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Introduction
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor, and virtually all patients die 
within 2 years of  diagnosis (1). Standard treatment includes surgery, radiation, temozolomide chemother-
apy, and more recently, adjuvant use of  tumor treating fields (2). Despite maximal treatment, most GBMs 
recur within 6 months, at which time no standard or curative treatment exists. Poor patient outcomes from 
GBM are multifactorial, including the presence of  GBM stem cells (GSCs), which are resistant to radiation 
treatment and chemotherapy (3–5), and weak antitumor immunological responses (6–11).

We and others demonstrated that Zika virus (ZIKV), a flavivirus that emerged in 2015 as a cause of  
congenital brain anomalies, has specific lytic activity against GSCs (12–17). GSCs share properties with 
fetal neuronal progenitor cells (18–22). In vivo studies from independent groups validated that oncolytic 
ZIKV therapy extends survival of  glioma-bearing mice (13, 15, 17, 23). Although ZIKV is a neurotropic 
virus in fetuses, it rarely infects the brain or causes neurological disease in adults (24). Thus, oncolytic 
ZIKV could have therapeutic potential in adult patients with GBM.

Oncolytic viral therapies for treating GBM include the measles virus (25–28), poliovirus (29, 30), 
adenovirus (31, 32), herpesviruses (33–36), myxoma virus (37, 38), and vesicular stomatitis virus (39).  

Glioblastoma multiforme (GBM) is a fatal human cancer in part because GBM stem cells are 
resistant to therapy and recurrence is inevitable. Previously, we demonstrated Zika virus 
(ZIKV) targets GBM stem cells and prevents death of mice with gliomas. Here, we evaluated the 
immunological basis of ZIKV-mediated protection against GBM. Introduction of ZIKV into the brain 
tumor increased recruitment of CD8+ T and myeloid cells to the tumor microenvironment. CD8+ T 
cells were required for ZIKV-dependent tumor clearance because survival benefits were lost with 
CD8+ T cell depletion. Moreover, while anti–PD-1 antibody monotherapy moderately improved 
tumor survival, when coadministered with ZIKV, survival increased. ZIKV-mediated tumor clearance 
also resulted in durable protection against syngeneic tumor rechallenge, which also depended on 
CD8+ T cells. To address safety concerns, we generated an immune-sensitized ZIKV strain, which 
was effective alone or in combination with immunotherapy. Thus, oncolytic ZIKV treatment can 
be leveraged by immunotherapies, which may prompt combination treatment paradigms for adult 
patients with GBM.

https://doi.org/10.1172/jci.insight.144619
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Clinical trials with several of  these oncolytic viruses have been reported or are under development for treat-
ment of  GBM. However, these therapies do not specifically target GSCs.

GBM is resistant to immunotherapy due, in part, to the immunosuppressive tumor microenvironment 
(40, 41), which is characterized by T cell dysfunction (42, 43), regulatory T cell–imposed tolerance (6, 44, 
45), inadequate antigen presentation (46), and immunosuppressive activity of  recruited myeloid suppressor 
cells (8, 9, 47). In other solid tumors, immune checkpoint blockade targeting inhibitory receptors expressed 
on T cells such as cytotoxic T lymphocyte–associated protein 4 (CTLA-4) or programmed cell death 1 (PD-
1) elicits clinical improvement and tumor regression (48–50). However, clinical trials of  immune check-
point blockade in GBM have largely failed (51–55). One small study in recurrent GBM using anti–PD-1 
immunotherapy before tumor resection extended median survival by 5 months (56), suggesting the timing 
of  the therapy might be important.

Overcoming resistance to immune checkpoint blockade and augmenting immune responses that sup-
press tumor growth is a therapeutic priority in GBM. In this context, it is notable that ZIKV treatment 
reduces tumor size and extends survival in mice beyond that expected for its anti-GSC effects. We hypothe-
sized that oncolytic ZIKV treatment of  GBM reshapes the immunological microenvironment, which might 
be leveraged further by immunotherapy. Here, we evaluate the immunological basis of  protection mediated 
by ZIKV therapy and establish ways to enhance its efficacy.

Results
ZIKV increases CD8+ T cell infiltration into the tumor bed. We implanted 2 syngeneic glioma cell models, GL261 
and CT2A transduced with a luciferase reporter, by stereotactic injection into the right cerebral hemisphere 
of  8-week-old C57BL6/J mice. After confirming tumor growth using bioluminescence, we randomized 
mice to intratumor treatment with either mouse-adapted ZIKV-Dakar strain (105 focus-forming units 
[FFU]) or PBS (57) (Figure 1A). ZIKV treatment increased median survival, and the long-term survival 
rates increased from approximately 10% to 63% for GL261-bearing mice and 0% to 37% for CT2A-bearing 
mice (Figure 1, B and C). Histological analysis revealed comparable tumor sizes between the ZIKV and 
PBS groups at day 14 after tumor implantation (7 days after ZIKV treatment) but a decrease in tumor 
size 1 week later at day 21 after tumor implantation (14 days after ZIKV treatment) in response to ZIKV 
treatment (Figure 1, D and E). We also observed infiltration of  immune cells in the tumor microenviron-
ment at days 14 and 21 after tumor implantation in animals treated with ZIKV (7 and 14 days after ZIKV 
treatment) (Figure 1, F and G). Analysis of  the kinetics of  viral replication in the brain revealed that ZIKV 
RNA was cleared by 14 days postinfection (Supplemental Figure 1; supplemental material available online 
with this article; https://doi.org/10.1172/jci.insight.144619DS1).

We quantified the infiltrating immune cell composition (lymphoid and myeloid cells) in the brain at 14 
and 21 days after tumor implantation (7 and 14 days after ZIKV treatment) using flow cytometry (Supple-
mental Figure 2). Analysis of cells at 14 days after GL261 tumor implantation revealed that ZIKV treatment 
promoted increased numbers of CD45+ leukocytes (~6.5-fold), including CD4+ T cells (~7.8-fold), CD8+ 
T cells (~20.1-fold), CD3–NK1.1+ natural killer (NK) cells (~8-fold), CD3+NK1.1+ NKT cells (~4.8-fold), 
and CD8+CD44+CD69+CD103+ resident memory T cells (Trm) (~14.6-fold) compared with PBS-treated, 
tumor-bearing mice (Figure 2A). Similarly, in the CT2A tumor model, ZIKV treatment elicited an increase in 
numbers of CD45+ leukocytes (~4-fold), including CD4+ T cells (~7.5-fold), CD8+ T cells (~8.9-fold), NK cells 
(~2-fold), NKT cells (~2-fold), and Trm cells (~8-fold), compared with control-treated mice (Figure 2B). The 
numbers of FoxP3+ regulatory T cells (Tregs) were similar between ZIKV-treated and PBS-treated controls in 
both the GL261 and CT2A models. By 21 days after GL261 or CT2A tumor implantation (14 days after ZIKV 
treatment), animals treated with ZIKV treatment had increased numbers of CD8+ T cells (~2- and 2.8-fold, 
respectively) and CD8+ memory T cells (~2- and 3.8-fold, respectively) whereas we detected no differences in 
numbers of CD4+ T cells, NKT cells, and Tregs. We observed a reduction of NK cells (~4-fold) at this point in 
ZIKV-treated animals (Figure 2, C and D). Comparison of immune cells from GL261 tumor–bearing mice to 
infection with ZIKV alone (no tumor) revealed that ZIKV generated a greater CD8+ T response than the tumor 
itself  (~2.2-fold), whereas tumors were associated with greater numbers of NK cells than ZIKV alone (~4.5-
fold) at day 21 after tumor implantation or 14 days after ZIKV treatment (Supplemental Figure 3).

A similar analysis of  lymphoid cells at 21 days after CT2A tumor implantation revealed no difference 
in numbers of  NK cells, NKT cells, or Tregs but an increase in numbers of  CD4+ T cells (~4.2-fold) (Figure 
2D). Collectively, the data from the 2 glioma models suggest that ZIKV treatment in glioma-bearing mice 

https://doi.org/10.1172/jci.insight.144619
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results in enhanced infiltration of  multiple lymphoid cell subsets. While the differences in the early recruit-
ment of  immune cells resolved for most cell types, by later points ZIKV-treated gliomas sustained increased 
numbers of  CD8+ T cells and CD8+ Trm in the tumor bed.

Given that the immune-suppressive tumor microenvironment in gliomas downregulates major his-
tocompatibility complex (MHC) antigen expression and compromises the ability of  myeloid cells to 
cross-present antigen to cytotoxic T cells (46, 58, 59), we hypothesized that ZIKV treatment of  gliomas 
might trigger inflammatory responses that activate microglia and recruit antigen-presenting cells into the 
tumor region. To evaluate this idea, we analyzed myeloid cells and their activation state in the brain in 
response to ZIKV treatment in GL261 glioma– or CT2A glioma–bearing mice. At 14 days after GL261 
tumor implantation (7 days after ZIKV treatment), ZIKV treatment was associated with a small increase 
in total numbers of  microglia (~1.8 fold) but a more substantial increase in numbers of  MHC class II–
expressing microglia (~4-fold) (Figure 2A). ZIKV treatment of  GL261 gliomas also resulted in increased 
recruitment of  Ly6C+ monocytes (31-fold), F4/80+ macrophages (~15-fold), and CD11b+ monocyte-de-
rived DCs (~8-fold) (Figure 2A). Also seen were increased numbers of  inducible NOS–producing microg-
lia (~4.3-fold), monocytes (~29-fold), and macrophages (~7.5-fold), suggesting an enhanced inflam-
matory potential of  myeloid cells in the tumor bed (Figure 2A). ZIKV treatment of  both GL261 and 
CT2A tumor models had limited effects on neutrophil recruitment to the tumor bed (Figure 2, A and B).  

Figure 1. ZIKV extends survival of glioma-bearing mice. (A) Scheme of experiments. C57BL6/J mice were implanted with 4 × 104 GL261 or CT2A glioma 
cells transduced with luciferase and treated intratumorally with 105 FFU mouse-adapted ZIKV-Dakar or PBS control on day 7. (B and C) Survival analysis of 
mice bearing GL261 (n = 19–21 mice) (B) or CT2A (n = 16–17) (C). (D–G) Images of hematoxylin and eosin staining of coronal brain sections at 7 and 14 days 
after ZIKV treatment. Scale bars: 1000 μm (top), 50 μm (bottom). Arrows indicate immune cells. Statistical differences were determined by (B and C) log-
rank test: ***P < 0.001. All data are pooled from at least 2 to 3 independent experiments.

https://doi.org/10.1172/jci.insight.144619
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Whereas ZIKV treatment of  CT2A glioma also led to rapid increases in the numbers of  Ly6C+ mono-
cytes (~16.5-fold) and inducible NOS–producing Ly6C+ monocytes (~24-fold) in the brain by day 14, it 
was not associated with activation of  microglia, F4/80+ macrophages, or CD11b+ monocyte-derived DCs 
(Figure 2B). At 21 days after GL261 tumor implantation (14 days after ZIKV treatment), we observed 
increased numbers of  microglia (~3.8 fold) and MHC class II–expressing microglia (~5.2-fold) (Figure 
2C). However, these differences at day 21 were not detected in the ZIKV-treated, CT2A tumor–bearing 
mice or tumor-naive, PBS-treated counterparts (Figure 2, C and D). At 21 days after GL261 and CT2A 
tumor implantation (14 days after ZIKV treatment), continued increases in numbers of  Ly6C+ mono-
cytes (~2- and 6.8-fold, respectively) were observed but not in numbers of  neutrophils, F4/80+ macro-
phages, or CD11b+ monocyte-derived DCs (Figure 2, C and D).

Figure 2. CD8+ T cells are required for ZIKV efficacy in mice bearing primary tumors. (A–D) Absolute numbers of immune cells in the brain at 14 and 
21 days after tumor implantation (7 and 14 days after ZIKV treatment). Bars indicate median values. (E and F) Survival analysis of mice bearing GL261 
(n = 17–19) (E) or CT2A (n = 14–17) (F) glioma cells, treated with ZIKV or PBS on day 7 and anti-CD8 or isotype control antibody as described in the 
Methods. Mice without tumor (green lines) (n = 9) were similarly treated. Statistical differences were determined by (A–D) Mann-Whitney U test: *P 
< 0.05, **P < 0.01, ****P < 0.0001; and log-rank test: ***P < 0.001. All data are pooled from at least 2 to 3 independent experiments. MG, microglia. 
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CD8+ T cells are required for ZIKV-mediated glioma clearance. As we observed consistent increases in CD8+ 
T cells in the brain following ZIKV treatment of  glioma, we hypothesized that these cells contribute to 
tumor clearance. To investigate this idea, we performed CD8+ T cell depletion studies. Beginning 14 days 
after GL261 or CT2A tumor implantation (7 days after ZIKV treatment), we administered a CD8+ T cell–
depleting or isotype control antibody. Depletion of  CD8+ T cells abrogated the therapeutic effect of  ZIKV 
in both glioma models (Figure 2, E and F). The loss of  efficacy was not due to inadequate control of  ZIKV 
because non–tumor-bearing mice treated with ZIKV survived the CD8+ T cell depletion regimen (Figure 2, 
E and F, dashed green line). Exposure to ZIKV alone was not sufficient to protect mice from subsequent gli-
oma because ZIKV infection before tumor implantation did not confer any survival benefit against tumor 
(Supplemental Figure 4). Collectively, these data demonstrate the potential importance of  ZIKV-instructed 
CD8+ T cells for protection against primary tumor pathogenesis.

Long-term survivors of  glioma after ZIKV treatment are protected against secondary syngeneic glioma in a CD8+ 
T cell–dependent manner. To model the tumor recurrence that occurs inevitably in patients, we performed 
rechallenge experiments in mice that were long-term survivors of  GL261 gliomas after ZIKV treatment. 
We implanted syngeneic GL261 cells into the contralateral side of  the brains of  ZIKV-treated tumor sur-
vivors, 3 months or even 1.5 years after primary tumor implantation (Figure 3A). Whereas age-matched 
tumor-naive mice succumbed to the GL261 tumor as expected, ZIKV-treated tumor survivors were protect-
ed against syngeneic tumor rechallenge and survived for at least 150 days (Figure 3, B and C). We next eval-
uated whether memory CD8+ T cell responses after ZIKV treatment prevent growth of  the secondary syn-
geneic tumor. When we depleted CD8+ T cells before GL261 tumor rechallenge, protective phenotype was 
reversed (Figure 3D). To understand the temporal dynamics of  tumor formation following rechallenge, we 
performed serial bioluminescence imaging of  mice that were rechallenged 18 months after their treatment 
with ZIKV. Age-matched control mice had luciferase signals at day 7, and they succumbed to tumor by 
day 21. Although 2 of  the rechallenged mice had luciferase signals at day 7 after rechallenge, they had little 
to no luciferase signals by day 58, suggesting tumors either did not engraft or did not grow in these mice 
(Figure 3E). Histological analysis of  survivors at 150 days after tumor rechallenge revealed no evidence of  
tumor (Figure 3F). In contrast, the 1 mouse that did not survive the rechallenge had luciferase signal above 
the limit of  detection at days 7 and 21 and had extensive tumor at day 63 after rechallenge (Figure 3, E and 
F). Analysis of  rechallenged mice that died beyond day 100 did not show any signs of  tumor formation 
(data not shown), suggesting they likely died from nontumor causes, as they were 2.5 years old and near 
the end of  their natural life span. Collectively, these data demonstrate the potential importance of  ZIKV-in-
structed memory CD8+ T cells for protection against secondary tumor development.

ZIKV treatment improves the response to immune checkpoint blockade. T cell deficits that occur during GBM 
pathogenesis are characterized by increased expression of  immune checkpoint molecules (e.g., PD-1, Tim3, 
and Lag3) that negatively regulate tumor immune responses (11, 60–63). In fact, GBM infiltrating lym-
phocytes upregulate PD-1 expression on up to 95% of  CD8+ T cells (60). We investigated whether ZIKV 
infection changed the expression of  immune checkpoint molecules. Flow cytometry analysis revealed that 
ZIKV treatment did not alter the expression of  PD-1, Tim3, or Lag3 or the numbers of  PD1+, Lag3+, or 
Tim3+ CD8+ T cells (Figure 4A; and Supplemental Figure 5, A and B). However, the numbers of  activated 
PD1–CD44+CD8+ T cells were higher (~10-fold) in the brains of  ZIKV-treated gliomas compared with 
those treated with PBS control (Figure 3A).

The presence of  spontaneous tumor-infiltrating lymphocytes correlates with better prognosis, espe-
cially for tumor immunotherapies (64). Because the GBM tumor microenvironment has few T cells, 
augmenting CD8+ T cells numbers is one way to alleviate resistance to immune checkpoint block-
ade therapy (7). Since ZIKV treatment increases lymphocyte number in the tumor bed, we evaluated 
whether the combination of  ZIKV treatment with checkpoint blockade immunotherapy enhances gli-
oma clearance and promotes survival. We used the CT2A model, which is resistant to immunotherapy 
(65), and treated tumor-bearing mice with either ZIKV or PBS, with or without anti–PD-1 and its 
respective isotype control. Combined blockade of  PD-1 and ZIKV treatment was superior to either 
treatment alone (Figure 4B). Serial bioluminescence imaging every 4 days demonstrated that ZIKV- 
and anti–PD-1–treated tumors regressed at approximately day 18 after tumor implantation (11 days 
after virus treatment) (Figure 4, C and D). Neurobehavioral disease assessments (0, no disease; 1, ruf-
fled fur, piloerection, weight loss, or slow movements; 2, lethargy, unsteady gait, or hunched back; 3, 
decreased strength in forelimbs and/or hind limbs; 4, restricted movement, extreme body weight loss 

https://doi.org/10.1172/jci.insight.144619
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(over 20%), or convulsions; and 5, moribund or death) revealed fewer central nervous system deficits 
in animals receiving the combination of  ZIKV and anti–PD-1 than those with either individual treat-
ment (Figure 4E). However, approximately 15% of  mice were resistant to combination therapy and 
succumbed to tumor burden (Figure 4B).

An attenuated ZIKV strain with therapeutic potential. Although there are few reports of  ZIKV-in-
duced encephalitis in adults (66, 67), safety is paramount in any potential clinical application. To 
further develop ZIKV as an oncolytic therapy, we designed a safer strain by making it more sensitive 
to the host innate immune response without compromising its ability to replicate in and kill GSCs. 
We engineered a deletion of  10 nucleotides in the 3′ untranslated region (Δ10 3′-UTR ZIKV) of  the 
ZIKV-Dakar cDNA clone (Figure 5A). This deletion abrogates production of  a short subgenomic fla-
viviral RNA species that antagonizes cell-intrinsic innate immune responses (15, 68). The Δ10 3′-UTR 
ZIKV is attenuated in immunocompromised mice, and this mutation also is the basis of  a candidate 

Figure 3. CD8+ T cells are required for ZIKV efficacy in mice during rechallenge. (A) Scheme of tumor rechallenge experiments. (B and C) Surviving mice 
from GL261 studies with ZIKV were rechallenged 3 months (B) (n = 9–10) or 18 months later (C) (n = 8) with 4 × 104 GL261 cells on the contralateral side. 
Age-matched (20 months old, n = 10; and 26 months old, n = 8) naive mice served as controls. (D) Surviving mice from GL261 studies with ZIKV were 
rechallenged 3 months later with 4 × 104 GL261 cells and treated with antibodies against CD8 or isotype control as described in the Methods. Age-matched 
(20 months old; n = 7) mice served as controls. (E) Photon flux (photons/s) of bioluminescent images of brains of mice described from C at indicated times 
after rechallenge. (F) Representative images from C of hematoxylin and eosin staining of coronal brain sections from a mouse that did not survive rechal-
lenge (mouse 1) and those surviving up to day 150 after rechallenge (mice 2–4). Scale bars represent 1000 μm. Horizontal lines indicate median values. 
The dotted line denotes the limit of detection (E). Statistical differences were determined by (B–D) log-rank test: ***P < 0.001, ****P < 0.0001; and (E) 
Mann-Whitney U test: ***P < 0.001. Data are pooled from at least 2 independent experiments.

https://doi.org/10.1172/jci.insight.144619
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ZIKV vaccine (68). We compared the tumoricidal effects of  the parental virus and Δ10 3′-UTR ZIKV 
against mouse glioma cell lines (CT2A, GL261, SB28) and human GSCs (0308, 667, 3565, 387) (Sup-
plemental Figure 6). The Δ10 3′-UTR ZIKV strain displayed anti-GSC oncolytic activity that was 
similar to the parental virus strain. In vivo, this immune-sensitized Δ10 3′-UTR ZIKV also retained 
efficacy, as treatment increased the survival rate of  GL261 tumor–bearing mice (Figure 5B). We also 
determined whether treatment of  Δ10 3′-UTR ZIKV in combination with anti–PD-1 immunotherapy 
enhanced survival, as it did for the parent WT-ZIKV strain. We treated GL261 and CT2A tumor–bear-
ing mice with either Δ10 3′-UTR ZIKV or PBS, with or without anti–PD-1 or isotype control mAbs.  

Figure 4. ZIKV and anti–PD-1 protect against glioma in mice. (A) MFI of PD-1 expression on CD8+ T cells and total numbers of PD1+CD8+ T cells and 
PD1–CD8+CD44+ T cells from PBS- or ZIKV-treated, glioma-bearing mice at day 21 after tumor implantation (14 days after ZIKV treatment). (B) Survival 
analysis of mice bearing CT2A tumors, treated with ZIKV or PBS on day 7 and anti–PD-1 or isotype control antibody as described in the Methods (n = 
34–37). (C) Representative images from B at day 6 and day 18 after tumor implantation (11 days after ZIKV treatment). (D) Photon flux of bioluminescence 
images from CT2A tumor–bearing mice treated as in B. (E) Neurobehavioral score (0 to 5) as described in Methods in CT2A tumor–bearing mice treated 
with antibody against PD-1 or isotype control. Bars/horizontal lines indicate median values. The dotted line denotes the limit of detection (D). Data are 
from 2 independent experiments. Statistical differences were determined by (A) Mann-Whitney U test (***P < 0.001), (B) log-rank test (**P < 0.01; ***P < 
0.001; ****P < 0.0001), and (D and E) 2-way ANOVA test with Dunnett’s posttest (*P < 0.05; **P < 0.01).

https://doi.org/10.1172/jci.insight.144619
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Whereas Δ10 3′-UTR ZIKV or anti–PD-1 therapy individual treatments improved long-term survival 
rates in GL261 tumor–bearing mice from 0% to 32% (anti–PD-1 alone) and 33% (Δ10 3′-UTR ZIKV 
alone), combination therapy improved long-term survival to approximately 80% (Figure 5C). In the 
CT2A tumor model, the median survival times of  Δ10 3′-UTR ZIKV, anti–PD-1, and PBS treatment 
with isotype controls were 24 days, 25 days, and 22 days, respectively (Figure 5D), suggesting little 
benefit of  immune-sensitized virus treatment alone on survival of  these glioma-bearing mice. How-
ever, the combination of  10 3′-UTR ZIKV with anti–PD-1 prolonged median survival to 33.5 days 
after tumor implantation, and the survivor rate increased from 0% to approximately 40% in the com-
bination treatment group (Figure 5D). CD8 depletion of  the Δ10 3′-UTR ZIKV and anti–PD-1 com-
bination treatment group reversed the phenotype, suggesting that the efficacy was driven by CD8+ T 
cells (Figure 5E). Thus, our data demonstrate that combined Δ10 3′-UTR ZIKV treatment and PD-1 
blockade had efficacy, and this was better than either regimen alone.

Figure 5. Immune-sensitized Δ10 3′-UTR ZIKV is effective alone or in combination with anti–PD-1 therapy. (A) Schematic of Δ10 3′-UTR ZIKV. (B) Mice 
were implanted with GL261 (n = 14–16) and treated with 106 FFU of Δ10 3′-UTR ZIKV or PBS on day 7 (downward arrow). (C and D) Treatment included Δ10 
3′-UTR ZIKV, or PBS as in B, combined with anti–PD-1 or isotype control antibodies administered days 8, 10, 12, and 14, in mice bearing GL261 (n = 9–10) (C) 
or CT2A (n = 15–16) (D). (E) Survival analysis of mice bearing CT2A glioma cells, treated with Δ10 3′-UTR ZIKV and anti–PD-1 or isotype control antibody as 
well as anti-CD8 or isotype control antibody as described in the Methods (n = 13–15). Data are pooled from 2 independent experiments. Statistical differ-
ences were determined by the log-rank test (**P < 0.01; ***P < 0.001).
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Discussion
GBM remains a clinical challenge. Despite the advances in cataloging tumor genomic alterations through 
large-scale projects like The Cancer Genome Atlas, precision medicine has not yet changed dismal patient 
outcomes (15). A major barrier has been intratumor heterogeneity, and immunotherapy and oncolytic 
treatment provide the opportunity to destroy transformed cells across a diverse tumor genetic landscape 
(15, 69). Despite the success of  immunotherapies for solid tumors, such as melanoma (48, 70) and non–
small cell lung cancer (71), the treatments have largely failed in GBM (50–54). GBM harbors a low muta-
tional burden and exerts a potent immunosuppressive effect on the microenvironment (72). Also relevant is 
the correlation between the cancer stem cell frequency in tumors and weakness of  the antitumor immune 
response (73). Thus, a central problem in GBM remains finding ways to induce a robust immunological 
response against the tumor. Here we show that ZIKV treatment remodels the GBM microenvironment and 
supports a CD8+ T cell infiltrative response in the tumor environment, and this is crucial for therapeutic 
efficacy against both primary and secondary tumors. Moreover, treatment using a parental or immune-sen-
sitized, attenuated ZIKV strain converts the poorly inflamed tumor environment into an immunostimula-
tory one that overcomes resistance to anti–PD-1 treatment. Further studies are needed to clarify whether 
ZIKV treatment improves functional antitumor CD8+ T cell responses against GSCs or common glioma 
antigens by promoting antigen cross-presentation or other immunomodulatory mechanisms.

Oncolytic viral therapy for solid tumors has been successful in cancer; the recent FDA approval of  tali-
mogene laherparepvec (T-VEC), a genetically engineered herpesvirus to treat melanoma, was a milestone. 
Investigating viral agents in brain tumors is not new; over the last 3 decades, there have been a number of  
attempts to use viruses as either gene therapy delivery systems or as oncolytic agents. In the early 1990s, 
Martuza and colleagues engineered herpes simplex virus capable of  selective replication and killing of  
GBM (36). Since that time, oncolytic viruses have been shown to target GBM in multiple ways: direct 
tumor killing combined with activation of  innate and antitumor T cell responses. Oncolytic strains of  
herpesvirus (G47Δ) (34), measles virus (MV-141.7/MV-AC133) (26), adenovirus virus (DNX2401 in Clin-
icalTrials.gov NCT03714334 NCT02197169, and NCT01956734 or AdFlt3L/AdTK) (74–76), myxoma 
virus (37), vaccinia virus (NCT03294486) (77), and poliovirus (PVSRIPO, NCT04479241) (29) are now 
under evaluation in GBM. The differential properties and relative advantages of  each of  these viruses, and 
even ZIKV, remain poorly understood. One potential advantage of  ZIKV is its specificity against GSCs, a 
highly treatment-resistant subpopulation of  GBM cells that may drive recurrence. Our results suggest that 
the efficacy of  ZIKV stems from GSC targeting and its ability to induce immune responses that facilitate 
CD8+ T cell–dependent clearance of  tumor components not directly killed by ZIKV.

Solid tumors with low amounts of  T cell infiltration generally do not benefit from immune checkpoint 
blockade therapy (78–80). In these cases, oncolytic virotherapy is an attractive treatment option, as virus-in-
duced inflammation can enhance efficacy of  checkpoint blockade therapy. A study in humans showed that 
T-VEC with anti–PD-1 immunotherapy in melanoma had a tolerable safety profile, and the combination 
appeared to have greater efficacy against melanoma than T-VEC or checkpoint blockade monotherapy (81). 
Due to the success of  immune checkpoint inhibitors in other cancers and their possible additive effects with 
oncolytic viruses, many virus/antibody combinations are currently being investigated in clinical trials (82, 
83). This includes an ongoing phase II clinical trial with an oncolytic adenovirus (DNX-2401) combined 
with pembrolizumab (anti–PD-1) for patients with recurrent GBM (ClinicalTrials.gov NCT02798406). 
Our data suggest an analogous combination with ZIKV may also be worth pursuing. In addition, future 
studies in nonresponders to ZIKV and PD-1 blockade combination therapy might identify mechanisms of  
resistance, such as loss of  tumor antigens, reduction of  immune infiltration surrounding the tumor, or other 
mechanisms of  T cell anergy or exhaustion.

We observed that ZIKV treatment also increased the tumor-associated myeloid cell response in the 
tumor bed, particularly the monocyte and microglia populations. Given that tumor-associated macro-
phage subsets may contribute to antigen presentation and the antitumor immune cycle, or promote tumor 
cell growth and suppress an immune response (84–86), further studies must clarify what rebalancing and 
myeloid cell skewing ZIKV treatment initiates.

While previous work has demonstrated that ZIKV replication is largely self-limited to GSCs, partially 
because of  their inherently attenuated innate immune response (13) and expression of  key integrin signal-
ing molecules that facilitate infection (14), safety remains a paramount concern. The safer, immune-sen-
sitized strain was less potent in the CT2A glioma model but had significant additive effect with immune 
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checkpoint blockade (Figure 5). However, further histological analysis of  the subventricular zone and hip-
pocampus of  long-term survivors is required to ensure that normal stem cell niches remain intact from 
ZIKV treatment. Genetic modifications of  Δ10 3′-UTR ZIKV to express cytokines or chemokines, for 
example, IL-6 (87), IL-12 (88, 89), and/or TNF-α (90, 91), to help manipulate the tumor microenviron-
ment may boost its efficacy (92, 93). Optimization of  the timing of  ZIKV administration with respect to 
radiation and chemotherapy, both of  which immunosuppress patients, will be important considerations 
for evaluating its possible clinical use and benefit. Nonetheless, given its unique tropism for GSCs and its 
combinatorial effects with immune checkpoint blockade, ZIKV offers a potential therapeutic opportunity 
for adult patients with GBM.

Methods
Tumor implantations. Single-cell suspensions of  GL261 or CT2A cells (4 × 104 cells in 4 μL) were implanted 
into the right cerebral hemisphere of  8- to 9-week-old C57BL6/J female mice (000664, The Jackson Labo-
ratory) after mice were anesthetized with ketamine (10 mg/kg), xylazine (100 mg/kg), and buprenorphine 
SR (1 μg/g). Mice were mounted onto a stereotactic apparatus (Stoelting), and an incision was made over 
the cranial midline. A burr hole was made 2.5 mm lateral and 1.5 mm anterior to lambda. A 29.5-gauge 
Hamilton syringe was inserted to a depth of  3 mm and withdrawn 0.5 mm to a depth of  2.5 mm. The cell 
suspension was injected over the course of  5 minutes, and the syringe was slowly withdrawn. The incision 
site was closed by surgical sutures.

Bioluminescence imaging. Animals were monitored for tumor development via bioluminescence imag-
ing. Beginning at day 6 after tumor implantation, mice were anesthetized by isoflurane (2% vaporized in 
oxygen) and were injected intraperitoneally with d-Luciferin (150 mg/kg; Gold Bio) and imaged using an 
IVS50 imaging system (PerkinElmer). Total photon flux (photons/s) from the tumor was measured using 
Living Image 2.6 software (PerkinElmer).

Treatment and animal monitoring. At day 7 after tumor implantation, mice with similar flux were ran-
domized between groups. Using the same coordinates as for tumor implantation, mice were inoculated 
intratumorally with mouse-adapted ZIKV (105 FFU), Δ10 3′-UTR-ZIKV (106 FFU), or PBS, each in 10 
μL. We injected CD8-depleting antibodies (clone 2.43, Bio X Cell) or isotype control IgG2b (clone LTF-2, 
Bio X Cell) intraperitoneally starting at day 14 after tumor implantation with an initial dose of  25 mg/kg 
and followed with booster doses of  12.5 mg/kg every 5 days until day 26. Representative mice were bled 
to confirm depletion. Checkpoint blockade antibodies against PD-1 (clone 29F.1A12, Bio X Cell), or cor-
responding IgG2a control (2A3, Bio X Cell), were injected intraperitoneally on days 8, 10, 12, and 14 with 
a dose of  10 mg/kg. Mice were monitored daily for signs of  neurological impairment and were euthanized 
when moribund. Animal caretakers were blinded to treatments.

Neurobehavioral score. Tumor-bearing animals were scored from 0 to 5 based on the following scale: 
0, no disease; 1, ruffled fur, piloerection, weight loss, or slow movements; 2, lethargy, unsteady gait, or 
hunched back; 3, decreased strength in forelimbs and/or hind limbs; 4, restricted movement, extreme body 
weight loss (over 20%), or convulsions; and 5, moribund or death (94, 95).

Cells. Murine glioma cell lines (GL261 and CT2A, H-2b) from the laboratory of  Yancey Gillespie, Uni-
versity of  Alabama at Birmingham, Birmingham, Alabama, USA (13), and SB28 cells generated in-house 
(96) transduced with luciferase were cultured in DMEM (Invitrogen, Thermo Fisher Scientific) supple-
mented with 10% FBS (MilliporeSigma) and 1% penicillin G-streptomycin sulfate amphotericin B complex 
(Corning) at 37°C in an incubator with 5% humidified CO2. Cells were dissociated with 0.25% trypsin and 
0.53 mM EDTA (Corning). Cells passaged fewer than 5 times were used for all experiments after ensuring 
their mycoplasma-free status by PCR (Genome Technology Access Center, Washington University).

Human GSCs (lines 0308 from the laboratory of  Howard A. Fine, National Cancer Institute, 
NIH, Bethesda, Maryland, USA; 667 from the laboratory of  Cameron W. Brennan, Memorial Sloan 
Kettering Cancer Center, New York, New York, USA; and 387 and 3565 generated in-hosue) (13, 14, 
97, 98) were grown as neurospheres in NBE medium composed of  Neurobasal-A medium (Thermo 
Fisher Scientific), Glutamax 100X (Thermo Fisher Scientific), N2 (100X) (Thermo Fisher Scientific), 
B27 (50X) supplement without vitamin A (Thermo Fisher Scientific), and recombinant human basic 
fibroblast growth factor, and epidermal growth factor (200 μg/mL each; PeproTech) and maintained 
at 37°C with 5% CO2. For dissociation, cells were harvested by Accumax cell dissociation reagent 
(Innovative Cell Technologies).
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In vitro viral infection and GSC proliferation assay. Cells were plated at 103 cells per well in 96-well plates 
and allowed to attach and grow overnight. Relative cell number was approximated using CellTiter-Glo 
(Promega). Cells were inoculated with mouse-adapted ZIKV or Δ10 3′-UTR-ZIKV at a multiplicity of  
infection (MOI) of  5, and luminescence was measured at 0, 3, 5, and 7 days after infection (Biotek).

Generation of  Δ10 3′-UTR-ZIKV. Using a recombinant NS4B(G18R) mouse-adapted infectious Dakar 
41525 ZIKV cDNA clone (GenBank: KU955591.1, Senegal, 1984), we engineered a 10-nucleotide deletion 
in the 3′ untranslated region (Δ3′-UTR) as described (68). Constructs were verified by DNA sequencing, 
and Δ10 3′-UTR-ZIKV was propagated as described (68). In brief, 10-nucleotide deletion ZIKV RNA was 
in vitro–transcribed using a T7 mMessage mMachine kit (Ambion) from cDNA plasmids prelinearized by 
ClaI. The RNA was precipitated with lithium chloride, washed with 70% ethanol, resuspended in RNase-
free water, quantitated by spectrophotometry, and stored at –80°C in aliquots. The RNA transcripts (10 μg) 
were electroporated into Vero cells (CCL-81, ATCC) following a previously described protocol (99). The 
virus derived from RNA transfection, defined as the P0 stock, was propagated in Vero cells as described 
(57) after inoculating at an MOI of  0.01 and incubating for 72 hours. Viral titers were quantified by plaque 
assay (100), and the viral genome was confirmed with sequencing.

Generation of  viral stocks. Both mouse-adapted ZIKV (Dakar strain) (57) and Δ10 3′-UTR-ZIKV viral 
stocks were propagated in Vero cells after inoculating at an MOI of  0.01 and incubating for 72 hours. Viral 
titers were quantified by plaque assay (100, 101) and stored at –80°C.

Plaque assay. ZIKV-treated, tumor-bearing mice were euthanized on day 7 or day 14 after viral treat-
ment (day 14 or day 21 after tumor implantation). Tissues were stored in −80°C until virus titration. Sam-
ples were thawed, weighed, and homogenized with zirconia/silica beads (BioSpec Products) in a MagNA 
Lyser instrument (Roche Life Science) in 1 mL of  infection media, DMEM supplemented with 2% FBS 
and 1% penicillin G-streptomycin sulfate amphotericin B complex. Samples were clarified by centrifuga-
tion (2000g at 4°C for 10 minutes), then diluted serially before infection of  Vero cells. Plaque assays were 
overlaid with 1% methylcellulose and 5 days later were fixed with 10% formaldehyde and stained with 
crystal violet (101).

Flow cytometry. Mice were anesthetized with ketamine (10 mg/kg) and xylazine (100 mg/kg), then per-
fused with 20 mL of 1× PBS (Gibco, Thermo Fisher Scientific). Brains were excised, treated with digestion buf-
fer containing HBSS (Cellgro 21-022-CM), 0.05% Collagenase D (50 mg/mL; MilliporeSigma C-0130), 10 μg/
mL DNase I (MilliporeSigma D5025 150KU), 0.1 μg/mL TLCK trypsin inhibitor (MilliporeSigma T-7254), 
and 10 mM of HEPES (1M; Cellgro 25-060-Cl) at room temperature for 25 minutes, minced, and strained 
through a 70 μm strainer. Cell suspensions were washed and subjected to gradient centrifugation (1200g, 30 
minutes, 4°C) in freshly prepared 30% isotonic Percoll (GE Heathcare 17-5445-02) gradient in RPMI (Gib-
co, Thermo Fisher Scientific). After discarding myelin and debris, the cell pellets were stained with fluoro-
chrome-conjugated anti-mouse antibodies at a dilution of 1:200. Single-cell suspensions were preincubated 
with Fc Block antibody (BD Pharmingen) in PBS + 2% heat-inactivated FBS for 10 minutes at room tem-
perature before staining. Cells were incubated for 30 minutes at 4°C with the following antibodies: BUV395 
anti-CD8 (clone 53-6.7, BD Biosciences), PE anti-CD44 (clone 1M7, BioLegend), anti-NK1.1 (clone PK136, 
BioLegend), APC anti-CD103 (clone 2E7; eBioscience, Thermo Fisher Scientific), BV711 anti-CD3 (clone 
145-2C11, BioLegend), BV421 anti-CD69 (clone H1.2F3, BioLegend), Alexa Fluor 700 anti-CD45 (clone 
30F-11, BioLegend), BV605 anti-CD4 (clone RM4-4, BioLegend), Alexa Fluor 488 anti-F4/80 (clone BM8, 
BioLegend), APC anti-P2RY12 (clone S16007D, BioLegend), PE-Cy7 anti-Ly6G (clone 1A8, BioLegend), 
APC-Cy7 anti-CD11c (clone N418, BioLegend), BV711 CD11b (clone M1/70, BioLegend), BV421 anti–I-A/
I-E (clone M5/114.15.2, BioLegend), BV605 anti-Ly6C (clone HK1.4, BioLegend), BV750 anti-CD223/Lag3 
(clone C9B7W, BD), BV421 anti-CD279/PD-1 (clone RMP1-30, BD), and APC anti-Tim3 (clone RMT3-23, 
BioLegend). Dead cells were identified with Fixable Viability Dye eFluor 506 (eBioscience, Thermo Fisher Sci-
entific). Cells were stained for 30 minutes at 4°C, washed, and fixed and permeabilized with Foxp3/Transcrip-
tion Factor Staining Buffer Set (eBioscience, Thermo Fisher Scientific, 00-5523-00), followed by intracellular 
staining with PE-Cy5 anti-FoxP3 (clone FJK-16s, eBioscience, Thermo Fisher Scientific) and PE anti-Nos2 
(clone CXNFT; eBioscience, Thermo Fisher Scientific). Our gating strategy is shown in Supplemental Figure 
2. Absolute cell counts were determined using TruCount beads (BD Biosciences). Flow cytometry data were 
acquired on a cytometer (BDX-20; BD Biosciences) and analyzed using FlowJo software (Tree Star).

Histology. Brain tissues were fixed in 10% buffered formalin (Thermo Fisher Scientific), embedded in 
paraffin, cut into 5 μm thick sections, and stained with hematoxylin and eosin (Thermo Fisher Scientific). 
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Whole-tissue scans at 20× original magnification were obtained on a Zeiss Axio Scan Z1 bright-field/fluo-
rescence Slide Scanner, and images were postprocessed using the Zeiss Zen Blue 3.1 software.

Statistics. All data are from at least 2 independent biological experiments (unless mentioned otherwise) 
with multiple mice in each group. Only animals that survived tumor and/or virus implantation procedures 
were used for the study. Cohort size and number of  technical replicates are specified in each figure legend. 
Statistical differences were calculated with Prism 8 (GraphPad) using log-rank Mantel-Cox tests (survival), 
unpaired 2-tailed Mann-Whitney U tests (to compare 2 groups with nonparametric data distribution), or 
2-way ANOVA with Dunnett’s multiple-comparison test (to compare more than 2 groups with parametric 
distribution). Differences with a P value of  less than 0.05 were defined as significant.

Study approval. This study was performed in accordance with the recommendations in the Guide for 
the Care and Use of  Laboratory Animals of  the NIH (National Academies Press, 2011). The protocols were 
approved by the Institutional Animal Care and Use Committee at the Washington University School of  
Medicine (assurance A338101). Inoculations were performed under anesthesia induced and maintained 
with ketamine hydrochloride and xylazine, and all efforts were made to minimize animal suffering.
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