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E N G I N E E R I N G

Metachronal patterns in artificial cilia for low Reynolds 
number fluid propulsion
Edoardo Milana1*, Rongjing Zhang2*, Maria Rosaria Vetrano1, Sam Peerlinck1, 
Michael De Volder1,3, Patrick R. Onck2, Dominiek Reynaerts1, Benjamin Gorissen1,4†

Cilia are hair-like organelles, present in arrays that collectively beat to generate flow. Given their small size and 
consequent low Reynolds numbers, asymmetric motions are necessary to create a net flow. Here, we developed 
an array of six soft robotic cilia, which are individually addressable, to both mimic nature’s symmetry-breaking 
mechanisms and control asymmetries to study their influence on fluid propulsion. Our experimental tests are 
corroborated with fluid dynamics simulations, where we find a good agreement between both and show how the 
kymographs of the flow are related to the phase shift of the metachronal waves. Compared to synchronous beat-
ing, we report a 50% increase of net flow speed when cilia move in an antiplectic wave with phase shift of −/3 and 
a decrease for symplectic waves. Furthermore, we observe the formation of traveling vortices in the direction of 
the wave when metachrony is applied.

INTRODUCTION
Arrays of beating cilia are a biological solution to generate net flow 
in low Reynolds number flow regimes. Cilia are micrometer-sized 
hair-like organelles that cover the body of certain microorganisms, 
such as Paramecium and Opalina, or can project from epithelial 
cells in carpet-like configurations, like in the lining of the trachea or 
in the fallopian tubes (1, 2). Although their function can alter from 
organism to organism (swimming, pumping, and mixing), their 
fundamental operation remains the same. Because of their small 
scale, cilia operate at low Reynolds numbers, where nonreciprocal mo-
tions are necessary to induce a net flow, as pointed out by Purcell’s 
scallop theorem (3). At low Reynolds numbers (Re ≪ 1), viscous forces 
dominate inertial effects, and flow interactions can be described using 
Stokes equation, which is time reversible. Thus, a swimmer that follows 
a symmetric pattern of strokes cannot propel itself at low Reynolds 
numbers. However, cilia display nonreciprocal motions to break the 
symmetry and generate a net flow. A single cilium beats rhythmically, 
and its motion can be divided into two phases: the effective and the 
recovery stroke (4). In cilia, nonreciprocity occurs when the two 
strokes follow a different trajectory so that the tip of the cilia sweeps 
an enclosed area in the beating plane. This so-called swept area 
characterizes the amount of net fluid flow induced in a single beat; 
the larger this area, the higher the flow rate (5, 6). This type of non-
reciprocal motion is also known as spatial asymmetry. In addition 
to asymmetry on an individual cilium level and when cilia are placed 
in arrays, the beating of each cilium can be shifted in time with re-
spect to the beating of its neighbors. This coordinated shift induces 
what biologists call metachronal wave (7). If the wave travels toward 
the direction of the effective stroke, the wave is defined as symplec-
tic, whereas in the other scenario, the wave is antiplectic. The syn-
chronization mechanism that regulates the metachronal beating is 
still uncertain; however, it has been shown that metachronal waves 

can emerge because of hydrodynamical interaction between densely 
packed cilia (8–11). Furthermore, computational models have iden-
tified metachrony to be a major contributing factor for the large fluid 
flows that are observed in nature (12–15). In contrast to numerical 
simulations, artificial cilia can be used to experimentally corrobo-
rate existing models and gain insights into the effects of nonreciprocal 
motions on the surrounding viscous fluid to better understand the 
mechanisms of their biological counterparts (16).

To date, most artificial cilia arrays are magnetically actuated and 
are manufactured in plate-like (17, 18) or rod-like (19–23) shapes. Both 
types of magnetic cilia exhibit spatial asymmetry, controlled, for 
instance, by a rotating magnetic field. However, these arrays of mag-
netic cilia are collectively controlled by the distant action of a mag-
net, which makes it challenging to generate controlled metachronal 
waves. Few manuscripts report on the metachronal motion of mag-
netic cilia: Hanasoge et al. (24) varied the length of plate-like cilia to 
induce a phase shift between neighboring cilia, while Marume et al. 
(25) tuned the orientation of the magnetic chainlike clusters em-
bedded in the cilia structures. Recently, Gu et al. (26) developed a new 
technique to introduce a phase shift in magnetic cilia. Their cilia car-
pet is wrapped around a curved support and then magnetized. The 
curvature of the support defines the metachronal phase shift. Never-
theless, if the metachronal wave is defined in the cilia design, then it 
is impossible to tune its properties (wavelength and traveling speed) 
without changing the amplitude or frequency of the driving force, 
which leads to changing hydrodynamic conditions (Reynolds and 
Sperm number) (4). Therefore, artificial cilia that can be actuated in-
dependently are needed to experimentally corroborate existing com-
putational fluid dynamic (CFD) theories on metachrony. Previous 
reports have looked into metachronal waves of reciprocal beating 
pneumatic cilia at high Reynolds numbers (27) or rigid paddle-like 
robotic arm array with tunable metachronal phase shifts (28, 29), but 
there is no artificial system that mimics and independently tunes 
the typical asymmetric ciliary motion at low Reynolds numbers, and, 
moreover, no experiment where the net flow is related to regular in-
tervals of phase shift angles covering the complete range between 
0 and 2. This work fills this gap and provides an experimental setup 
where an array of six independent soft inflatable cilia with two de-
grees of freedom can be controlled independently to study different 
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metachronal waves at low Reynolds numbers. In our system, meta-
chronal waves are actively imposed and do not spontaneously emerge 
because of hydrodynamic interactions. Furthermore, the collective 
behavior of the artificial cilia beating in a low Reynolds regime is 
evaluated through Particle Image Velocimetry (PIV), accurately mea-
suring the induced flow fields. During these experiments, the im-
posed pressure waves have a fixed amplitude and frequency, leaving 
phase difference to be the only variable parameter. In this way, we 
have accurate control over both spatial and metachronal asymmetries 
of the cilia array. These experiments are compared with CFD simu-
lations to assess the accuracy of the existing theoretical models and 
to lay a foundation for the experimental observations.

Soft artificial cilia
The experimental setup consists of an array of six equidistant soft 
robotic cilia, where each cilium consists of two hollow elastomeric cyl-
inders that are combined side by side into a monolithic polydimethyl-
siloxane (PDMS) structure reported previously (16). By offsetting 
the inner cavity of the cylinder with respect to its symmetry axis, a 
large bending deformation upon inflation is accomplished (30). Be-
cause these cilia have not one but two inner cavities, the additional 
degree of freedom can be used to create a swept area and thus spatial 
asymmetry. This is done by pressurizing each cavity with a dedicated 
pressure source, where the phase shift between imposed trapezoidal 
pressure profiles can be used to tune the amount of area that the 
cilia tip sweeps, as displayed in Fig. 1A (16). The individual cilium ex-
hibits a geometrical symmetry plane, resulting in planar deformations. 
These cilia are thus mimicking the deformations of planar-beating 
natural cilia [e.g., respiratory tract cilia (31)], which have been studied 
in literature using computational and approximate experimental 
models (6, 13, 15, 32). For the manufacturing and more detailed 
information on the operational principle and design, we refer to 
previous publications (16, 30). Where in our previous work we were 
interested in the hydrodynamic interactions of a single artificial cil-
ium (16), we now focus on the influence of metachrony on fluid flow, 
in this case, in glycerol. To achieve this, six artificial cilia are aligned 
to make their beating coplanar, mimicking a simplified cilia array. 
The imposed amplitudes and frequencies of the pressure signals are 
maintained fixed, while the phase shift between neighboring cilia is 
changed to control metachrony. Twelve independent pressure in-
puts are thus needed to regulate the beating of six artificial cilia. The 
actuation system consists of 12 electropneumatic valves (SMC In-
struments, ITV0050-3MN-Q) controlled through a LabVIEW program 
to output trapezoidal pneumatic waves. Because of air diffusion 
through the PDMS (more details in section S1) material of the cilia, 
we additionally included a pneumatic-hydraulic pressure converter 
to actuate the cilia with water (fig. S1). The ciliary beat frequency ( f ) 
is set to 0.25 Hz, which corresponds to an optimal trade-off between 
actuation frequency and viscous drag, as described in (16). Because 
the active cilia length (L) is 14 mm and the viscosity () and density 
() of glycerol at 20°C are, respectively, 1.412 Pa · s and 1.260 g · cm−3, 
the Reynolds number ( Re =    L   2  f _     ) (4) equals 0.04, comparable to 
what microorganisms experience (33). Computational studies show 
that the spacing between cilia influences the attained fluid flow, with 
smaller interciliary distances leading to larger flows, depending on 
the direction of the traveling wave (14). We set this interciliary dis-
tance approximately equal to the cilia length, a ≈ L, which is also 
the limiting condition for studying the collective behavior of cilia 
with the envelop model according to Brennen (34). The phase shift 

between the pressure signals of subsequent cilia directly influences 
metachrony and will be the main parameter under investigation in 
this study. Movie S1 shows the ciliary motion in air for changing phase 
differences (φ). Negative phase differences (− < φ < 0) corre-
spond to antiplectic traveling waves, while positive phase differences 
(0 < φ < ) correspond to symplectic. Synchronous (φ = 0) and anti- 
phase (φ = ) cilia induce standing waves. Given these parameters, 
the wavelength of a metachronal wave can be defined as   =  2a _ φ     and the 
wave speed as   v  m   =  2fa _ φ   . Figure 1B displays the artificial cilia motion 
for antiplectic, symplectic, and synchronous beating patterns.

RESULTS
To understand the underlying physics of the low Reynolds propul-
sion of our artificial cilia, we compared the experimental fluid fields 
with CFD simulations for different values of metachronal phase shifts 
φ. We observed a good agreement in the fluid field structures that 
provide new insights into the ciliary propulsion mechanisms. This 
can be seen in Fig. 2, showing simulated and experimental velocity 
fields of the fluid inside the channel for a synchronous cilia beating 
pattern. Numerical discrepancies are discussed in the Supplementary 
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Fig. 1. Soft artificial cilia. (A) Pressure input functions: Each cilium is actuated with 
two trapezoidal waves. A metachronal wave is applied by shifting the trapezoidal 
waves of the neighboring cilium with a constant phase angle. The actuation se-
quence allows the cilium stroke to be spatially asymmetric. (B) Array of six artificial 
inflatable cilia independently actuated by 12 fluid pressure inputs. Symplectic and 
antiplectic waves and synchronous motion can be applied to the array. The super-
imposed colored lines show the metachronal wave propagation. The solid line 
represents the initial metachronal wave at the tip of the cilia. The dashed line is the 
wave at the subsequent frame. The wave travels toward the positive direction for 
the symplectic wave and the negative for the antiplectic.
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Materials and are mainly caused by small variations in the viewing 
plane (fig. S8) and mismatches between the ideal simulated kine-
matics and the experimental cilia trajectories (fig. S9). Despite the 
closed-loop shape of the D channel, we observed no fluid flow in the 
curved side of the circuit. Given the narrow geometry of the curved 
channel and the high viscosity of the medium, the fluid propelled by 
the ciliary beat does not flow to the curved channel but recirculates 
within the main rectangular channel. We approximated this condi-
tion in the simulations by adopting a closed rectangular channel do-
main. As in (17, 33), artificial cilia beating in a closed channel build 
up a pressure gradient that drives a backflow at the top half of the 
channel, in agreement with our experimental observations. Because 
fluid velocities in the bottom half of the channel are strongly affected 
by the presence of the artificial cilia, velocities there have higher mag-

nitudes compared to the rest of the channel (Fig. 2). Because of the 
low Reynolds number regime, the fluid in the immediate vicinity of 
the cilia moves as fast as the cilia themselves. Therefore, to have a clear 
analysis on the propulsion effect, we focus on the free-flowing fluid, 
in the top half of the channel, where backflow occurs (33). Moreover, 
the analysis of the divergence (fig. S10) shows that the fluid velocities 
are essentially planar in the free-flowing fluid, while out-of-plane 
fluid motions occur only between the cilia.

Figure 3A shows how the simulated and experimental backflow ve-
locity varies during a cycle for an antiplectic (−/3), a symplectic (/3), 
and the synchronous motion (no phase shift) at the center of the rectan-
gular face of the channel. The backflow velocity is   U ̄   = 1 / Γ ∫ 

Γ
     U(y ) dy , 

where  is the free-flowing part of the channel and U(y) is the local 
horizontal fluid velocity. In the synchronous case, the four cyclic 
motions of the cilia (inflate void 1, inflate void 2, deflate void 1, and 
deflate void 2) are clearly distinguishable as four extrema in the 
speed profile. Because we are looking at the backflow, the first two 
peaks (effective stroke) are negative as directed toward the negative 
flow direction (Fig. 1B). Integrating (in the beating plane of the cil-
ia) the local flow velocity over an actuation period and multiplying 
it with the beating frequency yield a measurement of the averaged 
flow velocity,  〈  ̄  U  〉 =   1 _ T   ∫0  

T
     ̄  U  dt . In ciliary propulsion literature (10), 

averaged flow is referred to as “net flow” to indicate the difference 
between the flows induced by the effective and recovery strokes of 
the cilia at the end of beat cycle. In all three cases, the net backflows 
are negative, which means that the fluid above the cilia has been 
propelled toward the negative direction at the end of the cycle. It is 
important to note that even in the absence of metachrony (φ = 0), 
the presence of the spatial asymmetry alone yields a net flow. To 
quantitatively compare the contribution of the metachronal shifts 
to the net backflow for the experiment and the simulation, we nor-
malize the net velocity values of the metachronal patterns with the 
ones of the synchronous cilia. Figure 3B shows the normalized net 
backflow velocities (blue circles for the simulation and red squares 
for the experiments) for the 12 metachronal patterns taken into 
analysis. The normalized net backflow velocities show a consistent 
trend both for the simulation and experimental analyses. Therefore, 
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a roughly 50% higher backflow occurs for low antiplectic phase 
shifts, while the inverse happens for symplectic waves. Higher phase 
shifts (φ > ±2/3) show a variation of less than 25% on the net 
backflow.

This analysis can be compared to previous theoretical models by 
considering the fact that our backflow is related to the effective stroke 
(therefore, signs are inverted). Despite different cilium kinematics, 
Gauger et al. (15), Khaderi et al. (14), and Guo et al. (13) predict that 
low antiplectic phase shift maximizes the net flow because of an ob-
struction effect. Figure 4 shows that this obstruction mechanism is 
also captured by our experimental setup. This figure shows the sim-
ulated (left) and measured (right) deformations of the cilia and the 
flow fields at a time where the third cilium from the left (indicated 
by a red arrow) is in the same upright position for both an antiplec-
tic wave (top) and a symplectic wave (bottom) with a phase shift of 
φ = ± /3. In the antiplectic configuration, the fourth cilium is also 
in the effective stroke, therefore not obstructing the fluid flow. In con-
trast, in the symplectic case, the fourth cilium is about to start again 
the beat, and its undeformed configuration hinders the fluid flow in-
duced by the third, forming a vortex. The trend displayed in Fig. 3B 
is in agreement with (13) and (15), whereas Khaderi et al. (14) show 
that even symplectic metachronous beating patterns outperform syn-
chronous cilia. However, these analogies need to be contextualized. 
In literature, net flow is defined as the difference of the positive flow 
in the effective stroke direction and a negative flow in the recovery di-
rection (14). When cilia beat synchronously, the positive flow is in-
duced by the coordinated effective stroke, and the negative flow occurs 
during the recovery stroke. However, for metachronal cilia, because 
of the out-of-phase movements, positive and negative flows can ap-
pear simultaneously in different sections of the channel-inducing vor-
tices. Because fluid magnitudes and directions are directly related to the 
cilia kinematics, spatial asymmetry plays a big role in flow generation. A 
highly spatially asymmetric cilium coupled with the metachronal 

rhythm of the array causes the emergence of a shielding effect that 
cancels the negative flow (14). The spatial asymmetry of the cilium 
in (14) is much higher than ours (16) and other references, where 
this shielding effect does not occur.

As discussed above, a notable phenomenon that emerges in our ar-
tificial ciliary system is the appearance and propagation of vortices due 
to the simultaneous presence of effective and recovery flows caused 
by the phase difference between cilia. While cilia-induced vortices 
were already predicted in computational models, this is the first 
time that we can experimentally discern how they are affected with vary-
ing metachronies. When a phase difference is imposed, vortex-like 
structures form in the channel and travel along the cilia array, fol-
lowing the direction of the metachronal wave. Vortices develop on top 
of a single cilium when switching between effective and recovery strokes 
(the same phenomenon can be seen in Fig. 4). Thus, the number of 
vortices depends on the metachronal wave speed. An effective and 
clear way of visualizing the different metachronal patterns in the 
fluid fields is to plot the spatiotemporal graphs (kymographs) of the 
backflow velocities across the channel length, as defined in the inset of 
Fig. 3A. Kymographs are used in wave physics but are rarely plotted 
to analyze fluid velocities induced by cilia (35, 36). Figure 5 depicts 
the experimental and simulated kymographs of the backflow veloc-
ity for 12 phase shifts during one period and across the channel 
length, where color bars indicate the velocity magnitude. The fact 
that such patterns are clearly distinguishable in the measurements 
indicates that the experimental hydrodynamic conditions are very 
well captured by the Stokes flow assumption. Those velocity pat-
terns can be associated to the metachronal kinematics of the cilia, 
which means that the fluid only moves together with the cilia, without 
experiencing any inertial effect. In-phase (φ = 0) and anti-phase 
(φ = ) pulses in the kymographs are parallel to the spatial direc-
tion, because they correspond to standing waves. Pulses in yellow 
represent positive flow velocities induced by the recovery strokes of 
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the cilia, while pulses in blue to negative flow velocities related to 
the effective strokes. Thus, it can be assumed that such pulses repre-
sent the vortex-like structures. When cilia beat synchronously, we 
can clearly distinguish the four cyclic motions of the artificial cilia 
as in the analysis of the backflow (as in Fig. 3A) and observe no trav-
eling vortices. Out-of-phase beatings show pulses that are moving 
in time, where the slopes in the kymographs measure their traveling 
speed (Fig. 6A) coinciding with the metachronal wave speed of cilia 
as previously defined and depicted in Fig. 6B (blue line). For the 
highest speed traveling waves (φ = ± /6), there are two vortices of 
opposite sign traveling corresponding to the yellow and blue pulses, 
due to the limited array size. For larger phase shifts, there are more 
vortices forming due to the smaller wavelength; therefore, the veloc-
ity waves have more pulses, and the kymographs look more scattered. 
In our artificial cilia setup, the phase shifts are externally imposed, 
but it is interesting to notice that in some theoretical models of bio-
logical cilia where metachronal patterns emerge spontaneously be-
cause of local hydrodynamic interactions between cilia, low wave 
speeds are unstable and tend to stabilize toward high wave speeds 
(35). Moreover, Osterman and Vilfan (12) defined cilia efficiency as 
the ratio between the square of the net flow and the cilia mechanical 
power. As the mechanical power is the same in the 12 configurations 
that we tested, we can conclude that antiplectic high wave speeds 
are the most efficient for fluid transport.

DISCUSSION
This paper reports the collective behavior of an array of six soft ro-
botic cilia with 12 degrees of freedom operating in a low Reynolds 
regime. Each soft robotic cilium is composed of two elastic micro-
actuators that can be addressed individually. These two degrees of 
freedom allow each artificial cilium to move in a nonreciprocal pat-
tern. In addition, the phase difference between the cilia can be con-
trolled to mimic the metachronal waves observed in biological cilia. 
Through PIV measurements, we characterize the impact of different 
metachronal patterns on the fluid transport, corroborating existing 
theoretical models on ciliary propulsion. Experimental results are 
compared with fluid dynamics simulations that take into account 
the soft robotic cilia kinematics and the boundary conditions of our 

setup. We observed that for small phase difference metachronal waves, 
antiplectic coordination increases up to 50% of the fluid flow velocity 
compared to a synchronous beating mode, while symplectic meta-
chrony decreases it. This is caused by an obstruction mechanism be-
tween the cilia in the array that hinders the effective flow in case of 
symplectic waves. In contrast, for slow traveling waves, correspond-
ing to high phase differences, the metachronal effect on flow is less 
efficient because of the formation of multiple- vortex structures that 
overall reduce the fluid velocities induced by the cilia. To the best of 
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our knowledge, this is the first experimental system of artificial cilia 
where nonreciprocal motion and metachronal wavelengths can be 
tuned independently by individually controlling each cilium. Our 
work demonstrates experimentally that antiplectic waves with high 
wavelengths are optimal for fluid transport, which is in accordance 
with metachronal patterns in biological systems (11).

MATERIALS AND METHODS
Experimental setup
The cilia array is placed along the rectangular side (102 × 20 mm) of 
a D-shaped channel of 49-mm height (fig. S2). The cilia cover ap-
proximately one-third of the channel height, where the remaining 
space above the cilia is used to characterize the induced fluid flow. 
The entire setup is made out of black anodized aluminum to reduce 
unwanted reflections, except for the external front wall and the 
sides of the rectangular channel that are made out of Plexiglass 
[poly(methyl methacrylate)] plates. The transparency of these walls 
allows for observation and laser illumination, respectively, during 
the PIV analysis. The PIV measurement plane is centered with the 
cilia tips, 7 mm distant from the inner wall of the channel.

PIV measurements
The velocity of the flow around the cilia and in the main bulk is 
measured by PIV (37) using fluorescent dye–doped polyethylene 
microspheres as tracers. These particles have a density of p = 995 ± 
10 kg/m3, a mean diameter of   D ̄   = 49 ± 4  km, and a Stokes number 
Stk ≈ 2 · 10−10; therefore, they accurately follow the flow. When 
the particles are excited by incident laser light, they both scatter 
light (Mie scattering) and emit light that is redshifted relative to 
the incident light (Stokes shift). A long-pass filter, with a cutoff 
wavelength higher than the laser light wavelength, is then used to 
remove the scattering and only transmit the fluorescent light. The 
use of fluorescent dye–doped particles as tracers is especially use-
ful when performing PIV in liquids to avoid the contribution of 
light reflections on the transparent walls and a consequent reduc-
tion of the signal-to-noise ratio (S/R). In this experiment, a single- 
cavity Nd:YAG pulsed laser ( = 532 nm), synchronized with a 
complementary metal-oxide semiconductor camera, illuminates the 
particles. PIV measurement is conducted in time- series mode us-
ing an acquisition frequency of 5 Hz for 180 s, capturing a total of 
45 cilia beats during one measurement. A schematic of the PIV 
setup is displayed in fig. S2. Twelve different beating patterns with 
fixed phase shift have been recorded, changing the phase shifts 
between recordings equally from − and . For each phase shift, 
900 PIV images are analyzed via the software DaVis 8.2 (LaVision) 
using the processing parameters reported in table S1. In this table, 
the cross-correlation peak ratio is defined as the ratio between 
the first highest peak of the cross-correlation function divided 
by the second highest peak. Two passes have been used, both 
for the initial and the final window size. An example of a cross- 
correlation map is presented in fig. S4. The seeding density used 
during the experiment has been computed via image analysis 
and corresponds to a particle volume fraction (fraction of the par-
ticle volume on the fluid volume) pvf = 0.04%. Examples of optical 
raw images are reported in fig. S3. No particular pre/postprocess-
ing has been conducted. The velocity fields are then averaged over 
the 45 cilia beats to obtain the 20 mean flow field velocities of a 
single beat, where the convergence is verified for each flow field 

(fig. S5). The convergence is obtained by calculating the average 
error (a) and the SD error () of the fluid velocities for an in-
creasing amount of cycles. Given a fluid velocity u or v at the time 
  t ̄    of the cycle, the average over N cycles is defined as    u  ̄   N  ( t ̄   ) =    Σ i=1  N    u  i  ( t ̄  ) _ N     and 

the SD     uN   =  √ 
___________

     i=1  N    ( u  i  ( t ̄   ) −   u ̄    N  ( t ̄   ) )   2   ___________ N     . Therefore,     ̄    N   =   u ̄    N+1  ( t ̄   ) −   u ̄    N  ( t ̄  )  
and N = uN + 1 − uN.

CFD simulations
To simulate the flow induced by the beating cilia, we have developed a 
CFD model in which the cilia motion is kinematically described. Be-
cause the speed of the beating cilia is low, the drag forces on the cilia 
remain small so that the cilia do not undergo fluid-induced deforma-
tions. The exact geometry of the pneumatic cilia is represented in the 
CFD model, and their surface is discretized using triangular surface 
elements (see fig. S6). The centerline motion of the cilia, rc(s, t), with s 
being the spatial arc length parameterizing the centerline from its base 
(0 < s < L) and t being the time (0 < t < T(f −1)), is fitted to the experi-
mental motion for one cilium, using a Fourier series expansion in s 
and a Taylor series in t. The motion of the cilia surface nodes ri(s, t) is 
calculated from the cilia centerline motion rc(s, t). To compute the 
flow field generated by the ciliary motion, the boundary element 
method is used. Because of the low Reynolds number (Re = 0.04), we 
model fluid flow by using the Stokes equation, the solution of which 
can be written by means of Green’s functions acting in a semi-infinite 
fluid provided by Blake (38). The drag forces on the cilia surface are 
treated as a distribution of surface point forces. The velocity u f(r) at a 
point in the fluid r due to a point force exerted on the fluid by the cilia 
at a position r′ on the cilia surface can be obtained as

   u   f (r ) = G(r −  r ′  , h( r ′   ) ) f(r)  (1)

with h(r′)) being the distance of the point force from the substrate 
and G(r−r′, h(r′)) The Green’s function for a point force f(r′) acting 
in a fluid near a no-slip boundary. These point forces are assumed 
to be distributed over the surface of the cilia as a traction t(r′), which 
is varying linearly over each triangular surface element (39), collec-
tively resulting in the fluid velocity

   u   f (r ) =     
j=1

  
nelm

   ∫  S  j  
     G(r −  r   j , h( r   j  ) ) t( r   j  )  dS  j    (2)

with “nelm” being the number of surface elements. As Eq. 2 holds at 
every point in the fluid, it also holds at every node on the cilium 
surface uc(ri). When these equations are assembled in a matrix G, 
i.e., uc = Gt, the traction exerted by the cilia on the fluid can be re-
lated to its velocity by inverting this relation t = G−1uc. Once the trac-
tion of the cilia surface t is known, we can reuse Eq. 2 to calculate 
the fluid velocity u f(r) induced by cilia in the fluid domain through 
u f = Gt. Six cilia are accounted for in the fluid domain, represented 
by a rectangular prism with sides L × W × H = 102 × 20 × 49 mm, in 
correspondence with the experimental setup (see fig. S7). No-slip bound-
ary conditions are implemented on all channel walls, and the cilia 
are attached to the bottom wall, coinciding with the semi-infinite 
no-slip surface defined through Blake’s Green function (38).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/49/eabd2508/DC1

http://advances.sciencemag.org/cgi/content/full/6/49/eabd2508/DC1
http://advances.sciencemag.org/cgi/content/full/6/49/eabd2508/DC1
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