary Figure 7). The bootstrapped confidence
intervals were supplemented with more direct intervals
using AUC variance and estimation procedures defined
previously [49, 50]. We note that most of the signatures
in our malnutrition data, the bootstrapped confidence

intervals were more conservative than the more direct
approach. These results show that most gene sets are
able to distinguish between the TB and LTBI samples.
The Sambarey_HIV_10 (AUC = 0.960) and Thompson_9
(AUC = 0.983) gene sets were two of the best performing
gene sets in distinguishing LTBI from TB disease among
severely malnourished individuals. Other gene sets also
performed extremely well (AUCs> 0.935), including
Sweeney_OD_3 gene set (AUC = 0.938), which is being
pushed forward as a PCR-based diagnostic in the field.
The single gene biomarkers also had very high sensitiv-
ity: NPC2 (AUC = 0.980, rank 3/47) and BATF2 (AUC =
0.935, rank 15/47). However, there were a few gene sets
that did not perform well in classifying TB from LTBI:
Anderson_42 (AUC = 0.662; p-value = 0.32), Qian_OD_
17 (AUC = 0.611; p-value = 0.16), Sloot_HIV_2 (AUC =
0.605; p-value 0.10), Maertzdorf_4 (AUC = 0.580; p-

Fig. 2 A heatmap displaying the scaled ssGSEA scores for all 45 gene sets (rows) for the samples of malnourished TB and LTBI individuals (columns).
Higher scores trend towards yellow-green and lower scores trend towards blue-purple. The color bar at the top designates whether the sample is from an
LTBI individual (blue) or an individual with active TB (red). These signatures are able to separate most of the TB samples from the LTBI samples. The
pathway signature scores are largely concordant. This heatmap was generated using the SignatureHeatmap() function from the TBSignatureProfiler
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value = 0.83), and Lee_4 (AUC = 0.511; p-value = 0.30)
had t-test p-values above 0.1 using ssGSEA scores.

Evaluation of gene set enrichment scoring methods
We used the signatureGeneHeatmap() function to evalu-
ate the gene-level performance of a few pathways one at a
time (Fig. 4). The genes in Samabrey_HIV_10 and
Thompson_9 segregate malnourished TB and LTBI. The
Lee_4 gene set showed poor performance using this
metric, as there is no clear clustering of genes and an up-
regulation of the four genes among both TB and LTBI.
The Maertzdorf_4 gene set showed better performance in
clustering and visual analysis than the ssGSEA and AUC
analyses showed. This gene set performed better with
GSVA (AUC= 0.764) and PLAGE (AUC= 0.932). This is
likely because ssGSEA scoring (and GSVA to a lesser ex-
tent) relies heavily on concordance of genes (i.e., all are ei-
ther up-regulated or down-regulated), and thus a gene set
such as Maertzdorf_4 that consists of genes that are nega-
tively correlated or pick out different features from sam-
ples do not score well with this algorithm. Conversely, we
observed that Thompson_9, which consists of highly con-
cordant/redundant genes, had among the best AUCs with
ssGSEA (AUC= 0.983), GSVA (AUC= 0.980), and
PLAGE (AUC= 0.983).

Discussion
In this study, we present our set of 45 curated TB signa-
ture gene sets along with our TBSignatureProfiler software
and use it to assess the impact of malnutrition on discrim-
inative ability of a large number of signature gene sets.

The TBSignatureProfiler is an important contribution that
provides the first comprehensive, open-source evaluation
tool to compare TB signature gene sets in a direct and re-
producible way. This automated platform enables investi-
gators to apply nearly three dozen TB gene sets directly to
their datasets using multiple different scoring methods
with tools to visualize signature gene set strength. Future
analyses performed using these same gene sets on add-
itional datasets can be directly compared with past results
using the same scoring methods and analytic approach. In
addition, new/future signature gene sets can be added and
evaluated in a simple and straight-forward way—by merely
adding them to the TB signature gene sets collection in
the software. This functionality has never been previously
available in the TB research field, despite the publication
of many dozens of previous gene expression studies, sig-
natures, previous evaluations and metanalyses [17, 19, 20].
Ultimately, the TBSignatureProfiler will enable investiga-
tions into whether signature gene sets work in different
geographic settings and in the context of different social
conditions, contexts, or co-morbidities (e.g., high alcohol
use), and efficiently evaluate and compare new signature
gene sets in these populations as they are developed.
Overall, there were very few genes that overlapped be-

tween the signature gene sets. There were, however, many
common functional families that are represented across
the gene sets. For example, guanylate-binding proteins
(GBPs) are IFN-induced GTPases and contribute to an in-
flammatory response by activating the NLRP3 and AIM2
inflammasome assembly [51–53]. Interferons are pro-
duced during Mtb infection which could lead to activation

Fig. 3 a Boxplots of the ssGSEA scores for each signature individually show that some of the signatures are highly predictive of TB compared to
LTBI in malnourished individuals. b Boxplots for the AUCs (y-axis) from bootstrapped samples for each pathway (x-axis) demonstrate that that
most of the signatures were able to classify TB from LTBI, although some of the signatures there of the signatures, including Maertzdorf _4,
Lee_4, and Sloot_HIV_2, had boxplots arms below the 0.5 mark. These figures were generated using the SignatureBoxplot() and AUCBoxplot()
functions of the TBSignatureProfiler
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of GBP5 and GBP6. These GBPs then further enhance the
inflammatory response via inflammasome activation.
FcGR1 (CD64) is the high affinity receptor for IgG and is
expressed on most myeloid cells. In humans, FcGR1 is
encoded by three genes, FcGR1A, FcGR1A and FcGR1C
that are highly homologous. Interaction of IgG and FcGR1
results in cellular activation, including phagocytosis, gen-
eration of reactive oxygen species, antigen-presentation,
release of inflammatory cytokines, and antibody-mediated
cellular cytotoxicity [54], FcGR1 expression on neutrophils
has been proposed as a biomarker of infection and sepsis
[55]. Neutrophils in Juvenile Idiopathic Arthritis, an in-
flammatory disease, express higher levels of FCGR1B
compared to controls [56]. It is therefore not surprising
that many signature gene sets encompassed either
FcRG1A or FcRG1B. Kinase activation and phosphoryl-
ation cascades induced following immune cell activation
are regulated by dual-specificity phosphatases (DUSPs)
[57]. Since active TB is associated with increased inflam-
matory response, the presence of DUSP3 in several signa-
ture gene sets is expected. Another gene found in many
signature gene sets is ANKRD22, an ankyrin repeat pro-
tein with four copies of the ankyrin motif. The motif inter-
acts with an array of unrelated proteins to affect many

cellular processes [58, 59] and it is likely that ANKRD22
expression is upregulated because of the enhanced inflam-
matory response in TB. Basic leucine zipper transcription
factor ATF-like (BATF)2, is a transcription factor that be-
longs to the activator protein 1 family of transcription fac-
tors and contains the basic leucine zipper domain. BATF2
dominance in the TB signature gene sets is consistent with
its upregulation by type I IFNs [60], and by IFNγ and Mtb
in macrophages [61].
The single gene biomarkers NPC2 and BATF2 were

very effective in distinguishing between TB and LTBI
in malnutrition. Although these single gene bio-
markers are highly effective, activation of these genes
are not specific to TB infection, but are associated
with common inflammatory pathways (this may also
be the case for some of the multi-gene “Disease” sig-
natures). We note that NPC2 plays a key role in lyso-
somal cholesterol egress [62, 63] and the expression
of NPC2 is directly regulated by the nuclear factor
kappa B subunit 2 (NF-κB2) protein [64]. In addition,
NPC2 plays a significant role in other infectious dis-
eases, for example, upregulation of NPC2 is crucial
for viral replication in Chikungunya, Zika, West Nile
and Dengue infections [65]. BATF has been shown to

Fig. 4 Heatmaps for the gene-level (rows) data for the TB and LTBI samples (columns) for the (a) Sambarey_HIV_10, (b) Thompson_9, (c) Lee_4, and (d)
Maertzdorf_4 signature gene sets. The Sambarey_HIV_10 and Thompson_9 signatures scored well with the ssGSEA algorithm scoring, whereas the Lee_4
and Maertzdorf_4 gene sets scored poorly. These heatmaps were generated using the signatureGeneHeatmap() function from the TBSigntureProfiler
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directly control TH17 differentiation [66], and tran-
scriptomic analysis has established that up regulation
of BATF2 in HIV-specific CD8+ T cells leads to the
inhibition of T cell function [67]. Thus, although
these genes are sensitive biomarkers for separating
TB from LTBI, they lack in specificity to TB as their
expression is associated with common processes in-
volved in host immune responses to multiple infec-
tious agents. Thus, we would recommend using more
specific, multi-gene signatures if specificity is needed
for the context.
The TBSignatureProfiler was applied to samples from

severely undernourished individuals with TB and LTBI in
India. This analysis found that existing blood RNA signa-
ture gene sets of TB generally work in the setting of severe
undernutrition, although some differences in performance
do exist. Differences seen in the application of the signa-
ture gene sets may reflect the size of the gene sets (i.e.,
smaller gene sets may not perform as well) and/or the set-
tings in which those data were trained. A few selected sig-
nature gene sets do not perform optimally in the setting
of severe undernutrition. These findings suggest that most
TB signature gene sets are robust and could work in many
different settings and with different comorbidities, but
some gene sets perform slightly better in different con-
texts. This finding has important implications in India and
many high TB-burden countries.
We had hypothesized that malnutrition might modulate

the transcriptional profiles in different ways and using dif-
ferent mechanisms than in well-nourished individuals, but
this was generally not the case. Malnutrition clearly affects
the immune response with effects on macrophage activity
and phagocytosis, antigen presentation, and induction of
the Th1 immune response among other sequelae [29]. It is
plausible that these effects were not detected because the
dominant immunomodulatory effect of TB that are com-
mon between well-nourished and malnourished individuals
outweigh the more specific transcriptional impacts induced
by changes in nutritional status. It is also likely that some of
the signature gene sets themselves were developed in set-
tings with high rates of malnutrition, so the effect of malnu-
trition on TB signature gene sets was incorporated. For
example, Sambarey_HIV_10 signature was trained on data
obtained from participants in Chennai and Bengaluru, India
where malnutrition is highly prevalent. Further investiga-
tion is needed to understand the role of inflammation and
immune response in the setting of malnutrition, although
we show here that most existing TB signature gene sets
work well in the setting of malnutrition.
Malnutrition is not the only comorbidity that is associ-

ated with TB incidence. Endemic countries have high
rates of alcohol use, diabetes, HIV and other immuno-
modulatory conditions [68–70]. Little has been done to
explore whether blood-based transcriptional TB

signatures may be altered in the setting of such comor-
bidities. Such studies are needed before these signatures
can be accepted as validated diagnostic modalities. For
example, it has been shown that the Zak_RISK_16 signa-
ture has a lower AUC in the setting of HIV infection
[13]. Furthermore, transcriptional profiling of individuals
with diabetes and TB demonstrate activation of path-
ways associated with diabetes complications [24]. It is
possible that signature performance in other TB-
endemic settings may also be affected by genetic or Mtb
strain differences. Additional work is needed to deter-
mine the impact of other common comorbidities. The
TBSignatureProfiler can play an important role in facili-
tating future analyses in these different settings.
This work is a demonstration that existing signature

gene sets can be effectively used on samples from co-
morbid TB contexts, although the efficacy of the gene
sets may vary. While it is unlikely that these gene signa-
tures will be used in clinical practice to distinguish pul-
monary TB from LTBI controls, our work does provide
the promise that existing gene sets can be used to detect
TB in circumstances where existing diagnostics are less
effective, e.g. distinguishing extrapulmonary, paucibacil-
lary, and pediatric TB from controls in malnourished
individuals. In addition, evaluation of the subtle differ-
ences between signature gene set performance combined
with the dissection of the gene set content may provide
insight on potential mechanisms specific to demo-
graphic, comorbidities, or other context-related specifics
for each patient group under consideration.
We recognize that this study has several limitations.

While the study has large enough sample size to deter-
mine the significance of the signature gene sets’ abilities
to distinguish between TB and LTBI, the sample size
was not large enough to clearly distinguish between the
performance of the top-scoring gene sets. Therefore, we
can only conclude that many of the gene sets work well,
but we cannot determine which is the best gene set in
this context. It is possible that our results do not reflect
the full spectrum of gene sets in severely malnourished
individuals with LTBI, as severe malnutrition may blunt
the TST response; however, our previous analyses sug-
gest this is not universally true [71]. In addition, the
characteristics of the participants with TB and LTBI dif-
fered with regard to demographics (e.g. age) and risk fac-
tors (e.g. smoking and alcohol), and we do not have
power to control for these differences in our analysis.
While this may lead to the confounding of signature
gene set strength differences between TB and LTBI, we
point out that differences in demographics and co-
morbidities are quite common among the TB and LTBI
populations; these data represent the population dynam-
ics of these groups. In addition, several of our signature
gene sets were trained in pediatric cohorts [13, 72], but
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we see no difference in performance between these
child/adolescent gene sets between those trained on
adults.
One final limitation of our TBSignatureProfiler plat-

form is that many existing signature gene sets were
trained on different transcriptional profiling platforms
(microarrays, RNA-seq) using different machine learning
and predictive modeling tools. Gene set scoring methods
may not perform as well with the signature gene set
compared to the original platform or method—this is an
area of further development for the package that is be-
yond the scope of this paper. However, here we evaluate
existing signature gene sets across multiple scoring
methods to highlight which gene signature sets of TB
are the most robust across platforms and methods, and
thus should work well across a variety of predictive model-
ing approaches and contexts. This approach may also have
the benefit of reducing the likelihood of model overfitting
for individual signatures trained on specific datasets.

Conclusion
In conclusion, we have developed the TBSignatureProfi-
ler platform that enables the application of several dozen
TB signature gene sets to new datasets. The TBSigna-
tureProfiler allows multiple scoring options and innova-
tive graphical outputs. Using the TBSignatureProfiler,
we demonstrate that severe malnutrition does not sig-
nificantly alter the predictive performance of most TB
gene sets. As we move toward expanded use of signature
gene sets, these findings will have relevance in India and
other settings with a high TB and malnutrition burden.
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