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Immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) contribute to disease severity of coronavirus disease 2019 (COVID-19). However, 
the utility of specific immune-based biomarkers to predict clinical outcome remains elusive. 
Here, we analyzed levels of 66 soluble biomarkers in 175 Italian patients with COVID-19 
ranging from mild/moderate to critical severity and assessed type I IFN–, type II IFN–, and 
NF-κB–dependent whole-blood transcriptional signatures. A broad inflammatory signature 
was observed, implicating activation of various immune and nonhematopoietic cell subsets. 
Discordance between IFN-α2a protein and IFNA2 transcript levels in blood suggests that 
type I IFNs during COVID-19 may be primarily produced by tissue-resident cells. Multivariable 
analysis of patients’ first samples revealed 12 biomarkers (CCL2, IL-15, soluble ST2 [sST2], 
NGAL, sTNFRSF1A, ferritin, IL-6, S100A9, MMP-9, IL-2, sVEGFR1, IL-10) that when increased 
were independently associated with mortality. Multivariate analyses of longitudinal 
biomarker trajectories identified 8 of the aforementioned biomarkers (IL-15, IL-2, NGAL, CCL2, 
MMP-9, sTNFRSF1A, sST2, IL-10) and 2 additional biomarkers (lactoferrin, CXCL9) that were 
substantially associated with mortality when increased, while IL-1α was associated with 
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Introduction
COVID-19 is a new human viral disease caused by SARS-CoV-2, an enveloped RNA beta coronavirus that 
emerged in China and spread globally, causing 1,460,000 deaths as of  November 30, 2020 (1). The majority 
of  affected individuals exhibit no or mild to moderate symptoms, but up to 15% of  patients develop severe 
pneumonia with approximately 6% progressing to acute respiratory distress syndrome (ARDS) and mul-
tiorgan failure (2). Approximately one-fourth of  subjects hospitalized with COVID-19–associated pneu-
monia require respiratory support in an intensive care unit (ICU), and the need for invasive mechanical 
ventilation (IMV) has been associated with high mortality (3–5). Older age, male sex, and the presence of  
certain comorbidities (e.g., diabetes, cardiovascular disease) have been identified as predictors of  poor out-
comes (5); however, even younger and generally healthy individuals can suffer from COVID-19–associated 
respiratory failure (6). Both virus-specific factors and host inflammatory responses have been implicated in 
determining disease severity and clinical outcome (7–9). It has been proposed that ineffective early innate 
antiviral response followed by impaired adaptive immune responses and hyperinflammation may lead to 
microthrombosis and tissue injury, resulting in ARDS, multiorgan failure, and death (10).

Abnormal blood levels of  several pro- or antiinflammatory cytokines, chemokines, and other mediators 
have been associated with worse outcomes (4, 11–13). In particular, elevated IL-6 levels were shown to 
correlate with an increased risk of  death (13, 14). Furthermore, patients requiring ICU admission exhibit 
higher plasma levels of  IL-2, IL-7, IL-10, granulocyte colony-stimulating factor (G-CSF), CXCL10/IP-10, 
MCP-1/CCL2, MIP-1α/CCL3, and TNF-α (4, 14–19). Improved understanding of  the immunopathogen-
esis of  COVID-19 may allow for the identification of  personalized prognostic markers and the design of  
personalized, targeted therapeutic interventions. However, most published studies to date have focused on 
a restricted panel of  inflammatory mediators in relatively small patient cohorts with brief  follow-up. In 
addition, limited information exists related to how levels of  biomarkers may be affected by confounding 
factors, such as the presence and nature of  comorbidities, various therapies (particularly immunomodulato-
ry medications), and the timing of  sampling relative to onset of  infection and recovery/death.

We took a broad and methodologically multifaceted approach toward identifying immune-based 
biomarkers associated with clinical outcome by analyzing data on 66 soluble biomarkers in 175 patients 
hospitalized with COVID-19 of  different degrees of  severity. We explored the association between each 
biomarker and risk of  mortality using 3 survival models of  escalating scope. First, we modeled survival 
using the first biomarker measurement and adjusting for time from admission to sample collection. Second, 
we adjusted for potential confounders, including age, biomarker-modifying comorbidities, and receipt of  
immunomodulatory drugs. Third, we jointly modeled longitudinal patterns in biomarkers using all collect-
ed longitudinal samples and the association between survival and the expected value of  each biomarker, 
again adjusting for potential confounders. We identified several biomarkers that were consistently asso-
ciated with mortality across analyses after controlling for FDR. These data provide novel and important 
insights into the immunopathogenesis of  severe COVID-19. If  validated in larger independent cohorts, our 
findings may offer the opportunity to develop personalized strategies for risk assessment and individual-
ized, tailored therapeutic intervention of  hospitalized patients with severe COVID-19.

Results
Clinical characteristics of  our cohort. We enrolled 175 patients with confirmed COVID-19 (defined by SARS-
CoV-2–positive PCR test from a respiratory swab and/or positive serology for SARS-CoV-2) who were hospi-
talized in 3 hospitals in the Lombardy region of Italy between February 25, 2020, and May 9, 2020. This period 
coincided with the early surge in COVID-19 cases in northern Italy that outstripped the capacity of available 
health care resources (20). The median age of patients was 60 years (IQR, 51–69 years) and 132 (75.4%) 
were male. Patients presented to the hospital after a median of 7 days from symptom onset (IQR, 5–10 days). 
The maximum severity of a patient’s COVID-19 infection during hospitalization was classified as previously 

mortality when decreased. Among these, sST2, sTNFRSF1A, IL-10, and IL-15 were consistently 
higher throughout the hospitalization in patients who died versus those who recovered, 
suggesting that these biomarkers may provide an early warning of eventual disease outcome.
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described (21). A total of 122 patients (69.7%) had critical disease, while 23 (13.1%) had severe and 30 (17.1%) 
had mild or moderate disease. Information about comorbid medical conditions was available for 172 (98.3%) 
patients. At least 1 comorbidity was present in 140 patients (81.4%), with hypertension (37.2%) and diabetes 
(20.9%) being most common followed by malignancy and autoimmune disease (Supplemental Table 1; supple-
mental material available online with this article; https://doi.org/10.1172/jci.insight.144455DS1). During the 
course of hospitalization, 157 patients (89.7%) patients required some form of supplemental oxygen. Seventy 
patients (40%) were admitted to the ICU, nearly all of  whom (n = 69) required IMV. The majority of patients 
(129, 73.7%) received varying combinations of azithromycin, hydroxychloroquine, and/or antiviral therapy 
(remdesivir, darunavir/ritonavir, or lopinavir/ritonavir). Detailed information on receipt of anticoagulation 
and immunomodulatory medications was available for 160 patients. Prophylactic or therapeutic anticoagula-
tion was administered to 105 patients (65.6%) (Supplemental Table 1). Among immunomodulatory medica-
tions, corticosteroids were used in 93 patients (58.1%), the IL-6 receptor–targeted monoclonal antibody (mAb) 
tocilizumab in 40 (25%), the IL-1β–targeted mAb canakinumab in 7 (4.4%), and the IFN-γ–targeted mAb 
emapalumab in 1 (0.6%). Thrombotic complications during illness were documented in 22 patients (12.6%); 
deep venous thrombosis and/or pulmonary embolism accounted for nearly three-quarters of thrombotic com-
plications, with the remaining cases consisting of stroke and myocardial infarction. Acute kidney injury devel-
oped in 41 patients (23.4%). As of July 15, 2020, 33 patients (18.9%) had died. Among these 33 patients, the 
median time from hospital admission to death was 25 days (IQR, 14–46 days). Among the 142 survivors, the 
median duration of hospitalization was 19 days (IQR, 12–35 days).

Clinical factors and laboratory tests associated with differential mortality using univariable analysis in our cohort. 
Among clinical factors, age greater than 65 years (HR, 3.96; 95% CI, 1.76–8.89), diabetes (HR, 2.54; 95% 
CI, 1.23–5.29), ICU admission (HR, 2.21; 95% CI, 1.01–4.85), and intubation (HR, 2.65; 95% CI, 1.17–
5.99), but not sex, obesity, malignancy, or chronic liver or respiratory conditions, were associated with 
increased mortality (Supplemental Figure 1 and Supplemental Table 2). Among laboratory tests, elevat-
ed neutrophil-to-lymphocyte ratio, but not elevated levels of  lactate dehydrogenase, C-reactive protein, or 
D-dimer, were associated with increased mortality. In contrast, decreased absolute lymphocyte counts were 
associated with increased mortality (Supplemental Figure 1 and Supplemental Table 2), consistent with 
previous reports (22, 23). Administration of  anticoagulation was associated with reduced mortality (Sup-
plemental Figure 1 and Supplemental Table 2). While corticosteroid use was not associated with a mor-
tality benefit in the entirety of  the patient cohort, improved survival was noted in the subset of  intubated 
patients (Supplemental Figure 2), consistent with the findings of  the RECOVERY trial (24).

SARS-CoV-2 infection is associated with altered patterns in a wide range of  immunologic effectors in blood 
that vary depending on disease severity. To characterize the immunologic response in SARS-CoV-2 infec-
tion manifesting with different grades of  severity, we measured the concentration of  66 biomarkers 
associated with monocyte/macrophage, inflammasome, NF-κB, and neutrophil activation; T cell acti-
vation and/or polarization; type I IFN and IFN response gene induction; endothelial integrity; and 
sepsis severity in the peripheral blood of  COVID-19 patients and compared them with levels in healthy 
American volunteers (HVs). Cytokine and chemokine levels can vary considerably in their longitudi-
nal trajectories during the course of  COVID-19 as a function of  the phase of  the disease and receipt 
of  immunomodulatory medications (15, 25). Therefore, we focused our initial analysis on 119 patients 
who underwent the first blood sampling within the initial 7 days of  hospitalization (Supplemental 
Table 1 and Supplemental Figure 3).

Monocyte/macrophage activation–associated biomarkers are markedly increased in COVID-19 patients. Biomark-
ers associated with monocyte/macrophage activation were mostly upregulated in the blood of  COVID-19 
patients (Figure 1A, Supplemental Figure 4, and Supplemental Table 3), consistent with prior reports (14, 
15). Comparing the concentration of  biomarkers across severity groups and relative to HVs, several dis-
tinct patterns emerged. For example, the concentrations of  MIP-1α/CCL3, soluble CD163 (sCD163), and 
M-CSF were elevated in all COVID-19 patients compared with HVs, regardless of  severity. In contrast, 
MCP-1/CCL2 and MIP-1β/CCL4 were elevated selectively in patients who eventually succumbed to 
COVID-19 but not in those with milder illness. Ferritin, IL-15, CX3CL1 (also known as fractalkine), and 
IL-12p70 were elevated in patients with critical disease who survived as well as those who died. Notably, 
IL-12p40 levels were inversely correlated with disease severity. Consistent with the observed increased levels 
of  monocyte activation–associated biomarkers, and in agreement with recent reports (26, 27), peripheral 
blood monocytes of  COVID-19 patients exhibited extensive vacuolization (Supplemental Figure 5A), and 
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the MFIs of  CD169, and of  CD63, CD11b, and b558, were greater in peripheral blood CD14+ monocytes of  
COVID-19 patients (n = 2) relative to HVs (Supplemental Figure 6).

Excessive inflammasome activation–mediated IL-1β and IL-18 production is also reflective of  
monocyte/macrophage activation and has been associated with cytokine release syndromes, viral and 
bacterial sepsis, and autoinflammatory conditions (28–30). The IL-1 receptor antagonist anakinra 
reduces mortality in patients with sepsis who show signs of  macrophage activation syndrome (MAS) 
(31) and has shown promise in nonrandomized studies of  patients with COVID-19 who suffer from 
hypoxemia or secondary hemophagocytic lymphohistiocytosis (32, 33). Some, but not all, prior studies 
found increased IL-1β levels in COVID-19 patients compared with HVs, but most studies showed little 
or no correlation between IL-1β levels and severity of  COVID-19 (14, 15, 17). In our cohort, levels of  
IL-1β and IL-18 were higher in patients with COVID-19 compared with HVs. IL-1 receptor antagonist 
(IL-1RA) and IL-18 binding protein (IL-18BP), both negative regulators of  IL-1β and IL-18 signaling, 
respectively, were also upregulated (Supplemental Figure 7A and Supplemental Table 3). Of  note, 
the levels of  IL-1β in COVID-19 patients were comparable to those seen in monogenic autoinflam-
matory disorders of  IL-1β excess, whereas the levels of  IL-18 were lower in COVID-19 patients rela-
tive to the levels observed in autoinflammatory IL-18opathies that predispose to MAS (Supplemental 
Figure 7B). However, we found no difference in the levels of  IL-1β, IL-1RA, IL-18, and IL-18BP 
among COVID-19 severity groups (Supplemental Figure 7A). Taken together, these results indicate 
that SARS-CoV-2 infection results in significant increases in biomarkers associated with monocyte/
macrophage activation and inflammasome induction, irrespective of  disease severity.

NF-κB–dependent biomarkers including IL-6 and TNF superfamily mediators are increased in COVID-19 patients. 
In addition to the chemokines MCP-1/CCL2 and MIP-1α/CCL3, which were increased in COVID-19 
patients (Figure 1A), IL-6 and TNF-α production also depends on NF-κB activation. IL-6, in particular, 
has received considerable attention as a potential biomarker of  COVID-19 severity and mortality (15, 19, 
25, 34–36). In line with prior reports (15), IL-6 was ~1 log higher in COVID-19 patients compared with 
HVs, with the highest levels noted in the most severely ill patients (Figure 1A and Supplemental Table 3).  

Figure 1. Biomarkers associated with activation of monocytes/macrophages and NF-κB signaling are markedly induced in COVID-19 patients. (A) Shown 
are levels of soluble CD163 (sCD163), CCL2, ferritin, IL-15, CX3CL1, IL-12p70, IL-12p40, IL-6, and sTNFRSF1A in peripheral blood of COVID-19 patients with various 
severity groups (n = 94–119 depending on the biomarker) relative to healthy volunteers (HV; n = 45–60 depending on the biomarker). Ferritin concentrations 
were determined by clinical assays performed in Italian hospitals. The area shaded in gray reflects the normal range for HVs reported by the clinical laborato-
ry. Groups were compared by Kruskal-Wallis test. When P < 0.05, pairwise comparisons were made using Dunn’s test with Benjamini-Hochberg adjustment 
for multiple comparisons. (B) Expression of 11 NF-κB–regulated genes was measured by NanoString and expressed as summary z scores in whole blood of 
COVID-19 patients (n = 29) and HVs (n = 22). Groups were compared by an unpaired Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Consistent with some, but not all, prior studies (10, 14–16, 37, 38), TNF-α levels were increased in 
COVID-19 patients compared with HVs, but levels did not differ among severity groups (Figure 1); in 
contrast, TNF-β levels were comparable between HVs and COVID-19 patients (Supplemental Figure 4 and 
Supplemental Table 3). Of  note, levels of  TNFSF14 (also known as LIGHT) were higher in COVID-19 
patients with severe compared with those with moderate disease, consistent with a recent report (39). Lev-
els of  the soluble TNF receptors, sTNFRSF1A and sTNFRSF1B, increased in a stepwise fashion with 
greater severity, and their highest concentrations were observed in patients who eventually succumbed 
to COVID-19 (Figure 1A). In keeping with the observed increase in biomarkers associated with NF-κB 
activation, a transcriptional score derived from the analysis of  11 NF-κB–regulated genes was significantly 
upregulated in whole blood of  COVID-19 patients relative to HVs (Figure 1B).

Neutrophil activation–associated biomarkers are enriched in COVID-19 patients with more severe disease. Acti-
vated neutrophils, including formation of  neutrophil extracellular traps, have been implicated in the immu-
nopathogenesis of  severe COVID-19 (40–43). To investigate the association between a variety of  neutrophil 
activation–associated biomarkers and COVID-19 severity, we measured the concentrations of  myeloperox-
idase (MPO), MMP-9, S100 calcium binding protein A9 (S100A9), lipocalin-2 (also known as neutrophil 
gelatinase-associated lipocalin, NGAL), lactoferrin, IL-8, and IL-16 in SARS-CoV-2–infected patients and 
HVs (Figure 2 and Supplemental Table 3). All neutrophil biomarkers were higher in COVID-19 patients 
compared with HVs. For MPO, S100A9, IL-8, and IL-16, this difference was evident even when com-
paring HVs and patients with moderate disease severity. For all neutrophil markers except IL-8, levels 
further increased as COVID-19 severity increased, and a progressive, stepwise increase was observed for 
S100A9 and IL-16. In keeping with increased levels of  biomarkers associated with neutrophil activation 
and increased IL-8 levels, the MFI of  the granule protein CD66b was greater and the MFI of  the IL-8 
receptor CXCR2 was lower in peripheral blood neutrophils of  COVID-19 patients (n = 2) relative to HVs 
(Supplemental Figure 8), and peripheral blood neutrophils of  COVID-19 patients exhibited pronounced 
vacuolization (Supplemental Figure 5B).

Because neutrophilia is common in COVID-19 patients (11), we evaluated levels of  the colony-stimu-
lating growth factors G-CSF, GM-CSF, and stem cell factor (SCF) and found different patterns depending 
on disease severity. Specifically, while GM-CSF was increased in COVID-19 patients across all severity 
strata relative to HVs, G-CSF was increased only in patients with critical disease; SCF was increased only 
in patients with moderate disease (Supplemental Figure 9 and Supplemental Table 3).

Th1 more than Th2 immune response–associated biomarkers are increased in patients with COVID-19, while soluble 
FAS ligand and soluble CD40 ligand are decreased. To interrogate the potential role of  T cell activation–related 
biomarkers in COVID-19 immunopathogenesis, we measured levels of  IL-2, sCD25 (or sIL-2Rα), soluble 
CD40 ligand (sCD40LG), soluble FAS ligand (sFASLG), IL-7, and IL-3 (Figure 3A, Supplemental Figure 10, 
and Supplemental Table 3). IL-2 and sCD25 levels were increased in COVID-19 patients compared with HVs 
with minor or no significant differences between severity groups. In contrast, a small albeit statistically signifi-
cant increase in IL-7 levels was noted in patients with critical COVID-19 (Supplemental Table 3). Notably, as 
observed with IL-12p40 (Figure 1A), sFASLG and sCD40LG were significantly reduced in patients who died 
of  COVID-19. In fact, for sFASLG, the levels decreased in a stepwise manner with progression from mod-
erate to critical infection. No differences in IL-3 levels were observed between COVID-19 patients and HVs.

Th1-type immune responses are critical for host defense against viruses and other intracellular pathogens 
but, when in excess, can also instigate hyperinflammation and tissue injury. Of note, IFN-γ and the IFN-γ–
inducible chemokine CXCL9 were significantly increased in COVID-19 patients compared with HVs across 
severity groups. In agreement, a transcriptional score derived from the analysis of 15 IFN-γ–regulated genes was 
significantly upregulated in whole blood of COVID-19 patients relative to HVs (Figure 3B and Supplemental 
Table 3). Flow cytometric analysis of unstimulated whole-blood samples revealed a significant increase in the 
percentage of IFN-γ+CD8+ T cells in COVID-19 patients relative to HVs, while IFN-γ production was compara-
ble in CD4+ T cells, NK cells, and NKT cells between COVID-19 patients and HVs (Supplemental Figure 11A).

We next examined Th2-type immunity–associated biomarkers (Figure 3A, Supplemental Figure 10, 
and Supplemental Table 3) because excessive type 2 responses may promote immunopathology during 
severe respiratory viral infections as previously shown for respiratory syncytial virus bronchiolitis (44). 
The levels of  IL-4, IL-13, CCL11 (also known as eotaxin-1), and MCP-4/CCL13 were comparable 
between HVs and COVID-19 patients with mild/moderate and severe disease but were increased in the 
subset of  COVID-19 patients who died, consistent with a previous report showing an upward trend for 
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IL-4 and IL-13 over the course of  the disease in patients with severe COVID-19 (15). Levels of  CCL26 
(also known as eotaxin-3) were increased in COVID-19 patients and correlated with disease severity. 
In contrast, levels of  CCL17 (also known as TARC) and CCL22 (also known as MDC) were reduced 
in COVID-19 patients relative to HVs, with an inverse association observed between CCL22, but not 
CCL17, levels and COVID-19 severity. Levels of  IL-5 were not significantly influenced by SARS-CoV-2 
infection, whereas IL-33 was increased in patients with severe and critical COVID-19 but not in patients 
who died from COVID-19.

We found modest increases in the Th17-type immune response–associated biomarkers IL-17 and IL-23 
in COVID-19 patients and a more significant increase in IL-10 levels in all severity groups, with the highest 
concentrations observed in patients who succumbed to COVID-19 (Figure 3A, Supplemental Figure 10, 
and Supplemental Table 3), as previously reported (15, 19, 45). Of  note, flow cytometric analysis of  unstim-
ulated whole-blood samples revealed no significant enrichment in the percentage of  IL-4+ or IL-17A+ lym-
phoid cell populations in COVID-19 patients relative to HVs (Supplemental Figure 11B). Collectively, these 
data show that Th1-type immune response–associated biomarkers are predominantly increased over Th2 
and Th17 immune response–associated biomarkers in COVID-19 patients.

Biomarkers associated with endothelial integrity and sepsis severity are increased in COVID-19, while plasma 
gelsolin and IL-1α levels are decreased in patients who die from COVID-19. Leukocyte migration from the blood-
stream to infected tissues requires their highly coordinated interaction with the endothelial surface (46). 
Endothelial dysfunction is known to underlie several complications of  infection (including thrombosis), 
which have been frequently observed in patients with COVID-19 (47). Analysis of  several biomarkers of  
endothelial function revealed increased blood levels of  soluble VCAM-1 (sVCAM-1) and vascular endothe-
lial growth factor (VEGF) and decreased levels of  soluble L selectin shed from activated neutrophils (sL 
selectin; also known as sCD62L) and soluble CD31 (sCD31; also known as sPECAM-1) in patients with 
COVID-19 compared with HVs (Figure 4, Supplemental Figure 12, and Supplemental Table 3). A statisti-
cally significant increase in sVEGFR1 levels above HVs was apparent in the most severely ill patients with 

Figure 2. Neutrophil activation–associated biomarkers are increased in COVID-19 patients with more severe disease. Shown are levels of MPO, MMP-9, 
S100A9, NGAL, lactoferrin, IL-8, and IL-16 in peripheral blood of COVID-19 patients with various severity groups (n = 80–119 depending on the biomarker) 
relative to healthy volunteers (HV; n = 12–60 depending on the biomarker). Groups were compared by Kruskal-Wallis test. When P < 0.05, pairwise compar-
isons were made using Dunn’s test with Benjamini-Hochberg adjustment for multiple comparisons. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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COVID-19, while modest changes were observed for soluble ICAM-1 (sICAM-1) and soluble E selectin (sE 
selectin; also known as sCD62E) (Figure 4, Supplemental Figure 12, and Supplemental Table 3).

S100A9; LBP; soluble ST2 (sST2), which serves as a decoy receptor for IL-33; and RAGE (also 
known as AGER) have been used as prognostic biomarkers in sepsis (48–53). sST2 levels were increased 
in COVID-19 patients and were strongly correlated with disease severity, with marked elevations seen in 
patients who died (Figure 4 and Supplemental Table 3). RAGE, a biomarker of  tissue damage that inter-
acts with S100A9 (54), was also elevated in COVID-19 patients, especially in those who died (Figure 4 and 
Supplemental Table 3), as also seen for S100A9 (Figure 2). In contrast, LBP was increased similarly in 
COVID-19 patients across all severity groups. Notably, pGSN, a biomarker thought to curtail inflammation 
and platelet aggregation–associated coagulation whose low levels have been seen in patients with sepsis 
and have been associated with impaired lung function and death (55), was significantly decreased with 
increasing disease severity, with the lowest pGSN levels seen in patients who subsequently died (Figure 4 
and Supplemental Table 3).

We also measured the epithelial cell–derived biomarkers S100A8, regenerating islet-derived protein 3 
alpha (REG3A), and IL-1α (Supplemental Figure 13 and Supplemental Table 3) and found both S100A8 
and REG3A levels to be modestly increased in COVID-19 patients relative to HVs across all severity cate-
gories. IL-1α levels were increased in patients with moderate and severe disease but significantly decreased 
in patients who died. Taken together, these data indicate that endothelial cell– and sepsis-associated bio-
markers are increased during COVID-19.

Type I IFN induction is seen across all COVID-19 severity groups, but the transcriptional response of  type I IFN 
genes in circulating cells is disproportionally low. Type I IFN signaling is critical for mounting effective antiviral 
immune responses. Indeed, monogenic disorders in the type I IFN signaling pathway or autoantibodies 
against type I IFNs have been associated with development of  severe viral infections (56–64). However, 
excessive type I IFN signaling leads to chronic inflammation, as highlighted by several monogenic auto-
inflammatory disorders (65), and may contribute to immunopathology during the late phases of  SARS-
CoV-1 and SARS-CoV-2 infections (66). It has been hypothesized that a biphasic type I IFN response con-
sisting of  an early protective response and a subsequent immunopathogenic response may operate during 

Figure 3. Th1-type immune response–associated biomarkers are predominantly increased in patients with COVID-19 relative to Th2 and Th17 immune 
response–associated biomarkers, while sFASLG and sCD40LG are decreased. (A) Shown are levels of IL-2, sFASLG, sCD40LG, CXCL9, IL-4, CCL22, IL-33, 
IL-17, and IL-10 in peripheral blood of COVID-19 patients with various severity groups (n = 94–119 depending on the biomarker) relative to healthy volunteers 
(HV; n = 34–60 depending on the biomarker). Groups were compared by Kruskal-Wallis test. When P < 0.05, pairwise comparisons were made using Dunn’s 
test with Benjamini-Hochberg adjustment for multiple comparisons. (B) Expression of 15 type II IFN–regulated (IFN-γ–regulated genes was measured 
by NanoString and expressed as summary z scores in whole blood of COVID-19 patients (n = 29) and HVs (n = 22). Groups were compared by an unpaired 
Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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COVID-19, and randomized clinical trials are currently underway to evaluate the efficacy of  either IFN-β 
or JAK inhibitors, which inhibit type I IFN signaling, in COVID-19.

Levels of  IFN-α2a and the IFN-inducible chemokine CXCL10/IP-10 were significantly induced in 
the blood of  COVID-19 patients across all severity groups (Figure 5, A and B, and Supplemental Table 3). 
While no differences were noted in IFN-α2a levels among patients of  different severity groups, CXCL10 
levels were greater in patients who succumbed to COVID-19 relative to those with moderate disease. 
We next examined a transcriptional score derived from the analysis of  28 type I IFN–regulated genes, 
which we have previously used to characterize monogenic type I IFNopathies (67). Notably, although a 
subset of  COVID-19 patients had increased type I IFN scores relative to HVs, we found that the type I 
IFN score of  COVID-19 patients was significantly lower than that observed in monogenic type I IFNop-
athies (Figure 5C). In addition, we found the normalized transcriptional levels of  IFNA2 of  circulating 
leukocytes to be uncorrelated with the IFN-α2a blood levels (Figure 5D). In addition, normalized IFNA2 
transcripts only weakly correlated with the 28-gene type I IFN score in COVID-19 patients (Spearman’s 
= 0.07; P = 0.55), in contrast to their significant correlation in patients with monogenic IFNopathies 
(Spearman’s P = 0.57; P = 0.0015) (Figure 5E). The low transcriptional levels of  IFNA2 detected in blood 
are consistent with decreased numbers of  circulating plasmacytoid DCs (pDCs) and impaired produc-
tion of  type I IFN by circulating pDCs in COVID-19 patients reported by others (10, 16, 19).

Immunologic effectors as biomarkers associated with mortality in univariable analysis. As mentioned earlier 
(Supplemental Figure 1) and previously described (2, 23), several clinical risk factors and laboratory 
tests have demonstrated utility in identifying patients at risk of  death following SARS-CoV-2 infection. 

Figure 4. Abnormal levels of biomarkers associated with endothelial integrity and sepsis severity in COVID-19 patients. Shown are levels of soluble 
VEGF receptor 1 (sVEGFR1), VEGF, sST2 LPS binding protein (LBP), receptor of advanced glycation end products (RAGE), and plasma gelsolin (pGSN) in 
peripheral blood of COVID-19 patients with various severity groups (n = 93–119) relative to healthy volunteers (HV; n = 14–60 depending on the biomarker). 
Groups were compared by Kruskal-Wallis test. When P < 0.05, pairwise comparisons were made using Dunn’s test with Benjamini-Hochberg adjustment 
for multiple comparisons. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

https://doi.org/10.1172/jci.insight.144455
https://insight.jci.org/articles/view/144455#sd
https://insight.jci.org/articles/view/144455#sd


9

R E S E A R C H  A R T I C L E

JCI Insight 2021;6(1):e144455  https://doi.org/10.1172/jci.insight.144455

Having characterized the patterns of  levels of  66 immunologic effectors in COVID-19 patients with 
different disease severities, we next asked which of  these biomarkers might exhibit potential utility in 
identifying patients at risk for death after SARS-CoV-2 infection.

Using patients’ first sample from the 119 patients who had the first available sample collected within 7 
days of  hospitalization, we performed univariable analysis for each of  the 66 biomarkers to identify which of  
them correlated with mortality. We found 12 biomarkers for which increased levels in the initial sample were 
associated with increased mortality (Supplemental Figure 14 and Supplemental Table 4). These biomarkers 
included 3 neutrophil activation–associated biomarkers (MMP-9, NGAL, and S100A9), 3 Th2-associated 
biomarkers (CCL26, CCL13, and CCL11), 3 monocyte/macrophage activation– and/or NF-κB activation–
associated biomarkers (MCP-1/CCL2, sTNFRSF1A, IL-6), as well as sST2, IL-2, and sVEGFR1.

A subset of  immunologic biomarkers correlates with mortality in multivariable analysis. We next expanded 
the analysis to include all 175 patients irrespective of  whether the first available sample for analysis was 
collected within the initial 7 days of  their hospitalization, adjusting for the time of  sample collection 
relative to admission (Supplemental Table 4). The same 12 biomarkers were associated with mortality 
as previously shown in the univariable model that evaluated the 119 patients who had the first available 
sample collected within 7 days of  hospitalization (Figure 6, left panel; Supplemental Figure 14; and Sup-
plemental Table 4), with MCP-1/CCL2 emerging as the biomarker with the highest aHR (aHR, 2.43; 
95% CI, 1.7–3.48) among all 66 biomarkers. In this analysis, we found 4 additional biomarkers whose 

Figure 5. Type I IFN mediators are increased in COVID-19 patients, but the transcriptional response of type I IFN genes in circulating immune cells is 
disproportionally low. (A–B) Shown are (A) IFN-α2a and (B) CXCL10 levels in peripheral blood of COVID-19 patients with various severity groups (n = 94–114 
depending on the biomarker) relative to healthy volunteers (HV; n = 45–67 depending on the biomarker). Groups were compared by Kruskal-Wallis test. 
When P < 0.05, pairwise comparisons were made using Dunn’s test with Benjamini-Hochberg adjustment for multiple comparisons. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001. (C) Expression of 28 type I IFN–induced genes was measured by NanoString and expressed as log10-transformed summary z 
scores. Shown is comparison of HVs (n = 22), COVID-19 patients (n = 84), and patients with the NLRP3 inflammasomopathy NOMID (n = 11); and the type 
I IFNopathies CANDLE (n = 9), SAVI (n = 9), and AGS (n = 7); the CANDLE mimic NEMO-NDAS (n = 9); and the IL-18opathy IL-18 PAP/MAS (n = 6). NOMID, 
neonatal onset multisystem inflammatory disease; CANDLE, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature; 
SAVI, STING-associated vasculopathy with onset in infancy; AGS, Aicardi-Goutières syndrome; NEMO-NDAS, NF-κB essential modulator-deleted exon 5 
autoinflammatory syndrome; IL18 PAP/MAS, IL-18–mediated pulmonary alveolar proteinosis and macrophage activation syndrome. (D) Correlation of the 
transcript levels of IFNA2 in whole blood with blood levels of IFN-α2a in patients with COVID-19 (n = 22). (E) Correlation of the 28 type I IFN–induced gene 
score with transcript levels of IFNA2 in patients with COVID-19 (left panel) (n = 73) compared with the indicated type I IFNopathies (right panel) (n = 34).
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increased levels in the initial sample were associated with increased mortality: IL-15, ferritin, RAGE, 
and IL-13. The following commonly measured biomarkers did not have a significant association with 
risk of  death in this analysis: TNF-α, IFN-γ, IL-1β, IL-4, IL-8, and IL-18 (Supplemental Table 4).

Certain clinical factors may affect the levels of immunologic effectors and, as a result, confound their 
observed association with mortality without adjustment. Accordingly, we sought to identify potential clinical 
factors that could confound the association between biomarkers and survival for inclusion in our multivariable 
model. We fit unadjusted models estimating the associations between 20 clinical factors, including age, sex, and 
various comorbidities, and the levels of the 66 measured biomarkers (Supplemental Table 5). Age and chronic 
kidney disease were associated with the vast majority of alterations observed in biomarker levels (approxi-
mately 65%) and hence were included as covariates in our adjusted models. Additionally, receipt of immuno-
modulatory treatment with corticosteroids and/or tocilizumab, and/or canakinumab, was also included as a 
covariate because these drugs are known to potentially affect the levels of immunologic effectors (68–71).

In this multivariable analysis, we found 12 biomarkers for which increased levels were associated with 
increased mortality (Figure 6, right panel, and Supplemental Table 4). These biomarkers included 5 mono-
cyte/macrophage activation–associated and/or NF-κB activation–associated biomarkers, including IL-15, 
which exhibited the highest aHR (2.66; 95% CI, 1.74–4.06) among all 66 biomarkers, and MCP-1/CCL2, 
sTNFRSF1A, ferritin, and IL-6, 3 neutrophil activation–associated biomarkers (NGAL, S100A9, and 
MMP-9), 2 T cell–associated biomarkers (IL-2 and IL-10), as well as sST2 and sVEGFR1. Interestingly, 
TNF-α, IFN-γ, and IL-1β levels remained nonstatistically associated with death in the multivariable anal-
ysis that included the entire patient cohort after adjusting for age, chronic kidney disease, and receipt of  
immunomodulatory medications (Supplemental Table 4).

Longitudinal biomarker analysis and association with mortality. To assess mortality while controlling for 
the longitudinal trajectory of  the biomarkers over time, we employed a shared parameter joint model to 
describe trends in each biomarker over time and the association between the biomarker and a patient’s 
risk of  death. These models combine a longitudinal mixed effects model fit to repeated measurements of  
a biomarker with a survival model estimating time to death (72, 73). Joint modeling in this analysis was 
conducted under a Bayesian framework.

We found 11 biomarkers had a statistically significant association with increased patient mortality after 
controlling the FDR (Figure 7). Ten biomarkers were associated with increased mortality, and 1 was asso-
ciated with decreased mortality (Supplemental Table 6). The 10 biomarkers significantly associated with 
increased mortality in this longitudinal analysis included 3 monocyte/macrophage activation–associated bio-
markers (IL-15, MCP-1/CCL2, and sTNFRSF1A), 3 neutrophil activation–associated biomarkers (NGAL, 
MMP-9, and lactoferrin), 2 T cell–associated biomarkers (IL-2, IL-10), as well as sST2 and CXCL9 (Figure 
7). The biomarker whose 1-log increase in its expected value was associated with the greatest fold increase in 
the hazard of  death was IL-15, with a 14.1-fold increase (4.8 to 45.5), followed by IL-2, MCP-1/CCL2, sST2, 
NGAL, sTNFRSF1A, CXCL9, MMP-9, IL-10, and lactoferrin (Figure 7 and Supplemental Table 6). IL-1α 
was the only biomarker associated with a statistically significant decrease in mortality, where a 1-log increase 
in its expected value was associated with a relative reduction of  80% in the hazard of  death (50%–90%). No 
biomarkers associated with inflammasome activation, or Th1, Th2, or Th17 immune responses, were sig-
nificantly associated with patient survival in this longitudinal analysis (Figure 7 and Supplemental Table 6).

When comparing the levels of  these 11 biomarkers longitudinally in the subset of  patients with critical 
disease during ICU admission and later on in the same patients when they recovered from infection and 
exited from the ICU to the regular hospital ward, the T cell–associated biomarkers IL-2 and IL-10, the sep-
sis biomarker sST2, and the monocyte/macrophage activation–associated biomarker IL-15 declined upon 
patient recovery (Supplemental Figure 15). In contrast, levels of  MCP-1/CCL2, NGAL, sTNFRSF1A, 
CXCL9, MMP-9, lactoferrin, and IL-1α did not significantly change in patients between critical disease in 
the ICU and upon infection recovery post-ICU (Supplemental Figure 15).

sST2, sTNFRSF1A, IL-10, and IL-15 may differentiate between survivors and patients who die from COVID-19 
when measured throughout the entire hospitalization. Among the 14 identified biomarkers whose longitudinal 
trajectories were associated with mortality during COVID-19, we noted that sTNFRSF1A, sST2, IL-10, 
and IL-15 exhibited longitudinal trajectories that clearly segregated survivors versus patients who suc-
cumbed to COVID-19 throughout the entire course of  hospitalization (Figure 8). All other 62 tested bio-
markers exhibited varying degrees of  overlap in their longitudinal trajectories between survivors versus 
patients who died from COVID-19 during hospitalization (Supplemental Figure 16). This indicates that 
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sTNFRSF1A, sST2, IL-10, and IL-15 levels measured at any time during hospitalization, not just within 
the first few days of  admission, might help identify patients at risk for death.

Discussion
In this study, we have analyzed blood levels of  a large number of  immune function–related proteins, with 
the intent to better characterize the inflammatory response of  COVID-19 in hospitalized patients and to 
identify novel biomarkers that may help ascertain clinical outcome. Our data (a) confirm that COVID-19 

Figure 6. A subset of 
immune-based biomark-
ers is associated with 
mortality in COVID-19 
patients in multivariable 
analyses. Shown are 
forest plots and adjusted 
HRs (aHRs) of all 66 test-
ed biomarkers and their 
association with mortal-
ity during COVID-19 by 
multivariable analysis, 
irrespective of when 
the first sample was 
collected relative to the 
hospital admission when 
adjusting for (left panel) 
the time of sample 
collection relative to 
hospital admission or 
(right panel) the time of 
sample collection relative 
to hospital admission 
with age, chronic kidney 
disease, and receipt 
of immunomodula-
tory medications. For 
biomarkers significantly 
associated with mortal-
ity (i.e., q < 0.025), aHR 
CIs are shown in red.
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is characterized by a broad inflammatory signature, with increased levels of  soluble biomarkers indicative 
of  activation of  various immune cell types, including monocyte/macrophages, neutrophils, T lymphocytes, 
and nonhematopoietic cells, such as endothelial and epithelial cells; (b) provide novel insights into the 
immunologic effectors that may contribute to the immunopathogenesis of  COVID-19; and (c) suggest that 
certain immune-based biomarkers, measured either early upon patient admission or throughout hospital-
ization, may indicate an increased risk for mortality in infected patients.

The relative roles of  abnormal IL-1β, NF-κB–driven, and type I/III and type II IFN responses in the 
immunopathology of  severe COVID-19 remain controversial (4, 10, 14, 15, 17). In this study, levels of  
IL-1β, IL-1RA, IL-18, and IL-18BP were higher in patients with COVID-19 than in HVs; however, they 

Figure 7. Association between the longitudinal trajectory 
of biomarkers and the risk of death after COVID-19. Shown 
are forest plots of the immune-based biomarkers (n = 66) 
whose longitudinal trajectories were significantly associated 
with increased patient mortality after controlling the FDR 
irrespective of when the first sample was collected relative to 
the hospital admission. aHR CIs for biomarkers significantly 
associated with mortality (i.e., q < 0.025) are shown in red 
when aHR > 1 and in blue when aHR < 1. aHR CIs for biomark-
ers with q > 0.025 are shown in black.
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were lower than in patients with canonical autoinflammatory diseases. Moreover, no correlation was 
observed between levels of  these biomarkers and the severity of  COVID-19, and no association was found 
between the initial levels or longitudinal trajectories of  these biomarkers with patient mortality. Together, 
these data suggest a limited contribution of  the IL-1β and IL-18 pathways and inflammasome activation to 
COVID-19–associated clinical outcome.

By contrast, our data indicate a prominent role for NF-κB activation in the progression of  the disease. 
In particular, after adjusting for confounding factors, increased MCP-1/CCL2 and sTNFRSF1A levels in a 
patient’s initial sample were associated with one of  the highest risks of  death among all 66 tested biomark-
ers. Moreover, an NF-κB score based on whole-blood transcriptional levels of  11 NF-κB–regulated genes 
was markedly elevated in patients with COVID-19 compared with HVs. Finally, concordance between 
increased levels of  some NF-κB–dependent biomarkers (MCP-1/CCL2, MIP-1α/CCL3, IL-6, and sTN-
FRSF1A) and the NF-κB–associated transcriptional score in whole blood strongly suggests that circulating 
hematopoietic cells significantly contribute to the systemic inflammatory response during COVID-19.

In our series, upregulation of  IFN-γ and CXCL9 levels and increased whole-blood IFN-γ–associated 
transcriptional score were detected, indicating enhanced IFN-γ responses in COVID-19. By contrast, con-
flicting results have been reported in the literature on type I/III IFN responses. In particular, Hadjadj et al. 
(10) identified an impaired type I IFN response accompanied by high viral loads and an excessive NF-κB–
driven inflammatory response in COVID-19 patients with severe and critical disease phenotypes. Moreover, 
impaired induction of  type I/III IFN–dependent genes has been reported in postmortem analysis of  lungs 
from COVID-19 patients, and low to undetectable serum levels of  IFN-β and IFN-λ have been detected in 
SARS-CoV-2–infected individuals (7). By contrast, others have reported heightened type I IFN responses in 
the respiratory tract, and robust albeit not uniform expression of  IFN stimulated genes in circulating mono-
cytes, of  COVID-19 patients (43, 74). Our data have revealed dissociation between increased blood IFN-α2a 
levels and enhanced type I IFN–associated transcriptional scores in whole blood and low IFNA2 transcrip-
tional levels in whole blood from patients with COVID-19. These observations suggest that the major source 
of  IFN-α2a (and by inference, of  other type I IFNs) is not primarily represented by circulating blood cells 
but most likely by tissue-resident cells, possibly virus-infected lung epithelial cells. Similar results have been 
recently reported by others (16). Although no correlation was observed between IFN-α2a levels and disease 
severity or risk of  death in the patients analyzed in our study, we have evidence that impaired type I IFN 
production or signaling may contribute to aggravate the clinical phenotype of  COVID-19 in patients with 
monogenic errors of  type I IFN-mediated immunity or with neutralizing anti–type I IFN antibodies (75, 76).

Furthermore, our data imply an important role of  neutrophils in COVID-19 pathophysiology and dis-
ease progression. In particular, neutrophils displayed extensive vacuolization consistent with an activated 
state, and blood levels of  3 neutrophil-derived molecules (MMP-9, NGAL, and S100A9) showed posi-
tive correlation with the risk of  death, while the longitudinal trajectory of  3 neutrophil-derived molecules 
(NGAL, MMP-9, lactoferrin) was also associated with the risk of  death. A previous study showed that neu-
trophils play a critical role in the development of  ARDS in patients with COVID-19 (77), and a recent study 
showed that administration of  G-CSF to neutropenic COVID-19 patients was associated with a rise in 
absolute neutrophil count and an increased risk of  respiratory failure and death (78). Neutrophils are also 

Figure 8. sTNFRSF1A, sST2, IL-10, and IL-15 may differentiate between survivors and patients who succumb to COVID-19 throughout the entire hospital-
ization. Shown are loess-smoothed means with 95% CIs (shaded intervals) of sTNFRSF1A, sST2, IL-10, and IL-15 concentration throughout the hospitaliza-
tion in patients with COVID-19 who survived or succumbed to the infection (n = 175). All biomarker concentrations are in pg/mL.
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known to play a key role in triggering sepsis-associated ARDS (79). This is especially interesting in light of  
our multivariable and longitudinal data showing that the sepsis biomarker sST2 was associated with mor-
tality and with the observation that sST2 levels declined during recovery of  patients who had required prior 
admission to the ICU. Of  interest, a recent report found increased levels of  LPS in the plasma of  patients 
with severe COVID-19 (16); as such, the increased levels of  sST2 identified in our study may reflect bacte-
rial or bacterial pathogen-associated molecular pattern translocation during severe SARS-CoV-2 infection.

Besides sTNFRSF1A, IL-15, sST2, and IL-10 emerged as the 3 other biomarkers whose blood levels 
clearly distinguished survivors from nonsurvivors during the entire length of  hospitalization. IL-15 is a 
pleiotropic cytokine predominantly expressed by monocytes/macrophages and dendritic cells but also by 
nonhematopoietic cells such as keratinocytes and epithelial cells (80). Although IL-15 has been ascribed a 
major role in NK cell development and function, it is also involved in inflammatory responses. In partic-
ular, IL-15 promotes the production and secretion of  IL-8 by neutrophils and stimulates their migration, 
thereby contributing to their recruitment at inflammatory sites (81). In a previous study, increased serum 
levels of  IL-15 were present in patients with early ARDS who died as compared with those who survived, 
whereas the opposite was true for IL-15 levels in bronchoalveolar lavage fluid (82). In another study, IL-15 
serum levels correlated with disease severity in children with bronchiolitis (83). IL-15 immunotherapy, in 
the intent to potentiate T cell and NK cell antiviral responses, has been advocated as a potential viable strat-
egy for COVID-19 (84); the results obtained in our study raise caution on this approach.

sST2 serves as a soluble decoy receptor for IL-33, and its expression is enhanced by proinflammatory 
cytokines in human lung epithelial cells (85), in particular when neutrophilic inflammation is present (86–
88). Moreover, sST2 has previously been shown to predict disease severity in children with acute viral lower 
respiratory tract infections (89). Together, these studies further suggest a prominent role for neutrophilic 
lung inflammation as a major contributor to poor outcome in COVID-19.

Moreover, multiple studies have reported increased IL-10 blood levels, correlating with disease sever-
ity and progression, in patients with COVID-19 (4, 11, 15, 19, 45). The cell source and specific effects of  
increased IL-10 in patients with severe COVID-19 remain to be defined. However, it is interesting to note 
that IL-10 inhibits expression of  HLA class II molecules by antigen-presenting cells, a phenomenon that 
has been observed in myeloid cells of  patients with severe COVID-19 (16, 40, 90, 91). Furthermore, a 
significant increase in IL-10–producing regulatory T cells has been observed in the blood of  patients with 
severe COVID-19, compared with those with moderate and mild disease and HVs (92). In mouse models, 
IL-10–producing regulatory T cells play a critical role in controlling lung inflammation by restraining devel-
opment of  tissue-damaging Th17 cells and inhibiting innate inflammatory responses (93, 94). The higher 
IL-10 levels detected in our study in patients with COVID-19 who died may have reflected an extreme 
attempt to counteract severe lung inflammation. On the other hand, it is also possible that increased IL-10 
may suppress antiviral adaptive immune responses and weaken resistance to bacterial superinfections in 
COVID-19 patients, as previously shown in animal models of  influenza infection (95, 96). Notably, IL-10 
and sTNFRSF1A were among the biomarkers most strongly associated with mortality in our analysis. 
Prior studies have demonstrated that IL-10 can upregulate the expression of  sTNFRSF1A, which raises the 
question as to whether these proteins are coregulated in COVID-19 (97, 98).

A surprising finding in our analysis was the association of  decreased longitudinal trajectories of  IL-1α 
with increased risk of  death in COVID-19 patients. It remains elusive how decreased levels of  IL-1α, a 
danger-associated molecular pattern typically released from injured epithelial cells, might heighten the risk 
of  death during COVID-19. Thus, future studies are required to validate and help interpret these results.

Our study has several limitations. The patient population had a skewed representation of  disease 
phenotypes, with a predominance of  patients with severe and critical disease, consistent with the severe 
evolution of  COVID-19 in northern Italy at that time. In addition, it was not feasible to obtain healthy 
donor samples from Italy during the peak of  the pandemic; therefore we analyzed North American healthy 
donors’ samples. Studying patients with other forms of  infectious and noninfectious interstitial pneumo-
nitis may help define to what degree the abnormalities observed in this study are specific to SARS-CoV-2 
infection. In the longitudinal model, the association between mortality and each biomarker was described 
in terms of  the expected change in the instantaneous hazard of  death per unit change in the concurrent 
expected value of  the biomarker, with the expected value of  the log biomarker modeled as a population-lev-
el linear trend, offset by a subject-specific intercept parameter. Consequently, while the longitudinal model 
captured whether an individual’s average biomarker level was above the population mean, as it might be if  
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that person had experienced cytokine storm at some point, it did not contain the sort of  granular time-vary-
ing covariates that could be used to identify motifs reflecting increased biomarker expression since no such 
covariates were available. From our perspective, the collection of  temporally dense granular immunologic 
data could help to shed light on when and why individuals entered into different immunologic states that 
would be reflected in the biomarkers whose average values over the observation period were identified as 
being associated with mortality. Notwithstanding these limitations, we have provided a systematic analysis 
of  a large number of  soluble inflammatory biomarkers, described their trajectory over time, and analyzed 
the correlation of  their initial levels and longitudinal evolution with the risk of  death from COVID-19 after 
adjusting for possible confounding factors.

In summary, we have identified potential biomarkers of  COVID-19 severity that provide novel insights 
into the complex immunopathogenesis of  COVID-19. If  validated in independent cohorts of  patients, these 
results may help identify COVID-19 patients who are at risk of  mortality and in whom individualized strat-
egies for risk assessment and therapeutic intervention might improve their outcomes.

Methods
Patient enrollment and determination of  COVID-19 illness severity. Deidentified patient plasma and serum 
samples were obtained from discarded, clinically indicated collection of  blood samples obtained from 
175 patients admitted at ASST Spedali Civili Brescia, Italy, Ospedale San Gerardo, Monza, Italy, and 
Ospedale S. Matteo, Pavia, Italy, following positive nasopharyngeal swab PCR (n = 173) or positive 
serology for SARS-CoV-2 infection (n = 2) (99). Patients’ clinical information and eligibility were sur-
veyed with the standard COVID-19 Human Genetic Effort Patient Screen form. Severity of  COVID-19 
disease for each patient was ascertained per the Diagnosis and Treatment Protocol for Novel Coronavi-
rus pneumonia (trial version 7), released by the National Health Commission & State Administration of  
Traditional Chinese Medicine on March 3, 2020 (21).

Blood samples from American HVs were drawn after written informed consent was obtained under 
the Frederick Research Donor Program protocol OH99-C-N046. The mean age of  HVs was 44.9 years 
(range, 25.2–71 years old), 53.4% were male, 46.6% were female, and no HVs had comorbidities (Supple-
mental Table 7). Blood samples from patients with autoinflammatory conditions were obtained under the 
NIH IRB-approved protocol NCT02974595. Hospitalized COVID-19 patients at the NIH Clinical Center 
or George Washington University Hospital were enrolled in NIH IRB-approved protocols NCT00001467 
and NCT01200953 for cytometry-based analyses. HVs were enrolled in NIH IRB-approved protocol 
NCT01386437 for cytometry-based analyses. Study participants provided written informed consent in 
accordance with the Declaration of  Helsinki.

Detailed methods for measurement of  soluble biomarkers, flow cytometric studies in whole blood of  
COVID-19 patients, preparation of  peripheral blood smears, transcriptional analysis of  whole blood from 
PAXgene tubes, and additional statistical methods are available in Supplemental Methods.

Definition of  clinical outcomes used for survival modeling. Mortality was defined as death within 6 weeks of hos-
pital admission. For patients with multiple hospitalizations, the date of the patient’s index hospitalization was 
used as the start date to define the 6-week interval. Data from patients whose status was unknown at 6 weeks 
after hospital admission were censored on the date the patient was last known to be alive.

Survival models fit to first sample for each biomarker. To start, we fit a Cox proportional hazards (PH) model 
to the first biomarker measurement for each patient, adjusting for time from admission to sample collec-
tion. Recognizing that survival may be affected by a variety of  factors that are associated with different 
biomarkers, we extended this first model to additionally adjust for multiple confounders, including age, 
receipt of  immunomodulatory medications, and history of  chronic kidney disease, which were found to 
be associated with alteration in a large number of  candidate biomarkers (Supplemental Table 5). For these 
models, we report the aHR and 95% CI associated with a 1-log increase in biomarker concentration. As a 
supplementary analysis, we also fit an unadjusted PH model to biomarker measurements that were collect-
ed within the first 7 days postadmission (see Supplemental Methods).

Joint longitudinal–survival model fit to all biomarker samples. To assess whether mortality was associated 
with the expected value of  the biomarker over time, we used all samples from 175 patients, regardless of  
when the first sample was drawn during their hospitalization. Biomarkers were measured repeatedly in 144 
patients (82%), with 98 patients (56%) having 3 or more longitudinal samples, for a total of  609 distinct 
samples. Ferritin measurements were only available for 123 patients.
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Joint model. We used shared parameter joint models to describe trends in each biomarker over time and 
the association between the biomarker and a patient’s risk of  death. These models combine a longitudinal 
mixed effects model fit to repeated measurements of  a biomarker with a survival model estimating time 
to death (72, 73). Joint modeling in this analysis was conducted within a Bayesian framework using the 
rstanarm package (100, 101). For the longitudinal submodel, we specified a generalized linear mixed model, 
with fixed effects for days from hospital admission to sample collection, and subject-specific intercept param-
eters to account for repeated samples within patients. Time to death was estimated using a PH submodel 
with the expected value of  the biomarker estimated by the longitudinal submodel included as a covariate. 
The survival submodel also adjusted for age, history of  chronic kidney disease, and whether the patient 
received immunomodulatory medications. The baseline hazard was estimated using B-splines. Weakly infor-
mative priors were used on all parameters except for the association parameter, which was set so that 95% 
of  the prior mass fell between a 90% relative reduction hazard and a 10-fold relative increase in the hazard. 
Additional details regarding the priors and the model fitting procedure are provided in Supplemental Meth-
ods. The posterior median aHR and 95% credible intervals are reported, as are posterior survival probabili-
ties and longitudinal biomarker trajectories summarizing the posterior predictive distribution.

FDR control. We decided whether an association between a biomarker and survival was deemed sta-
tistically significant based on FDRs estimated from 1-sided P values, or posterior error probabilities in the 
case of  the joint model, of  tests for whether a given biomarker was positively or negatively associated with 
mortality. We set our significance thresholds to separately control the FDRs for each model at 0.025 for 
each of  the 2 sets of  1-sided comparisons (102, 103).

Imputation of  missing data. Missingness in covariate and biomarker values are tabulated by sample and 
patient in Supplemental Tables 9 and 10, respectively. Missing data were imputed using multiple impu-
tation by chained equations via the mice package in R (104). A particular biomarker measurement was 
considered missing on a given day if  the patient was tested for some, but not all, biomarkers that day. Bio-
marker concentrations were log-transformed prior to imputation. We generated 50 imputed data sets using 
classification and regression trees across all variables (see Supplemental Methods for more information), 
with each imputation based on 20 sampling iterations, which was deemed sufficient for convergence of  the 
imputation algorithm based on trace plots of  imputed values. Reported estimates were based on the pooled 
fits for each of  the 50 imputed data sets.

Statistics. We described the association between a patient’s risk of  death and level of  each biomarker 
using 3 survival models that increased in the scope of  the data that was incorporated into the model (Sup-
plemental Table 8). For each biomarker, groupwise median ± IQR was calculated (Supplemental Table 3). 
For comparisons of  continuous variables between 2 groups, a 2-tailed unpaired Student’s t test was used. 
Significance was defined as P < 0.05. Comparisons involving more than 2 groups were made using the 
Kruskal-Wallis test. When P < 0.05, pairwise comparisons were made using Dunn’s test with Benjami-
ni-Hochberg adjustment for multiple comparisons variables. Significance was defined as adjusted P < 0.05. 
For survival modeling, significance was defined as q < 0.025 (see Supplemental Methods for more details).

Study approval. Ethical approval was obtained from the University of  Milano-Bicocca School of  Med-
icine, San Gerardo Hospital, Monza – Ethics Committee of  the National Institute of  Infectious Diseases 
Lazzaro Spallanzani (protocol 84/2020, COVID-STORM); the IRB of  Fondazione IRCCS Policlinico San 
Matteo, Pavia (protocol 20200037677); and the Comitato Etico Provinciale, Brescia, protocol NP 4000, 
CORONAlab. Written consent was waived as all testing was performed on discarded blood specimens col-
lected during the course of  clinical practice. Blood samples from American HVs were drawn after written 
informed consent was obtained under the Frederick Research Donor Program protocol OH99-C-N046. 
Blood samples from patients with autoinflammatory conditions were obtained under the NIH IRB-approved 
protocol NCT02974595. Hospitalized COVID-19 patients at the NIH Clinical Center or George Washing-
ton University Hospital were enrolled in NIH IRB-approved protocols NCT00001467 and NCT01200953 
and HVs were enrolled in NIH IRB-approved protocol NCT01386437 for cytometry-based analyses. Study 
participants provided written informed consent in accordance with the Declaration of  Helsinki.
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