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Abstract

Background: Studies on the rhizosphere microbiome of various plants proved that rhizosphere microbiota carries
out various vital functions and can regulate the growth and improve the yield of plants. However, the rhizosphere
microbiome of commercial blueberry was only reported by a few studies and remains elusive. Comparison and
interpretation of the characteristics of the rhizosphere microbiome of blueberry are critical important to maintain its
health.

Results: In this study, a total of 20 rhizosphere soil samples, including 15 rhizosphere soil samples from three
different blueberry varieties and five bulk soil samples, were sequenced with a high-throughput sequencing
strategy. Based on these sequencing datasets, we profiled the taxonomical, functional, and phenotypic
compositions of rhizosphere microbial communities for three different blueberry varieties and compared our results
with a previous study focused on the rhizosphere microbiome of blueberry varieties. Our results demonstrated
significant differences in alpha diversity and beta diversity of rhizosphere microbial communities of different
blueberry varieties and bulk soil. The distribution patterns of taxonomical, functional, and phenotypic compositions
of rhizosphere microbiome differ across the blueberry varieties. The rhizosphere microbial communities of three
different blueberry varieties could be distinctly separated, and 28 discriminative biomarkers were selected to
distinguish these three blueberry varieties. Core rhizosphere microbiota for blueberry was identified, and it
contained 201 OTUs, which were mainly affiliated with Proteobacteria, Actinobacteria, and Acidobacteria. Moreover,
the interactions between OTUs of blueberry rhizosphere microbial communities were explored by a co-occurrence
network of OTUs from an ecological perspective.

Conclusions: This pilot study explored the characteristics of blueberry’s rhizosphere microbial cormmunity, such as
the beneficial microorganisms and core microbiome, and provided an integrative perspective on blueberry’s
rhizosphere microbiome, which beneficial to blueberry health and production.
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Background

The rhizosphere of plants harbors diverse microorgan-
isms in the soil, which evolve alongside plants and envi-
ronments and form an integral part of plants’ life cycle.
Rhizosphere microbiota carries out various vital
functions and plays a critical role in biogeochemical cy-
cles involving soil formation and carbon cycling [1]. For
example, many rhizosphere microorganisms provide nu-
trients to plants from soil [2] and prevent plants from
being infested by pathogens [3]. The complex and dy-
namic interactions between plants and microbiota, espe-
cially between microorganisms, are related to plants’
growth [4, 5]. Hence, understanding the taxonomical
and functional compositions of the rhizosphere micro-
bial community is beneficial to plants’ growth and yield.
In recent decades, many studies have been conducted to
characterize rhizosphere microbiome in specific crop
plant species, including rice [6], soybean [7], corn [8],
barley [9], and wheat [10], and vegetable and fruit crops,
including sugarcane [11], cucumber [12], grapevine [13]
and citrus [14, 15]. A majority of these studies were per-
formed through high-throughput sequencing of the mi-
crobial 16S rRNA to fully explore and characterize the
role of microbiota in the rhizosphere microbial commu-
nity. Several consistent trends and specific traits were
demonstrated based on many studies on the rhizosphere
microbiome of plants. For example, the number of bac-
teria affiliated with Alphaproteobacteria in various
plants’ rhizosphere microbial communities increases [9,
16, 17]. However, the current studies on the rhizosphere
microbiome are primarily on model plants, and relatively
few studies related to blueberry have been carried out to
explore the taxonomical and functional compositions of
the blueberry rhizosphere microbial community [18], es-
pecially for the rhizosphere microbiome of different
blueberry varieties [19].

Blueberries are perennial flowering plants known for
their blue or purple berries. In taxonomy, the species of
blueberry are classified into the Vaccinium genus. The
commercial blueberries are all native to North America,
and different kinds of blueberries were later introduced
to Asia and Europe [20]. In recent years, numerous stud-
ies have investigated the effects of blueberry on con-
sumer’s health based on their composition in flavonoids,
polyphenols, anthocyanins, pro-anthocyanidins, phenolic
acids and stilbenes, and demonstrated that the anti-
oxidant and anti-inflammatory activities of blueberry
[21, 22]. Moreover, previous studies have explored the
dynamic changes of human or mice gut microbes with
the consumption of blueberry or its extracts [23, 24].
Six-week regular consumption of wild blueberry drink
can positively modulate the composition of human gut
microbiota and increase the content of Bifidobacteria
[23], which have been shown to exert positive benefits to
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humans health [25]. Additionally, growing evidence sug-
gested that flavonoids of blueberry have the potential to
restrict the development and severity of certain cancers
and vascular diseases [26]. Given these benefits, more
blueberries are needed and consumed. However, the dis-
eases of blueberry, such as stem and leaf diseases, in-
cluding phomopsis leaf spot and fruit rot and septoria
leaf spot, reduce the yield of blueberry [27-29]. Previous
studies have suggested that the rhizosphere microbiome
can influence plant susceptibility to diseases and fitness
response to environmental factors [30, 31], and several
diseases of plants are related to rhizosphere microbiota
in soil and can be controlled by related microbes [32,
33]. Therefore, understanding the blueberry rhizosphere
microbiome and comparing the differences in rhizo-
sphere microbial communities of different blueberry var-
ieties, including the universal microbiota (shared
microbiota) between different kinds of blueberry var-
ieties and specific microbiota of each blueberry, are fa-
vorable to the cultivation and agricultural management
of blueberries. However, only a few studies have ex-
plored and illustrated the composition of the rhizo-
sphere microbiome of blueberry to date [19] and the
composition of blueberry rhizosphere microbial commu-
nity remains elusive.

In this present study, we collected 15 rhizosphere soil
samples of three kinds of blueberry varieties, including
Rabbiteye Blueberry (Vaccinium virgatum), Northern
Highbush Blueberry (V. corymbosum), and Southern
Highbush Blueberry (an interspecific hybrid of V. cor-
ymbosum and V. darrowii), and five adjacent soil
samples (bulk soil) from a blueberry plantation in
Hefei City, China, on 13 April 2018. To profile the
structure of rhizosphere microbial community of
blueberries, we performed 16S rRNA amplicon se-
quencing for these samples and analyzed the sequen-
cing data. In this work, we focused on the following
scientific questions: (i) How does the microbial diver-
sity differ between rhizosphere microbial communities
of different blueberry varieties? (ii) What are the dif-
ferences in taxonomical, functional, and phenotypic
compositions between rhizosphere microbial commu-
nities of different blueberry varieties? (iii) What is the
core microbiota of rhizosphere microbial communities
in blueberry? (iv) How are the co-occurrence relation-
ships between the microbiota in different blueberry
varieties? Notably, our study aims to compare and in-
terpret the characterization of the blueberry rhizo-
sphere microbial community and explore the patterns
of the blueberry rhizosphere microbial community,
which could provide an integrative view on the blue-
berry rhizosphere microbiome and provide insights on
keeping blueberry health to improve the production
of blueberry.
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Results The alpha diversities of rhizosphere microbial commu-
Differential microbial diversity in blueberry rhizosphere nities were compared between three blueberry varieties
microbial community and bulk soil samples using the number of OTUs,

To profile the taxonomical compositions of rhizosphere mi-  Shannon index, and Simpson index (Fig. la—c). We ob-
crobial communities of blueberry and compare the taxo-  served that the number of OTUs of microbial communi-
nomical differences for these three blueberry varieties and  ties in bulk soil samples was significantly higher than
bulk soil samples, we sequenced the V3-V4 region of 16S  that in three blueberry varieties, and the number of
rDNA of bacteria and archaea from rhizosphere samples. ~OTUs of rhizosphere microbial communities among
In total, 997,713 high-quality 16S rRNA amplicons for 20  three blueberry varieties was also significantly different
rhizosphere samples were obtained and analyzed. The (Kruskal-Wallis test, p <0.05; Fig. 1la). As for species
number of sequences for these samples ranged from 31,591  richness of rhizosphere microbial communities, we
to 73,918, with an average value 49,886 (Supplementary found that the Shannon and Simpson indexes of rhizo-
Table 1). After rarefying the final OTU table to 18,652  sphere microbial communities of bulk soil samples were
reads, we detected 6280 OTUs for these rhizosphere soil  significantly higher than those of blueberry varieties, ex-
samples, and the number of OTUs for blueberry rhizo- cept Southern Highbush Blueberry (Fig. 1b, c).

sphere microbial communities and bulk samples ranged The similarities of rhizosphere microbial communities
from 1495 OTUs to 2548 OTUs (Supplementary Table 1). were also assessed among three blueberry varieties and
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bulk soil samples based on Bray—Curtis (Fig. 1d) and un-
weighted UniFrac distance metrics (Fig. 1e). The results
of PCoA based on Bray—Curtis (Fig. 1d) and unweighted
UniFrac distance metrics (Fig. le) revealed significant
differences in taxonomical compositions between micro-
bial communities of blueberry rhizosphere soil and bulk
soil (p <0.001, F = 6.815, One-way PERMANOVA, N =
9999, Bray—Curtis dissimilarity index). The taxonomical
compositions of rhizosphere microbial communities of
three blueberry varieties also significantly differed (p <
0.001, F = 7.472, One-way PERMANOVA, N = 9999,
Bray—Curtis dissimilarity index).

Differential taxonomical composition in blueberry
rhizosphere microbial community

To gain insights into the taxonomical compositions of
blueberry rhizosphere microbial communities, we strati-
fied the taxonomical structure of rhizosphere microbial
communities at the phylum, order, and genus levels
(Fig. 2). We compared the differences in taxonomical
compositions between rhizosphere microbial communi-
ties of blueberry and bulk soil and among different blue-
berry varieties.

At the phylum level, we found that Proteobacteria,
Actinobacteria, Acidobacteria, Firmicutes, Planctomy-
cetes, and Verrucomicrobia constituted the six most
enriched bacterial phyla among rhizosphere microbial
community of three blueberry varieties and bulk soil
(Fig. 2a). The predominant phylum is almost consistent
with a previous study, which also reported that Proteo-
bacteria, Actinobacteria, Acidobacteria, Bacteroidetes,
Planctomycetes, Chloroflexi, and Verrucomicrobia were
enriched in the rhizosphere microbiome of blueberry
[19]. The proportion of Proteobacteria of each blueberry
variety (Rabbiteye Blueberry: 40.81%+0.87%, Northern
Highbush Blueberry: 36.79%+6.2%, Southern Highbush
Blueberry: 36.2%+2.07%) was not different from that of
bulk soil (39.42%+6.31%, t-test, all p > 0.05). The relative
abundances of Actinobacteria of rhizosphere microbial
communities of Rabbiteye Blueberry (24.72%+4.91%)
and Northern Highbush Blueberry (22.93%+5.49%) var-
ieties were significantly higher than those of bulk soil
(14.57%+2.72%, t-test, p <0.05). Although the relative
abundance of Firmicutes increased in rhizosphere micro-
bial communities of three blueberry varieties compared
with bulk soil, the proportions in Northern Highbush
Blueberry (6.24%+1.8%) and Southern Highbush
Blueberry (6.02%+1.13%) were significantly different
from that in bulk soil (2.97%+1.72%, t-test, p < 0.05).
The relative abundances of Nitrospirae were significantly
decreased in rhizosphere microbial communities of Rab-
biteye Blueberry (0.26%+0.08%), Northern Highbush
Blueberry (0.16%+0.03%), and Southern Highbush Blue-
berry varieties (0.25%+0.11%) compared with bulk soil
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(0.7%%0.29%, t-test, p <0.05). Additionally, LDA was
conducted to maximize the separation of rhizosphere
microbial communities of three blueberry varieties and
bulk soil based on the relative abundances of predomin-
ant phyla. We observed that rhizosphere microbial
communities of three blueberry varieties and bulk soil
could be distinctly differentiated by integrating a linear
combination of phyla (Fig. 2b). Among the linear
combination of phyla, we found that Planctomycetes,
Gemmatinonadetes, Chloroflexi, and Verrucomicrobia
were important for differentiating rhizosphere microbial
communities of three blueberry varieties and bulk soil

(Fig. 2b).
At the order level, we observed that Acidobacteriales,
Actinomycetales, Xanthomonadales, Rhodospirillales,

Rhizobiales, and Gaiellales were the six predominant
bacterial orders in rhizosphere microbial communities of
three blueberry varieties and bulk soil (Fig. 2c,
Supplementary Figure 1la). Specifically, we found that
the average relative abundances of Actinomycetales in
rhizosphere microbial communities of Rabbiteye
Blueberry (15.2%+3.37%) and Northern Highbush Blue-
berry (12.31%+4.41%) were increased compared with
those of bulk soil (7.22%+2.77%) and Southern Highbush
Blueberry (6.29%+3.64%). The average relative abun-
dance of Xanthomonadales in rhizosphere microbial
communities of Rabbiteye Blueberry (15.19%+2.71%)
was significantly higher than those of bulk soil (5.81%+
2.99%, t-test, p <0.01), Northern Highbush Blueberry
(9.13%+2.29%, t-test, p <0.01), and Southern Highbush
Blueberry (9.81%+0.59%, t-test, p <0.05). We also
profiled the taxonomical composition of rhizosphere
microbial communities of blueberry varieties and bulk
soil at the genus level, and we found that the specific
distribution of genus contributed to the discrepancy of
rhizosphere microbial communities (Fig. 2d, Supplemen-
tary Figure 1b).

Differential functional and phenotypic compositions in
blueberry rhizosphere microbial community

The functional and phenotypic compositions in blueber-
ry’s rhizosphere microbial community were profiled
based on their taxonomical compositions (Fig. 3). As to
the functional traits that collapsed to level 2 of the
KEGG database, we found that the enrichment of
enzyme families and environmental adaptation in rhizo-
sphere microbial communities and the proportion of
biosynthesis of other secondary metabolites was higher
in Northern Highbush Blueberry (Supplementary Figure
2). The relative abundances of functional traits related to
transporters, general function, ABC transporters, DNA
repair and recombination proteins, two-component sys-
tem, and urine metabolism were higher in the rhizo-
sphere microbial community of blueberry varieties and
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bulk soil (Fig. 3a). Moreover, we found that the func-
tional compositions of the rhizosphere microbial com-
munities of Rabbiteye Blueberry significantly differed
from those of bulk soil (p <0.05, F = 3.545 One—way
PERMANOVA, N 9999, Bray—Curtis dissimilarity
index) and Southern Highbush Blueberry (p <0.05, F =
3.3, One-way PERMANOVA, N = 9999, Bray—Curtis
dissimilarity index). The rhizosphere microbial commu-
nities of three blueberry varieties and bulk soil could be
distinctly distinguished by integrating a linear combin-
ation of functional components (Fig. 3b).

Additionally, we explored the phenotypic compositions
of rhizosphere microbial communities between three
blueberry varieties and bulk soil. We observed that the
proportions of anaerobic microbiota, mobile elements,
and stress tolerant significantly differed (Kruskal-Wallis
test, p < 0.05, Fig. 3c). Specifically, the proportions of an-
aerobic microbiota of bulk soil (4.78%+1.63%) were
higher than those of Rabbiteye Blueberry (2.14%+0.62%)
and Northern Highbush Blueberry (3.08%+0.23%), ex-
cept Southern Highbush Blueberry (4.06%+1.04%,
Fig. 3c). The relative abundances of mobile elements in
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correction

the rhizosphere microbial communities of three blue-
berry varieties (Rabbiteye Blueberry: 40.18%+4.51%,
Northern Highbush Blueberry: 32.61%+4.25%, and
Southern Highbush Blueberry: 25.95%+3.78%) were
higher than those of bulk soil (23.67%+3.99%, Fig. 3c).
The proportions of stress tolerant of rhizosphere micro-
bial communities of Rabbiteye Blueberry (82.56%+3.59%)
and Southern Highbush Blueberry (77.05%+2.46%), ex-
cept Northern Highbush Blueberry (72.39%+4.53%),
were higher than those of bulk soil (74.64%+4.38%,
Fig. 3¢).

Core blueberry rhizosphere microbiome

We extended our analysis to determine which OTUs are
stable across in rhizosphere microbial communities of
different blueberry varieties and bulk soil. We identified
728, 634, 777, and 712 OTUs as the core OTUs in rhizo-
sphere microbial communities of Rabbiteye Blueberry,
Northern Highbush Blueberry, Southern Highbush Blue-
berry and bulk soil (Fig. 4a), respectively. Eventually, 201

OTUs of 1420 OTUs (14.2%) were identified as the core
OTUs in rhizosphere microbial communities of blue-
berry varieties and bulk soil (Fig. 4a, Supplementary
Table 2). Many OTU cases are mainly affiliated with
Proteobacteria (78 OTUs), Actinobacteria (41 OTUs),
Acidobacteria (34 OTUs), Firmicutes (16 OTUs), Chloro-
flexi (9 OTUs), and Planctomycetes (8 OTUs, Fig. 4b).
The distribution of each core OTU in rhizosphere mi-
crobial communities of blueberry varieties was different
(Fig. 4b), indicating that the relative abundance of core
OTUs varied most among different blueberry varieties.

Identification of microbial biomarkers for classifying
different blueberry varieties

To explore the taxonomical signatures among rhizo-
sphere microbial communities of three blueberry var-
ieties and bulk soil, we conducted LEfSe analysis to
identify biomarkers for each blueberry variety based on
the taxonomical compositions of rhizosphere microbial
communities. Finally, we obtained 28 discriminative
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a Venn diagram displays the number of specific and shared OTUs b Heatmaps represent the relative abundances of the core OTUs
in three blueberry varieties and bulk soil based on the classification of phylum level
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biomarkers with logarithmic LDA score > 3.5 (Fig. 5). At
the phylum level, we found that Actinobacteria and
Planctomycetes were identified as the biomarkers for
Rabbiteye Blueberry and Southern Highbush Blueberry,
respectively, whereas Verrucomincrobia and Chloroflexi
were detected as the biomarkers for bulk soil (Fig. 5a).
At the order level, we observed Clostridiales, Rhodospir-
illales, Rhizobiales, Gaiellales, Actinomycetals, Xantho-
monadales, and Burkholderiales were identified as the
biomarkers for three blueberry varieties (Fig. 5).

Patterns of co-occurrence network in blueberry
rhizosphere microbial community

To gain more insights into the interactions among the
microbial members of rhizosphere microbial communi-
ties of blueberry varieties, we extended our analysis to
explore the patterns of OTUs co-occurrence network
from an ecological perspective. The SparCC algorithm
was applied to calculate the correlations between OTUs

and the significant strong correlations (the value of
absolute correlations > 0.8 and the p-value < 0.05) were
chosen to construct the co-occurrence network. The co-
occurrence network comprised of 198 nodes and 484
edges (Fig. 6). The density and average degree of the co-
occurrence network were 0.025 and 4.89, respectively.
The clustering coefficient of the co-occurrence network
was 0.35 and the co-occurrence network could be
clustered into seven clusters. Strong interactions existed
between OTUs in the co-occurrence network. The
members of co-occurrence network were mainly affili-
ated with Proteobacteria, Actinobacteria, Acidobacteria,
Verrucomicrobia, and Firmicutes (Fig. 6). Among the
198 nodes, 74 nodes (37.4%) belonged to core OTUs
and these OTUs were mainly affiliated with Proteobac-
teria, Actinobacteria, and Acidobacteria (Fig. 6). The
OTUs with the highest average proportions of the co-
occurrence network were members of core OTUs of
rhizosphere  microbial communities of blueberry
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varieties, which were affiliated with Xanthomonadaceae,
Koribacteraceae, Gaiekkaceae, and Sinobacteraceae
(Fig. 6).

Discussion
To obtain a better understanding of the rhizosphere
microbiome of blueberry, this pilot study was conducted
and mainly focused on the taxonomical, functional, and
phenotypic compositions of rhizosphere microbial com-
munities in blueberry. By investigating the compositions
of blueberry’s rhizosphere microbial communities and
comparing the differences in rhizosphere microbial
communities among three blueberry varieties, the
characterization of blueberry’s rhizosphere microbial
community and the interactions between rhizosphere
microbiota should be understood to provide new oppor-
tunities to increase the yield of blueberry [3, 15].
Previous studies have reported that plants can shape
and recruit protective microorganisms from the soil mi-
crobial community to form the rhizosphere microbial
community [3, 34], leading to a difference between
plants’ rhizosphere microbial community and bulk soil
microbial community. In our study, the alpha diversity
and beta diversity of rhizosphere microbial communities
of blueberry varieties and bulk soil significantly differed.
Based on the taxonomical composition, we observed that
the microbial diversity of blueberry’s rhizosphere micro-
bial communities decreased compared with bulk soil
samples. The decrease in the diversity of rhizosphere mi-
crobial communities was also found in a previous study
of blueberry focused on the taxonomical composition of
bulk soil and rhizosphere microbial communities [18].
Furthermore, the distribution patterns of three blueberry
rhizosphere microbial communities and bulk soil were
different at the phylum, order, and genus levels. Phyla
Actinobacteria, Firmicutes, and Planctomycetes were
dominant in the rhizosphere microbial community of
three blueberry varieties. In terms of Firmicutes, previ-
ous studies have reported that the members of Firmi-
cutes are identified as groups of bacteria that can confer
suppressiveness and important in disease suppressive-
ness in rhizosphere microbiota of plants [3, 30]. Simi-
larly, Actinomycetales was enriched in the blueberry
rhizosphere microbial community, which was detected
as the dominate group in rhizosphere soil alongside crop
growth [35, 36]. The differences in rhizosphere microbial
communities between three blueberry varieties and bulk
soil samples revealed that a series of microbiota were re-
cruited from the soil microbial community to form the
rhizosphere microbial community of blueberry. Add-
itionally, there were significant differences among the
rhizosphere microbial communities of three blueberry
varieties by comparing the discrepancy of their rhizo-
sphere microbial communities. These results suggested
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that blueberry can recruit different microbiota to deter-
mine the composition of the rhizosphere microbiome
and confirmed that different genotype blueberry varieties
recruit various microorganisms to form its specific
rhizosphere microbiome that contributed to its growth
and health [37]. These results were consistent with the
differences between plant genotypes even a single gene
can contribute a significant impact on the rhizosphere
microbiome [38].

Moreover, depth functional profiling analysis revealed
that the functional traits were significantly different in
rhizosphere microbial communities of blueberry varieties
and bulk soil. The increase in functional traits affiliated
with enzyme families, environmental adaptation, and
biosynthesis of secondary metabolites were associated
with the health of blueberry [39, 40]. The phenotypic
compositions of different blueberry varieties’ rhizosphere
microbial communities also exhibited significant differ-
ences. The proportions of stress tolerant of rhizosphere
microbial communities of three blueberry varieties were
higher than those of bulk soil, which suggested that the
rhizosphere microbial composition contributed to differ-
ent tolerance to stress tolerant for different blueberry
varieties [41]. Overall, the differences in functional and
phenotypic compositions of microbial communities be-
tween rhizosphere microbial communities of three blue-
berry varieties and bulk soil also suggested that different
genotypes of blueberry hold their own unique micro-
biome, which contributes to their growth and health.
The differences in taxonomical, functional, and pheno-
typic compositions of microbial communities between
rhizosphere of blueberry varieties and bulk soil, even
among different blueberry varieties, were determined by
blueberry genotypes by actively secreting the compounds
that specifically stimulate or inhibit the members of the
microbial community [42].

Besides, there is core microbiota among the rhizo-
sphere microbial communities of blueberry. We identi-
fied 201 OTUs, which were mainly affiliated with
Proteobacteria, Actinobacteria, Acidobacteria, Firmi-
cutes, Chloroflexi, and Planctomycetes, as the core rhizo-
sphere microbiota for blueberry rhizosphere microbial
communities. Previous studies have reported that benefi-
cial rhizosphere microbiota can directly affect the patho-
gen in the rhizosphere microbial community [42] and
produce the antibiotic compounds and lytic enzymes,
consumption of pathogen stimulatory compounds and
competitions for nutrients for plants [43]. Among the
core microbiota of blueberry, we identified two OTUs
affiliated with genus Pseudomonas as beneficial rhizo-
sphere microbiota because of rhizosphere Pseudomonas
spp. can produce the antifungal compound 2,4-diace-
tylphloroglucinol [44]. Moreover, the rhizosphere micro-
bial compositions of three different blueberry varieties
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could be distinctly separated, and we selected 28
discriminative biomarkers to distinguish these three
blueberry varieties.

Finally, the members of the co-occurrence network
and their interactions between OTUs provide a deep un-
derstanding of the rhizosphere microbiome of blueberry
from an ecological perspective. The members of these
families of the rhizosphere microbial community
contribute to the growth and health of plants. For ex-
ample, a previous study reported that the members of
Xanthomonadaceae family could be divided into non-
pathogenic and pathogenic species that infect humans
and plants and these species have diverse effects on
plant-related lifestyles [45]. The family Koribacteraceae
of the Populus trichocarpa rhizosphere microbiome was
reported to be correlated with the production of salicylic
acid and populin [46]. Additionally, we observed that
Acidbacterium,  Salinibacterium,  Micrococcus, and
Conexibacter were involved in co-occurrence network
(Fig. 6). Given the limitation of taxonomical classifica-
tion, the members of these families of rhizosphere
microbial communities of blueberry were unclear. Con-
sidering the high proportions of these families in co-
occurrence network, we need to focus on the functions
of these families in future research.

Conclusions

Our findings highlighted the taxonomical, functional,
and phenotypic compositions of the blueberry rhizo-
sphere microbiome and demonstrated the differences of
the rhizosphere microbiome in different blueberry var-
ieties. As a result, our study provides an integrative view
on the blueberry rhizosphere microbial community and
identifies a series of taxa with potential importance from
co-occurrence network. The separation of species of
core rhizosphere microbiome, especially the beneficial
microorganisms, including the non-pathogenic species
affiliated with genus Pseudomonas and family Xantho-
monadaceae, could be used as potential microecologics
and microbial fertilizers to maintain the health of blue-
berry during blueberry production. Given that rhizo-
sphere microbiota harbor fungi and bacteria, and
mycorrhizosphere interactions can improve plants’ fit-
ness and soil quality [47], the interactions between bac-
teria and fungi (especially mycorrhizal fungi) should be
emphasized in further study. Our present work allows
for further investigation into the interactions between
bacteria and fungi during blueberry production.

Methods

Collection of rhizosphere soil samples

Three blueberry varieties, namely Rabbiteye Blueberry,
Northern Highbush Blueberry, and Southern Highbush
Blueberry, were selected from a blueberry plantation in
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Hefei City, Anhui province, China, to investigate the
structure of blueberry rhizosphere microbial community
and explore the differences among three different blue-
berry varieties. The selected plants of three blueberry
varieties have been planted for 6-7years. The rhizo-
sphere soil samples of these three blueberry varieties
were collected according to the sampling procedure [6,
14] on 13 April 2018 (Supplementary Figure 3). As an
artificial plantation, no permission is required for soil
collection. Specifically, to obtain the rhizosphere micro-
biota of blueberry, a small volume of rhizosphere soil
was carefully and quickly collected by gently brushing
the remaining soil sticking on the blueberry’s roots (the
depth of root is about 10 cm) using brush pencils. Five
rhizosphere soil samples for each blueberry variety were
collected. Five bulk soil samples were also collected at a
depth of 10 cm from the surface in the same blueberry
plantation where no blueberries and other plants grew
and used as control samples. In total, 15 rhizosphere soil
samples for three blueberry varieties and five bulk soil
samples were collected. These samples were immediately
stored in a container at - 20°C, transported to the la-
boratory, and stored at — 80 °C.

DNA extraction and amplicon sequencing

Using PowerSoil DNA Isolation Kit (MoBio, Carlsbad,
CA, USA), the total DNA from rhizosphere soil samples
of blueberries and bulk soil samples was extracted in
Sangon Biotech (Sangon, Shanghai, China), respectively.
The concentration and quality of extracted DNAs were
quantified using a Qubit® 2.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA) and assessed on agarose gels, re-
spectively. The V3-V4 hypervariable regions of the 16S
rRNA gene of microbes for each rhizosphere soil sample
were amplified and sequenced to profile the structure of
the blueberry rhizosphere microbial community. Specif-
ically, approximately 50 ng DNA was used as PCR tem-
plate, and the forward primer 347F 5'-CCTACGGR
RBGCASCAGKVRVGAAT-3" and reverse primer 802R
5'-GGACTACNVGGGTWTCTAATCC-3" were used
to amplify the V3-V4 amplicons [48]. Indexed adapters
were added to the ends of 16S rDNA amplicons and the
sequencing library was constructed. The sequencing li-
brary was verified, quantified, and sequenced on an Illu-
mina MiSeq platform (San Diego, CA, USA) using the
paired-end sequencing strategy in Sangon Biotech
(Sangon, Shanghai, China).

16S rRNA amplicon data processing and taxonomical
profiles

The paired-end reads of 16S rDNA amplicons of each
sample were spliced using the Fast Length Adjustment
of Short reads (FLASH, v1.2.11) software [49] with de-
fault settings. The spliced reads containing ambiguous
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base calls (N) were removed, and the lengths of spliced
reads ranging from 220bp to 550bp were chosen by
using “trim.seqs” command in the mothur platform [50]
(version 1.25.0). The putative chimeras were identified
against the SILVA database [51] (release 123) and re-
moved in the mothur platform. The high-quality se-
quences were used for taxonomical analysis against the
Greengenes database [52] (version 13_5) in QIIME
(Quantitative Insights Into Microbial Ecology, Boulder,
CO, USA, v1.9.1) [53]. The operational taxonomic units
(OTUs) were clustered at the 97% nucleotide identity
threshold by using the “pick_closed_reference_otus.py”
script, and the singletons of OTUs were removed. The
final OTU table was rarefied to 18,652 reads per sample
prior to downstream analysis to eliminate the effect of
sequencing depth.

Functional and phenotypic compositions of the blueberry
rhizosphere microbiome

To compare the differences in functional and phenotypic
compositions of rhizosphere microbial communities of
different blueberry varieties, two popular tools in current
microbiome analysis, namely Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States
(PICRUSt, version: 1.0.0-dev) [54] and Bugbase [55],
were selected to profile the characters of blueberry
rhizosphere microbial communities. Specifically, the
functional compositions of blueberry rhizosphere micro-
bial communities were predicted The relative abundance
of each functional trait that collapsed to levels two and
three of the KEGG database (version 66.1, May 1, 2013)
was summarized based on the OTU composition. Simi-
larly, the phenotypic compositions of rhizosphere micro-
bial communities, including the content of anaerobic,
mobile elements and stress tolerant, were profiled.

Microbial diversity assessment of blueberry rhizosphere
microbial communities

The number of OTUs, Shannon index and Simpson
index of rhizosphere soil samples were selected to evalu-
ate the alpha diversities of rhizosphere microbial com-
munities among three blueberry varieties and bulk soil
samples. The alpha diversity was compared using the
Kruskal-Wallis test among three blueberry varieties and
bulk soil. Bray—Curtis distance and unweighted UniFrac
metrics (refers to one of the UniFrac metrics, and it only
considers the presence or absence of observed microor-
ganisms) [56] were used to compare the differences of
beta diversity among three blueberry varieties and bulk
soil samples. The clustering result of the rhizosphere mi-
crobial community was arrayed by principle coordin-
ation analysis (PCoA) and visualized using Emperor [57].
Moreover, linear discriminate analysis (LDA) was per-
formed to utilize a linear combination of features to
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maximize the separation of rhizosphere microbial com-
munities of three blueberry varieties and bulk soil based
on taxonomical composition at the phylum, order, and
genus levels. On the basis of the Bray—Curtis distance
metric of the taxonomical composition of the genus level,
permutational multivariate analysis of variance (PERM
ANOVA) [58] was used to evaluate whether the rhizo-
sphere microbial communities are significantly different
across three blueberry varieties and bulk soil. To deter-
mine if other taxa were stable among three blueberry var-
ieties and bulk soil, we identified the core microbiome
among rhizosphere samples across groups and visualized
the results by venn plot and heatmap in R.

Biomarker analysis

Linear discriminate analysis effect size (LEfSe, version
1.0) [59] was applied to select the differentially taxonom-
ical features among rhizosphere microbial communities
of three blueberry varieties and bulk soil samples. The p-
value for the factorial Kruskal—-Wallis test was set at 0.05
to select statistical significant taxonomical biomarkers.
Biomarker with the logarithmic LDA score higher than
3.5 was defined as a discriminative biomarker and
visualized.

Co-occurrence network in blueberry rhizosphere
microbial community

The correlations among OTUs of the rhizosphere micro-
bial community of blueberry were calculated using the
SparCC algorithm (https://github.com/hallamlab/
utilities/wiki/SparCC), which limits the number of spuri-
ous correlation identified [60, 61]. The threshold of
absolute correlations among OTUs was set at 0.8 and
the significant correlations with p-value <0.05 were
visualized in Cytoscape [62] (version 3.7.1). The
characteristics of the topological structure of the co-
occurrence network were analyzed in igraph package
[63] (version 0.7.1) in R.
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Additional file 1: Supplementary Figure 1. Taxonomical composition
of rhizosphere microbial communities in three blueberry varieties at the
order and genus levels. Linear discriminant analysis was performed to
maximize the separation of the rhizosphere microbial communities of
three blueberry varieties and bulk soil based on the taxonomical
composition at a: the order level and b: the genus level. The length and
direction of the arrows represent the normalized scaling for each
predominant phylum. Supplementary Figure 2. Functional
composition of rhizosphere microbial communities in three blueberry
varieties at the level two of the KEGG database. a: The functional
composition of each rhizosphere microbial community at the level two
of the KEGG database. b: The average functional traits of each
rhizosphere microbial community of the three blueberry varieties and
bulk soil. Supplementary Figure 3. Sampling schematic for collecting
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the rhizosphere soil samples of three blueberry varieties and bulk soil
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sequencing reads and estimates for the diversity of each microbial
community.

Additional file 3: Supplementary Table 2. Information of core OTUs
in rhizosphere microbial communities of three different blueberry
varieties.
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