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Summary

Protein interaction networks provide a powerful framework for identifying genes causal for 

complex genetic diseases. Here we introduce a general framework, uKIN, that uses prior 

knowledge of disease associated genes to guide, within known protein-protein interaction 

networks, random walks that are initiated from newly-identified candidate genes. In large-scale 

testing across 24 cancer types, we demonstrate that our network propagation approach for 

integrating both prior and new information not only better identifies cancer driver genes than using 

either source of information alone but also readily outperforms other state-of-the-art network-

based approaches. We also apply our approach to genome-wide association data to identify genes 

functionally relevant for several complex diseases. Overall, our work suggests that guided network 

propagation approaches that utilize both prior and new data are a powerful means to identify 

disease genes. uKIN is freely available for download at: https://github.com/Singh-Lab/uKIN.

In Brief

We develop a guided network propagation approach to identify disease genes that combines prior 

knowledge of disease-associated genes with newly identified candidate genes. We demonstrate the 

effectiveness of our approach by applying it to somatic mutations observed across tumors to 

discover genes causal for cancer, as well as to genome-wide association data to discover genes 

causal for complex diseases.
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Introduction

Large-scale efforts such as the 1000 Genomes Project (1000 Genomes Project Consortium 

and others, 2015), The Cancer Genome Atlas (TCGA) (TCGA Research Network, n.d.), and 

the Genome Aggregation Database (Karczewski et al., 2019), among others, have catalogued 

millions of variants occurring in tens of thousands of healthy and disease genomes. Despite 

this abundance of genomic data, however, understanding the genetic basis underlying 

complex human diseases remains challenging (Kim and Przytycka, 2013). In contrast to 

simple Mendelian diseases, for which a small set of commonly shared genetic variants are 

responsible for disease phenotypes, complex heterogeneous diseases are driven by a myriad 

of combinations of different alterations. Individuals exhibiting the same phenotypic outcome

—a particular disease—may share very few, if any, genetic variants, thereby making it 

difficult to discover which of numerous variants are associated with heterogeneous diseases, 

even when focusing just on changes that occur within genes.

Biological networks provide a powerful, unifying framework for identifying disease genes 

(Barabási et al., 2011; Cowen et al., 2017; Goh et al., 2007; Ozturk et al., 2018). Genes 

relevant for a given disease typically target a relatively small number of biological pathways, 

and since genes that take part in the same pathway or process tend to be close to each other 

in networks (Hartwell et al., 1999; Spirin and Mirny, 2003), disease genes cluster within 

networks (Gandhi et al., 2006; Oti and Brunner, 2007). Consequently, if genes known to be 

causal for a particular disease are mapped onto a network, other disease-relevant genes are 

likely to be found in their vicinity (Krauthammer et al., 2004). Thus, the signal from known 

disease genes can be “propagated” across a network to prioritize either all genes within the 
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network or just candidate genes within a genomic locus where single nucleotide 

polymorphisms have been correlated with an increased susceptibility to disease (Chen et al., 

2009; Erten et al., 2011; Köhler et al., 2008; Lundby et al., 2014; Navlakha and Kingsford, 

2010; Smedley et al., 2014; Vanunu et al., 2010).

While initial network approaches to identify disease genes focused on propagating 

knowledge from a set of known “gold standard” disease genes, with the widespread 

availability of cancer sequencing data and genome-wide association studies (GWAS), the 

source of where information is propagated from has shifted to genes that are newly 

identified as perhaps playing a role in disease (Babaei et al., 2013; Carlin et al., 2019; 

Cerami et al., 2010; Jia and Zhao, 2014; Lee et al., 2011; Leiserson et al., 2015; Vandin et 

al., 2011). For example, in the cancer context, diffusing a signal from genes that are 

somatically mutated across tumors is highly effective for identifying cancer-relevant genes 

and pathways (Leiserson et al., 2015; Vandin et al., 2011); notably, while frequency-based 

approaches identify genes that “drive” cancer by searching for those that are recurrently 

mutated across tumor samples beyond some background rate (Lawrence et al., 2013), such a 

network propagation approach can even pinpoint rarely mutated driver genes if they are 

within subnetworks whose component genes, when considered together, are frequently 

mutated.

Thus there are two dominant network propagation paradigms for uncovering disease genes: 

spreading signal either from well-established, annotated disease genes or from genes that 

have some new evidence of being disease-relevant. While both have been successful 

independently, we argue that both sources of information should be utilized together, and 

that existing knowledge of disease genes should inform the way new data is examined within 

networks. That is, while our prior knowledge of causal genes for a given disease may be 

incomplete, it nevertheless is a valuable source of information about the biological processes 

underlying the disease; furthermore, in many cases, there is substantial prior knowledge and 

there is no reason disease gene discovery should proceed de novo from newly observed 

alterations.

In this paper, we introduce a guided network propagation framework to uncover disease 

genes, where signal is propagated from new data so as to tend to move towards genes that 

are closer to known disease genes. Our core method of propagating information within a 

network is via either diffusion (Qi et al., 2008) or random walks with restarts (RWRs) 

(Köhler et al., 2008), as these are mathematically sound, well-established approaches, where 

numerical solutions are easily obtained. In particular, our approach first diffuses a signal 

from known disease genes, and then performs either guided random walks or guided 

diffusion from the new data so as to preferentially move towards genes that have received 

higher amounts of signal from the initial set of known disease genes. In contrast, previous 

network propagation methods for disease gene discovery have performed diffusion or 

random walks uniformly from each node (i.e., in an “unguided” manner, as in e.g., (Jia and 

Zhao, 2014; Vandin et al., 2011)), or where the diffusion is scaled by weights on network 

edges that reflect their estimated reliabilities (e.g., (Babaei et al., 2013)). Alternatively, 

several approaches have attempted to uncover disease genes by explicitly connecting in the 

network genes that have genetic alterations with genes that have expression changes 
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(Bashashati et al., 2012; Kim et al., 2011; Paull et al., 2013; Ruffalo et al., 2015; Shi et al., 

2016; Shrestha et al., 2014); while well-suited for finding genes causal for observed 

expression changes, such approaches are less appropriate as a means to link prior and new 

information, and our approach instead uses prior knowledge to simply influence information 

propagation within the network.

We demonstrate the efficacy of our method uKIN—using Knowledge In Networks—by first 

applying it to discover genes causal for cancer. Here, new information consists of genes that 

are found to be somatically mutated in tumors—only a small number of which are thought to 

play a functional role in cancer—and prior information is comprised of subsets of “driver” 

genes known to be cancer-relevant (Futreal et al., 2004). In rigorous large-scale, cross-

validation style testing across 24 cancer types, we demonstrate that propagating signal by 

integrating both these sources of information performs substantially better in uncovering 

known cancer genes than propagating signal from either source alone. Notably, even using 

just a small number of known cancer genes (5–20) to guide the network propagation from 

the set of mutated genes results in substantial improvements over the unguided approach. 

Next, we compare uKIN to four state-of-the-art network-based methods that use somatic 

mutation data for cancer gene discovery and find that uKIN readily outperforms them, 

thereby demonstrating the advantage of additionally incorporating prior knowledge. We also 

show that by using cancer-type specific prior knowledge, uKIN can better uncover causal 

genes for specific cancer types. Finally, to showcase uKIN’s versatility, we show its 

effectiveness in identifying causal genes for three other complex diseases, where the genes 

known to be associated with the disease come from the Online Mendelian Inheritance in 

Man (OMIM) (Online Mendelian Inheritance in Man, OMIM®, 2000) and genes comprising 

the new information arise from genome-wide association studies (GWAS).

Results

Algorithm Overview

At a high level, our approach propagates new information across a network, while using 

prior information to guide this propagation (Figure 2). While our approach is generally 

applicable, here we focus on the case of propagating information across biological networks 

in order to find disease genes. We assume that prior knowledge about a disease is given by a 

set of genes already implicated as causal for that disease, and new information consists of 

genes that are potentially disease-relevant. In the scenario of uncovering cancer genes, prior 

information comes from the set of known cancer genes, and new information corresponds to 

those genes that are found to be somatically mutated across patient tumors. For other 

complex diseases, new information may arise from (say) genes weakly associated with a 

disease via GWAS studies or found to have de novo or rare mutations in a patient population 

of interest.

The first step of our approach is to compute for each gene a measure that captures how close 

it is in the network to the prior knowledge set of genes K (Figure 2A). To accomplish this, 

we spread the signal from the genes in K using a diffusion kernel (Qi et al., 2008). Next, we 

consider new information consisting of genes ℳ that have been identified as potentially 
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being associated with the disease. As we expect those that are actually disease-relevant to be 

proximal to each other and to the previously known set of disease genes, we spread the 

signal from these newly implicated genes ℳ, biasing the signal to move towards genes that 

are closer to the known disease genes K (Figure 2B). We accomplish this by performing 

random walks with restarts, where with probability α, the walk jumps back to one of the 

genes in ℳ. That is, α controls the extent to which we use new versus prior information, 

where higher values of α weigh the new information more heavily. With probability 1- α, 

the walk moves to a neighboring node, but instead of moving from one gene to one of its 

neighbors uniformly at random as is typically done, the probability instead is higher for 

neighbors that are closer to the prior knowledge set of genes K. Genes that are visited more 

frequently in these random walks are more likely to be relevant for the disease because they 

are more likely to be part of important pathways around K that are also close to ℳ. We thus 

numerically compute the probability with which each gene is visited in these random walks, 

and then use these probabilities to rank the genes. See Methods for details.

We apply our method uKIN to uncover cancer genes as well as genes associated with three 

rare heterogeneous disorders. Unless stated otherwise, uKIN integrates prior and new 

information using α = 0.5; further, prior knowledge is spread using the diffusion kernel with 

its sole parameter γ set to 1, as in (Qi et al., 2008). To uncover cancer genes, we use somatic 

point mutation data from 24 different TCGA cancer types. Genes that have missense and 

nonsense somatic mutations comprise the new information, and random walks start from 

these genes with probability proportional to their mutation rates. We use the curated list of 

499 cancer census genes (CGCs) available from COSMIC (Futreal et al., 2004) to derive 

both our prior knowledge K of cancer driver genes as well as the hidden set of true positives 

which we will use for evaluation. We test our approach for all 24 cancer types, but showcase 

results for glioblastoma multiforme (GBM). To uncover genes associated with each of the 

three rare diseases, we obtain our prior knowledge from the Online Mendelian Inheritance in 

Man (OMIM), and genes that have been implicated via GWAS studies provide our new 

information. All results in the main paper use the HPRD protein-protein interaction network 

(Prasad et al., 2009), with results shown for BioGrid (Stark et al., 2006) in the Supplement.

uKIN successfully integrates prior knowledge and new information

We compare uKIN’s performance when using both prior and new knowledge (RWRs with α 
= 0.5), to versions of uKIN using either only new information (α = 1) or only prior 

information (α = 0). Briefly, we use 20 randomly drawn CGCs to represent the prior 

knowledge K and another 400 randomly drawn CGCs to be the hidden set ℋ of unknown 

cancer-relevant genes that we aim to uncover (see Performance evaluation for details). We 

repeat this process 100 times, each time spreading signal using the diffusion approach (Qi et 

al., 2008) before performing RWRs from the genes observed to be somatically mutated. For 

each run, we analyze the ranked list of genes output by uKIN as we consider an increasing 

number of output genes, and average across runs the fraction that are members of the hidden 

set ℋ consisting of cancer driver genes.

For α = 0.5, we observe that a large fraction of the top predicted genes using the GBM 

dataset are part of the hidden set of known cancer genes (Figure 3A). At α = 1, our method 
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completely ignores both the network and the prior information K and is equivalent to 

ordering the genes by their mutational frequencies. The very top of the list output by uKIN 

when α = 1 consists of the most frequently mutated genes (in the case of GBM, this includes 

TP53 and PTEN). As we consider an increasing number of genes, ordering them by 

mutational frequency is clearly outperformed by uKIN with α = 0.5. At the other extreme 

with α = 0, the starting locations and their mutational frequencies are ignored as the random 

walk is memoryless and the stationary distribution depends only upon the propagated prior 

information. As expected, performance is considerably worse than when running uKIN with 

α = 0.5. Nevertheless, we observe that several CCGs are found for α = 0; this is due to the 

fact that known cancer genes tend to cluster together in the network (Cerami et al., 2010) 

and our propagation technique ranks highly the genes close to the genes in K.

We also consider uKIN’s performance as compared to an unguided walk with the same 

restart probability α = 0.5. In this case, the walk selects a neighboring node to move to 

uniformly at random. The stationary distribution that the walk converges to depends upon 

the starting locations and the network topology but is independent of the prior information. 

Such a walk provides a good baseline to judge the impact the propagated prior information 

has on the performance of our algorithm, and is an approach that has been widely applied 

(Köhler et al., 2008). As evident in Figure 3A, an unguided walk (purple line) performs 

considerably worse than uKIN with α = 0.5, highlighting the importance of prior 

information in guiding the walk.

Notably, the trends we observe on GBM hold across all 24 cancers (Figure 3B). For each 

cancer type, we consider the log2 ratio of the AUPRC of the version of uKIN that uses both 

prior and new information with α = 0.5 to the AUPRC for each of the other variants. For all 

cancer 24 cancers, when uKIN uses both prior and new information with α = 0.5, it 

outperforms the cases when using only prior information (Figure 3B, left) or using only new 

information (Figure 3B, middle and right).

uKIN is effective in uncovering cancer-relevant genes

We next evaluate uKIN’s performance in uncovering cancer-relevant genes as compared to 

several previous methods. These methods do not use any prior knowledge of cancer genes, 

and any performance differences between uKIN and them may be due either to the use of 

this important additional source of information or to specific algorithmic differences 

between the methods. Nevertheless, such comparisons are necessary to get an idea of how 

well uKIN performs as compared to the current state-of-the-art. All methods are run and 

AUPRCs computed as described in Methods. First, we compare uKIN with α = 0.5 to 

MutSigCV 2.0 (Lawrence et al., 2013), perhaps the most widely used frequency-based 

approach to identify cancer driver genes. We find that uKIN outperforms MutSigCV 2.0 on 

22 of 24 cancer types (Figure 4A). Next, we compare uKIN to three network-based 

approaches (Figure 4B): Muffinn (Cho et al., 2016), which considers mutations found in 

interacting genes; DriverNet (Bashashati et al., 2012), which finds driver genes by 

uncovering sets of somatically mutated genes that are linked to dysregulated genes; and 

nCOP (Hristov and Singh, 2017), which examines the per-individual mutational profiles of 

cancer patients in a biological network. uKIN exhibits superior performance across all 
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cancer types when compared to DriverNet, and outperforms Muffinn in 23 out of 24 cancer 

types and nCOP in 17 of the 24 cancer types. In several cancers, the performance 

improvements of uKIN are substantial. For example, uKIN has a four-fold improvement 

over MutSigCV 2.0 in predicting cancer genes for ovarian cancer (OV) and pancreas 

adenocarcinoma (PAAD), and a four-fold improvement over DriverNet for uterine corpus 

endometrial carcinoma (UCEC) and lung squamous cell carcinoma (LUSC). The limited 

number of patient samples available for uterine carcinosarcoma (UCS) limits nCOP’s 

perfomance (Hristov and Singh, 2017) whereas uKIN is able to leverage the prior knowledge 

available, resulting in uKIN’s two fold improvement over nCOP; this highlights the benefits 

from incorporating existing knowledge of disease-relevant genes, especially when the new 

data is sparse. We also compare to Hotnet2 (Leiserson et al., 2015), whose core algorithmic 

component is diffusion (Qi et al., 2008), and as such uKIN is more similar to it than other 

methods. Hotnet2 does not output a ranked list of genes, so we instead examine the list of 

genes highlighted by both methods. We find that uKIN exhibits higher precision and recall 

than Hotnet2 for all cancer types (Suppl. Figure S1); since both uKIN and Hotnet2 are 

network propagation approaches, these performance improvements illustrate the benefit of 

using prior information in identifying cancer-relevant genes.

Robustness tests

The overall results shown hold when we use different lists of known cancer genes as a gold 

standard (Suppl. Figure S2A), different numbers of predictions considered when computing 

AUPRCs (Suppl. Figure S2B), and different networks (Suppl. Figure S2C). Further, we 

confirm the importance of network structure to uKIN, by running uKIN on two types of 

randomized networks, degree-preserving and label shuffling, and show that, as expected, 

overall performance deteriorates across the cancer types (Suppl. Figure S2D); we note that 

while network structure is destroyed by these randomizations, per-gene mutational 

information is preserved, and thus highly mutated genes are still output.

We also determine the effect of using different values of α (Suppl. Figure S3), and find that 

running uKIN with α ∈ [0.1, 0.9] is superior to running it using only prior (α = 0) or new (α 
= 1) information; that is, the integration of prior and new information is helpful even when 

the precise value of α is not carefully tuned. Further, we determine the effect of the amount 

of prior knowledge used by uKIN, and find that while performance increases with larger 

numbers of genes comprising our prior knowledge, even as few as five prior knowledge 

genes leads to a ~4-fold improvement over ranking genes by mutational frequency (Suppl. 

Figure S4A). Finally, we investigate the effect of some incorrect prior knowledge, and find 

that while uKIN’s performance decreases with more incorrect knowledge, uKIN with α = 

0.5 performs reasonably with < 20% incorrect annotations (Suppl. Figure S5B).

Alternate formulations

We also tested guided diffusion from the somatically mutated genes instead of RWRs (see 

Methods). We empirically find that, for α = 0.5, diffusion with γ = 1 yields nearly identical 

per-gene scores on the cancer datasets we tested (GBM and kidney renal cell carcinoma). 

Similarly, for other α, we were able to find values of γ such that the RWRs and diffusion 

have highly similar results. On the other hand, replacing the initial diffusion from the prior 
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knowledge with a RWR (with α = 0.5) results in somewhat worse performance (e.g., ~10% 

drop in AUPRC for GBM).

uKIN highlights infrequently mutated cancer-relevant genes

A major advantage of network-based methods is that they are able to identify cancer-relevant 

genes that are not necessarily mutated in large numbers of patients (Leiserson et al., 2015). 

We next analyze the mutation frequency of genes output by uKIN with α = 0.5. In particular, 

for each cancer type, for each gene, we obtain a final score by averaging scores across the 

100 runs of uKIN; to prevent “leakage” from the prior knowledge set, if a gene is in the set 

of prior knowledge genes K for a run, this run is not used when determining its final score. 

We confirm that, for all cancer types, the top scoring genes exhibit diverse mutational rates, 

and include both frequently and infrequently mutated genes (Suppl. Figure S5).

We next highlight some infrequently mutated genes in GBM that are given high final scores 

by uKIN (i.e., are predicted as cancer-relevant). For example, LAD1 and SMAD4 are two 

well known cancer players that are highly ranked by uKIN, and that have mutational rates in 

GBM that are in the bottom 70% of all genes and are therefore hard to detect with 

frequency-based approaches. Of uKIN’s top 100 scoring genes, 23 are are in the bottom half 

with respect to mutational rates, and 5 of these are CGCs (p < 10−2, hypergeometric test). 

When considering the top scoring 100 genes by uKIN for each cancer type, those that have 

mutational ranks in the bottom half of all genes are each found to have a statistically 

significant enrichments of CGC genes. Thus, uKIN provides a means for pulling out cancer 

genes from the “long tail” (Garraway and Lander, 2013) of infrequently mutated genes.

In addition to highlighting known cancer genes, uKIN also ranks highly several non-CGC 

genes that may or may not play a functional role in cancer, as our knowledge of cancer-

related genes is incomplete. Among these predictions for GBM are ATXN1, SMURF1, and 

CCR3, all of which have been recently suggested to play a role in cancers (Kang et al., 2017; 

Lee et al., 2016; Li et al., 2017) and are each mutated in less than 5% of the samples. 

ATXN1 is a chromatin-binding factor that plays a critical role in the development of 

spinocerebellar ataxia, a neurodegenerative disorder (Rousseaux et al., 2018), and mutants of 

ATXN1 have been found to stimulate the proliferation of cerebellar stem cells in mice 

(Edamakanti et al., 2018). This is a promising gene for further investigation because 

glioblastoma is a cancer that usually starts in the cerebrum and the potential role of ATXN1 
in tumorigenesis has only recently been suggested (Kang et al., 2017). SMURF1 and its 

highly ranked by uKIN network-interactor SMAD1 have already been implicated in the 

development of several cancers (Yang et al., 2017). SMURF1 also interacts with the nuclear 

receptor TLX whose inhibitory role in glioblastoma has been revealed (Johansson et al., 

2016). Overall, we also find that the top scoring genes by uKIN for GBM are enriched in 

many KEGG pathways and GO terms relevant for cancer, including microRNAs in cancer, 
cell proliferation, choline metabolism in cancer and apoptosis (Bonferroni-corrected p < 

0.001, hypergeometric test).
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Cancer-type specific prior knowledge yields better performance

In several cases, CGC genes are annotated with the specific cancers they play driver roles in. 

We next test how uKIN’s performance changes when using such highly specific prior 

knowledge. We consider four cancer types, GBM, breast invasive carcinoma (BRCA), skin 

cutaneous carcinoma (SKCM), and thyroid carcinoma (THCA), with 33, 32, 42 and 29 CGC 

genes annotated to them, respectively. We repeatedly split each of these sets of genes in half, 

and use half as the set K of prior knowledge, and the other half as the set ℋ to test 

performance.

We first use knowledge consisting of genes specific to a cancer type of interest together with 

the TCGA data for that cancer to uncover that cancer’s specific drivers. Given the small 

number of genes annotated to each cancer, we assess performance by, for each of these 

genes, computing the rank of its score by uKIN over the splits where these genes are in ℋ. 

Next, for the same cancer type, we use a set K corresponding to a different cancer type as 

prior knowledge (excluding any genes that are annotated to the original cancer type) while 

still trying to uncover the genes in the original cancer of interest (i.e., using TCGA 

mutational data and ℋ belonging to the original cancer type). That is, we are testing the 

performance of uKIN when using knowledge corresponding to a different cancer type. For 

all four cancer types, we find that performance is best when uKIN uses prior knowledge for 

the same cancer cancer type (Figure 5A), as genes in ℋ appear higher in the list of genes 

output by uKIN. This suggests that uKIN can utilize cancer-type specific knowledge and 

highlights the benefits of having accurate prior information.

Application to identify disease genes for complex inherited disorders

A major advantage of our method is that it can be easily applied in diverse settings. As proof 

of concept, we apply uKIN to detect disease genes for three complex diseases: Amyotrophic 
lateral sclerosis (ALS), age-related macular degeneration (AMD), and epilepsy. For each 

disease, we randomly split in half the OMIM database’s (Online Mendelian Inheritance in 

Man, OMIM®, 2000) list of genes associated with the disease 100 times to form the set of 

prior knowledge K and the hidden set ℋ. We use the GWAS catalogue list of genes with 

their corresponding p-values to form the set ℳ. For all three diseases, uKIN combining both 

GWAS and OMIM sources of information (α = 0.5) performs better than diffusing the signal 

with γ - 1 using only knowledge from OMIM (Figure 5B, left panel). For each of these 

diseases, there is virtually no overlap between the GWAS hits ℳ and a set of OMIM genes 

ℋ; simply sorting genes by their significance in GWAS studies (i.e., uKIN with α = 1) 

results in AUPRC of 0. Instead, we spread information from the set of GWAS genes ℳ in 

the same fashion as from OMIM and observe again that using this single source of 

information alone does not work as well as uKIN’s using both GWAS and OMIM 

information together (Figure 5B, right panel).

Discussion

In this paper, we have shown that uKIN, a network propagation method that incorporates 

both existing knowledge as well as new information, is a highly effective and versatile 

approach for uncovering disease genes. Our method is based upon the intuition that prior 
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knowledge of disease-relevant genes can be used to guide the way information from new 

data is spread and interpreted in the context of biological networks. Because uKIN uses prior 

knowledge, it has higher precision than other state-of-the-art methods in detecting known 

cancer genes. Further, it excels at highlighting infrequently mutated genes that are 

nevertheless relevant for cancer. Additionally, we have shown that uKIN can be applied to 

discover genes relevant for other complex diseases as well.

The extent to which uKIN uses prior and new knowledge is balanced by a single parameter, 

α. While performance clearly varies with different values of this parameter, all tested values 

of α that combine both prior and new information result in performance improvements as 

compared to using either source of information alone (Suppl. Figures S3); this suggests that 

careful calibration of α is not necessary as long as both prior and new data are used. 

Nevertheless, the amount of prior knowledge available can guide selection of α. In 

particular, when substantial prior knowledge is available, uKIN can leverage it better when a 

smaller α is employed (Suppl. Figure S4). On the other hand, when knowledge is sparse or 

unreliable, a larger α allows uKIN to focus on the new information, as the walks restart 

more frequently and hover around the newly implicated genes.

The framework presented here can be extended in a number of natural ways. First, in 

addition to positive knowledge of known disease genes, we may also have “negative” 

knowledge of genes that are not involved in the development of a given disease. These genes 

can propagate their “negative” information, thereby biasing the random walk to move away 

from their respective modules and perhaps further enhancing the performance of our 

method. Second, uKIN is likely to benefit from incorporating edge weights that reflect the 

reliability of interactions between proteins; these weights will have an impact on both the 

propagation of prior knowledge as well as the guided random walks. Third, since a recent 

study (Przytycki and Singh, 2017) has shown that contrasting cancer mutation data with 

natural germline variation data helps boost the true disease signal by downgrading genes that 

vary frequently in nature, uKIN’s performance may benefit from scaling the starting 

probabilities of the new putatively implicated genes to account for their variation in healthy 

populations. Fourth, while here we have demonstrated how uKIN can use cancer-type 

specific knowledge, cancers of the same type can often be grouped into distinct subtypes, 

and such highly-detailed knowledge may improve uKIN’s performance even further. Finally, 

we note that network propagation approaches have been applied to other settings as well, 

including biological process prediction (Nabieva et al., 2005; Wang and Marcotte, 2011) and 

drug target identification (Picart-Armada et al., 2019). We conjecture that our guided 

network propagation approach will have wide applicability in computational biology, 

including where new data (e.g., arising from functional genomics screens) need to be 

interpreted in the context of what is already known about a biological process of interest.

In conclusion, uKIN is a flexible and effective method that handles diverse types of new 

information. As our knowledge of disease-associated genes continues to grow and be 

refined, and as new experimental data becomes more abundant, we expect that the power of 

uKIN for accurately prioritizing disease genes will continue to increase.
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STAR Methods

Resource availability

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Mona Singh (mona@cs.princeton.edu).

Materials Availability—This study did not generate new materials.

Data and Code Availability—All original code is freely available for download at https://

github.com/Singh-Lab/uKIN.

Method details

Background and notation—The biological network is modeled, as usual, as an 

undirected graph G = (V, E) where each vertex represents a gene, and there is an edge 

between two vertices if an interaction has been found between the corresponding protein 

products. We require G to be connected, restricting ourselves to the largest connected 

component if necessary. We explain our formulation with respect to cancer, but note that it is 

applicable in other settings (both disease and otherwise). The set of genes already known to 

be cancer associated is denoted by K = k1, k2, …, kl . The set of genes that have been found 

to be somatically mutated in a cohort of individuals with cancer is denoted by 

ℳ = m1, m2, …, mp , with ℱ = fm1, fm2, …, fmp  corresponding to the rate with which each 

of these genes is mutated. We refer to K as the prior knowledge and ℳ as the new 

information. We assume that K ⊂ V  and ℳ ⊂ V ; in practice, we remove genes not present in 

the network. The genes within K and ℳ may overlap (i.e., it is not required that 

K ∩ M = ∅).

Guided RWR Algorithm—For each gene i ∈ V, assume that we have a measure qi that 

represents how close i is to the set of genes K. We will use the nonnegative vector q, which 

we describe in the next section, to guide a random walk starting at the nodes in ℳ and 

walking towards the nodes in K. Each walk starts from a gene i in ℳ, chosen with 

probability proportional to its mutational rate fi. At each step, with probability α the walk 

can restart from a gene in ℳ, and with probability 1 — α the walk moves to a neighboring 

gene picked probabilistically based upon q. Specifically, if N(i) are the neighbors of node i, 
the walk goes from node i to node j ∈ N(i) with probability proportional to qj/∑k ∈ N(i)qk. 

That is, if at time t the walk is at node i, the probability that it transitions to node j at time t + 

1 is

pij = (1 − α)δij ⋅
qj

∑k ∈ N(i)qk
+ α ⋅

fj
∑k ∈ ℳfk

where δij = 1 if j ∈ N(i) and 0 otherwise. Hence, the guided random walk is fully described 

by a stochastic transition matrix P with entries pij. By the Perron-Frobenius theorem, the 

corresponding random walk has a stationary distribution π (a left eigenvector of P associated 

with the eigenvalue 1). If the graph G is connected, then the back edges to ℳ easily ensure 

Hristov et al. Page 11

Cell Syst. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Singh-Lab/uKIN
https://github.com/Singh-Lab/uKIN


that π is unique. Therefore, πPt = π and we can compute the stationary distribution π that 

the guided random walk converges to. For each gene i, its score is given by the ith element 

of π. The genes whose nodes have high scores are most frequently visited and, therefore, are 

more likely relevant to cancer as they are close to both the mutated starting nodes as well as 

to known cancer genes. For the results presented in the main manuscript, α is set to 0.5.

Incorporating prior knowledge—For each gene in the network, we wish to compute 

how close it is to the set of cancer-associated genes K. While many approaches have been 

proposed to compute “distances” in networks, we use a network flow/diffusion technique 

where each node k ∈ K introduces a continuous unitary flow which diffuses uniformly 

across the edges of the graph and is lost from each node v ∈ V in the graph at a constant 

first-order rate γ (Qi et al., 2008). Briefly, let A = (aij) denote the adjacency matrix of G 
(i.e., aij = 1 if (i, j) ∈ E and 0 otherwise) and let S be the diagonal matrix where sii is the 

degree of node i ∈ V. Then, the Laplacian of the graph G shifted by γ is defined as L = S + 

γI — A. The equilibrium distribution of fluid density on the graph is computed as q = L−1 b 
(Qi et al., 2008), where b is the vector with 1 for the nodes introducing the flow and 0 for the 

rest (i.e., bi = 1 if vi ∈ K and bi = 0 if vi ∉ K for ∀vi ∈ V). Note that L is diagonally 

dominant, hence nonsingular, for any γ ≥ 0. When spreading information from the set of 

prior knowledge genes, we set γ = 1, as recommended in (Qi et al., 2008). The vector q can 

be efficiently computed numerically. Thus, at equilibrium, each node i in the graph is 

associated with a score qi which reflects how close it is to the nodes already marked as 

causal for cancer.

Guided diffusion—Instead of performing RWRs to propagate knowledge in a guided 

manner, it is also possible to adapt the diffusion approach just outlined by letting A = (aij) be 

defined such that aij = qj/∑k ∈ N(i)qk, and using A to compute L and the equilibrium density 

as above.

Quantification and statistical analysis

Data sources and pre-processing—We test uKIN on two protein-protein interaction 

networks: HPRD (Release 9_041310) (Prasad et al., 2009) and BioGrid (Release 3.2.99, 

physical interactions only) (Stark et al., 2006). Biological networks often contain spurious 

interactions as well as proteins with many interactions. Since both can be problematic for 

network analysis, we pre-process the networks as described in (Hristov and Singh, 2017). 

Briefly, we remove all proteins with an unusually high number of interactions (> 900 

interactions and more than 10 standard deviations away from the mean number of 

interactions). For BioGrid, this removes UBC, APP, ELAVL1, SUMO2 and CUL3. For 

HPRD, this removes no proteins. To further handle the connectivity arising within networks 

due to proteins with many interactions, we filter interactions using the diffusion state 

distance (DSD) metric introduced in (Cao et al., 2013); the DSD metric captures the 

intuition that interactions between proteins that also share interactions with low degree 

proteins are more likely to be functional than interactions that do not (and thus are assigned 

closer distances). For each interaction, the DSD scores (as computed by the software of (Cao 

et al., 2013)) between the corresponding proteins are Z-score normalized, and proteins with 
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Z-scores > 0.3 are removed. This process leaves us with 9,379 proteins and 36,638 

interactions for HPRD and 14,326 proteins and 102,552 interactions for BioGrid.

We use level 3 cancer somatic mutation data from TCGA (TCGA Research Network, n.d.) 

for 24 cancer types (Supplemental Table 1). For each cancer type, we process the data as 

previously described and exclude samples that are obvious outliers with respect to their total 

number of mutated genes (Hristov and Singh, 2017). Our set of prior knowledge is 

constructed from the 719 CGC genes that are labeled by COSMIC (version August 2018) as 

being causally implicated in cancer (Futreal et al., 2004). For each cancer type, our new 

information consists of genes that have somatic missense or nonsense mutations, and we 

compute the mutational frequency of a gene as the number of observed somatic missense 

and nonsense mutations across tumors, divided by the number of amino acids in the encoded 

protein.

We obtain 24, 28, and 63 genes associated with three complex diseases, age-related macular 
degeneration (AMD), Amyotrophic lateral sclerosis (ALS) and epilepsy, respectively, from 

OMIM (Online Mendelian Inheritance in Man, OMIM®, 2000). These genes are used to 

construct the set of prior knowledge. For each disease, we form the set M by querying from 

the GWAS database (Buniello et al., 2018) the genes implicated for the disease; we note that 

the genes reported by a given GWAS study are usually, but not always, those closest to the 

identified SNPs. We use the corresponding p-values for these genes to compute the starting 

frequencies f. Specifically, for each disease, for each GWAS study i, if a gene j’s p-value is 

pi,j, we set its frequency to log pi, j /∑k log pi, k  and then for each gene average these 

frequencies over the studies.

Performance evaluation—To evaluate our method in the context of cancer, we subdivide 

the CGC genes that appear in our network into two subsets. We randomly draw from the 

CGCs 400 genes to form a set ℋ of positives that we aim to uncover. From the remaining 

199 CGCs present in the network, we randomly draw a fixed number l to represent the prior 

knowledge K and run our framework. Unless otherwise stated, we use l = 20 for all reported 

results. As we consider an increasing number of most highly ranked genes, we compute the 

fraction that are in the set ℋ of positives. All CGC genes not in ℋ are ignored in these 

calculations. Importantly, the genes in K which are used to guide the network propagation 

are never used to evaluate the performance of uKIN. Note that this testing set up, which 

measures performance on ℋ, allows us to compare performance of uKIN when choosing 

prior knowledge sets of different size l from the CGC genes not in ℋ.

We also compute area under the precision-recall curves (AUPRCs). In this case, all CGC 

genes in ℋ are considered positives, all CGC genes not in ℋ are neutral (ignored), and all 

other genes are negatives. Though we expect that there are genes other than those already in 

the CGC that play a role in cancer, this is a standard approach to judge performance (e.g., 

see (Jia and Zhao, 2014)) as cancer genes should be highly ranked. To focus on performance 

with respect to the top predictions, we compute AUPRCs using the top 100 predicted genes. 

To better estimate AUPRCs and account for the randomness in sampling, we repeatedly 

draw (10 times) the set ℋ and for each draw we sample the genes comprising the prior 
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knowledge K 10 times. The final AUPRC results from averaging the AUPRCs across all 100 

runs.

We compare uKIN on the cancer datasets to the frequency-based method MutSigCV 2.0 

(Lawrence et al., 2013) and four network-based methods, DriverNet (Bashashati et al., 

2012), Muffinn (Cho et al., 2016), nCOP(Hristov and Singh, 2017) and HotNet2 (Leiserson 

et al., 2015). All methods are run on each of the 24 cancer types with their default 

parameters. Muffinn, nCOP and HotNet2 are run on the same network as uKIN, whereas 

MutSigCV does not use a network and DriverNet instead uses an influence (i.e., functional 

interaction) graph and transcriptomic data (we use their default influence graph and provide 

as input TCGA normalized expression data). Since uKIN uses a subset of CGCs as prior 

knowledge, we ensure that all methods are evaluated with respect to the hidden sets ℋ (i.e., 

of CGCs not used by uKIN). Though we could just consider performance with respect to 

one hidden set, considering multiple sets enables a better estimate of overall performance. 

For these comparisons, uKIN with α = 0.5 is run 100 times, as described above, with 20 

randomly sampled genes comprising the prior knowledge, and evaluation is performed with 

respect to the genes in the hidden sets. All methods’ AUPRCs are computed using the same 

randomly sampled test sets ℋ and averaged at the end. Since HotNet2 outputs a set of 

predicted cancer-relevant genes and does not rank them, we cannot compute AUPRCs for it; 

instead we compute precision and recall for its output with respect to the test sets ℋ and 

compare to uKIN’s when considering the same number of top scoring genes. Note that all 

methods use all TCGA data for a cancer type for each run.

To evaluate our method in the context of the three complex diseases, we subdivide evenly 

the set of OMIM genes associated with each disease into the prior knowledge set K and the 

set of positives ℋ. As with the cancer data, we do this repeatedly (100 times) and average 

AUPRCs at the end.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Primer

Biological networks provide a powerful framework for discovering disease genes. Genes 

relevant for a given disease typically target a relatively small number of biological 

pathways, and since genes that take part in the same pathway or process tend to be close 

to each other in networks, disease genes cluster within networks. It is well established 

that if genes known to be causal for a particular disease are mapped onto a network, other 

disease-relevant genes are likely to be found in their vicinity. The simplest methods to 

predict disease genes using interaction networks rely on finding those that directly 

interact with a known disease gene, or that are a short number of “hops” on the network 

to at least one known disease gene.

More sophisticated methods aim to uncover genes that are close not just to a single 

disease gene but that are close, as a whole, to all disease genes. The concept of random 

walks on graphs (or networks) underlies many approaches to measure these distances 

within biological networks. In its simplest version, we imagine a “walker” at a particular 

protein (or node) at a specific time, and at every time point, the walker moves to one of 

its neighbors at random. We consider a variant where at the start of the process, the 

walker is at each node with some probability, and at each subsequent time point, the 

walker can either restart with probability α or otherwise walk to one its neighbors. When 

we constrain these walks by having the walker only start at a set of known disease genes, 

then the walker will tend to “hover” around this set of genes. Mathematically, it is 

possible to compute the fraction of time the walker is at each node over very long random 

walks, and this so-called stationary distribution can be used to prioritize disease genes, as 

those genes that are closer to the initial set of disease genes will tend to have higher 

values. An alternative but closely related formalism relies on the idea of diffusion, where 

fluid is pumped into an initial set of genes and spreads through the graph over the edges 

with fluid “leaking” out at some rate at each node; again, in the limit, genes closer to the 

initial set of genes will have more fluid, and this can be computed mathematically.

Random walk and diffusion-based methods can each be used to identify disease genes, by 

spreading signal either from well-established, annotated disease genes or from genes that 

have some new evidence of being disease-relevant (e.g., genes somatically mutated in 

cancers or identified via genome-wide association studies). Here we introduce a 

framework that uses both sources of biological information, as existing knowledge of 

disease genes should inform the way new mutational data is examined within networks 

(Figure 1). We propose a guided random walk approach to uncover disease genes, where 

walks initiate from the new data and when choosing which nodes to walk to, the walks 

are biased so as to tend to move towards genes which have been determined via a 

diffusion process to be closer to known disease genes. We apply our approach to somatic 

mutations observed across tumors to discover genes causal for cancer, as well as to 

genome-wide association data to discover genes causal for complex diseases. We 

demonstrate that propagating signal by integrating both known disease genes as well as 

new putative disease genes performs substantially better than propagating signal from 

either source alone.
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Highlights

• Guided network propagation method for discovery of disease-relevant genes

• Uses known disease genes to guide random walks initiated at newly 

implicated genes

• The guided walks allow for network-based integration of prior and new data

• Effectiveness of method shown on cancer genomics and genome-wide 

association data
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Figure 1. Illustration of guided random walks.
A schematic of a network with seven genes is shown, with node 1 as a putatively implicated 

disease gene (in green) and node 6 as a known disease gene (in red). Our approach performs 

guided random walks with restarts from putatively implicated genes. (Left) In a traditional 

random walk procedure, a walker at node 1 is equally likely to move to one of the 

neighboring nodes. In our procedure, before random walks are initiated from putative 

disease genes, fluid is injected at known disease genes and diffused along the edges of the 

network. (Center) Nodes closer to the source of the fluid receive larger amounts of fluid. 

(Right) Instead of performing a random walk with uniform transition probabilities to any 

neighboring node, the walker uses the amount of fluid at each node to update the transition 

probabilities; these transition probabilities guide the walk so as to tend to move the walker 

closer to known disease genes.
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Figure 2. Overview of our approach.
(A) Known disease-relevant genes (prior knowledge) are mapped onto an interaction 

network (shown in red, top). Signal from this prior knowledge is propagated through the 

network via a diffusion approach (Qi et al., 2008), resulting in each gene in the network 

being associated with a score such that higher scores (visualized in darker shades of red, 

bottom) correspond to genes closer to the set of known disease genes. These scores are used 

to set transition probabilities between genes such that a neighboring gene that is closer to the 

set of prior knowledge genes is more likely to be chosen. (B) Genes putatively associated 

with the disease—corresponding to the new information—are mapped onto the network 

(shown in green, top). To integrate both sources of information, RWRs are initiated from the 

set of putatively associated genes, and at each step, the walk either restarts or moves to a 

neighboring gene according to the transition probabilities (i.e., walks tend to move towards 

genes outlined in darker shades of red). These prior-knowledge “guided” RWRs have a 

stationary distribution corresponding to how frequently each gene is visited, and this 

distribution is used to order the genes. Higher scores correspond to more frequently visited 

genes (depicted in darker greens, bottom).
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Figure 3. uKIN successfully integrates new information and prior knowledge.
(A) We illustrate the effectiveness of our approach uKIN on the GBM data set and the 

HPRD protein-protein interaction network using 20 randomly drawn CGCs to represent the 

prior knowledge. We combine prior and new knowledge using a restart probability of α = 

0.5 (blue line). As we consider an increasing number of high scoring genes, we plot the 

fraction of these that are part of the hidden set of CGCs. As baseline comparisons, we also 

consider versions of our approach where we use only the new information (α = 1) and order 

genes by their mutational frequency (green line); where we use new information to perform 

unguided random walks with α = 0.5 and order genes by their probabilities in the stationary 

distribution of the walk (which uses new information but not prior information, purple line); 

and where we use only prior information (α = 0) and order genes based on information 

propagated from the set of genes comprising our prior knowledge (orange line). Integrating 

both prior and new sources of information results in better performance. (B) The 

performance of uKIN when integrating information at α = 0.5 is compared to the three 

baseline cases where either only prior information is used (α = 0, left) or when only new 

information is used (α = 1, right and unguided RWRs with α = 0.5, middle). In all three 

panels, for each cancer type, we plot the log2 ratio of the AUPRC of uKIN with guided 

RWRs with α = 0.5 to the AUPRC of the other approach. Across all 24 cancer types, using 

both sources of information outperforms using just one source of information.
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Figure 4. uKIN is more effective than other methods in identifying known cancer genes.
For each method, for each cancer type, we plot the log2 ratio of uKIN’s AUPRC to its 

AUPRC. (A) Comparison of uKIN to MutSigCV 2.0, a state-of-the-art frequency-based 

approach. uKIN outperforms MutSigCV 2.0 on 22 of the 24 cancer types. (B) Comparison 

of uKIN to DriverNet (left), Muffinn (middle), and nCOP (right). Our approach uKIN 

outperforms DriverNet on all cancer types, Muffinn on all but one cancer type and nCOP on 

17 out of 24 cancer types.
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Figure 5. 
(A) Use of cancer-type specific knowledge improves performance. For four cancer types, 

BRCA, GBM, SKCM, and THCA, we consider the performance of uKIN with α = 0.5 when 

using TCGA mutational data for that cancer type with prior knowledge consisting of genes 

known to be driver in that cancer type, as compared to performance when the prior 

knowledge set consists of genes that are annotated as driver only for one of the other three 

cancer types. For each cancer, performance is measured by the average ranking by uKIN of 

genes known to be driver for that cancer. For all combinations of possible prior knowledge 

sets (x-axis) and specific cancer gene sets that we wish to recover (y-axis), using prior 

knowledge from another cancer (off diagonal entries) leads to a decrease in performance as 

compared to the corresponding pairs (diagonal entries), as measured by the increase in 

uKIN’s average ranking of genes we aimed to uncover. (B) uKIN is effective in identifying 
complex disease genes. We demonstrate the versatility of the uKIN framework by 

integrating OMIM and GWAS data for three complex diseases, ALS, AMD, and epilepsy. 
For each disease, we compare uKIN’s performance when using OMIM annotated genes as 

prior information and GWAS hits as new information with α = 0.5, to baseline versions that 

propagate only information via diffusion from OMIM (left) or GWAS studies (right). In each 

panel, for each disease, we plot the log2 ratio of the AUPRC obtained by uKIN to that 

obtained by the baseline method; in all cases, we observe that these values are positive, 

thereby demonstrating that uKIN outperforms the baseline methods by successfully 

integrating prior and new information.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

DriverNet Bashashati et al., (2012) https://www.bioconductor.org/packages/release/bioc/html/
DriverNet.html

DSD Cao et al. (2013) http://dsd.cs.tufts.edu/server/

Hotnet2 Leiserson et al. (2015) https://github.com/raphael-group/hotnet2

Muffinn Cho et al. (2016) http://www.inetbio.org/muffinn/

MutSigCV Lawrence et al. (2013) http://archive.broadinstitute.org/cancer/cga/mutsig

nCOP Hristov and Singh (2017) https://github.com/Singh-Lab/nCOP

uKIN This paper https://github.com/Singh-Lab/uKIN

Other

Biogrid Stark et al. (2006) https://thebiogrid.org/

GWAS Buniello et al., (2019) https://www.ebi.ac.uk/gwas/

HPRD Prasad et al. (2009) http://www.hprd.org/

OMIM Online Mendelian Inheritance in Man https://omim.org/

TCGA TCGA Research Network https://cancergenome.nih.gov/
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