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E C O N O M I C S

Seasonality of diet costs reveals food system 
performance in East Africa
Yan Bai, Elena N. Naumova, William A. Masters*

Seasonal fluctuations in food prices reflect interactions between climate and society, measuring the degree to which 
predictable patterns of crop growth and harvest are offset by storage and trade. Previous research on seasonal-
ity in food systems has focused on specific commodities. This study accounts for substitution between items to 
meet nutritional needs, computing seasonal variation in local food environments using monthly retail prices for 
191 items across Ethiopia, Malawi, and Tanzania from 2002 through 2016. We computed over 25,000 least-cost 
diets meeting nutrient requirements at each market every month and then measured the magnitude and timing 
of seasonality in diet costs. We found significant intensity in Malawi, Tanzania, and Ethiopia (10.0, 6.3, and 4.0%, 
respectively), driven primarily by synchronized price rises for nutrient-dense foods. Results provide a metric to 
map nutritional security, pointing to opportunities for more targeted investments to improve the year-round 
delivery of nutrients.

INTRODUCTION
High food prices limit consumption and harm well-being for low- 
income people (1–3). This study addresses the predictable compo-
nent of price fluctuations, focusing on recurring seasonal peaks of 
consistent timing and intensity (4). All kinds of food price volatility 
may affect nutrition and health (5–8), but seasonality is of particular 
interest because it measures the degree to which people have improved 
agriculture and food systems sufficiently to overcome predictable 
climate fluctuations. Improvements in storage and transport have 
helped stabilize prices over time (9, 10), but there remains signifi-
cant seasonality in wholesale prices at many market locations in 
Africa (11). This study measures seasonal variation in retail prices 
across all food groups and diet costs in a way that allows substitu-
tion among items to meet nutrient needs.

Our study uses government file data on monthly retail prices and 
harmonic regression analysis to measure the timing and intensity of 
seasonality in three East African countries, Tanzania, Malawi, and 
Ethiopia, chosen because of their vulnerability to malnutrition and 
also variation in geography north and south of the equator, as well 
as variation in altitude and distance from ocean ports or land trans-
port routes. The inclusion of these three countries is also due to 
availability of relatively high quality of food price data. From 
Tanzania, we have prices for 61 foods at 21 market locations from 
2011 through 2015; in Malawi, we have 48 foods at 29 markets from 
2007 through 2016; and in Ethiopia, prices are for 82 foods at 120 
markets from 2002 through 2016. The total number of market-month 
observations is 3480 in Malawi, 1236 in Tanzania, and 20,806 in 
Ethiopia. Our harmonic model uses sine and cosine functions to 
estimate smooth, symmetric fluctuations of each item’s price or diet 
costs over time, in this case, with one cycle each year reflecting the 
region’s unimodal rainfall (Fig. 1A). The seasonal intensity of price 
variation is the difference between its annual peak and nadir normal-
ized to a unit-free percentage of the nadir. This approach allows us 
to measure the magnitude and timing of peaks for different combina-
tions of foods at different locations, using 95% confidence intervals (CIs) 
around the estimated intensity to test for statistical significance.

The prices we use were originally collected to measure inflation 
for each country’s consumer price index and are repurposed here to 
track the least-cost sources of 21 essential nutrients and dietary energy 
in the proportions needed for an active and healthy adult woman. We 
and others focus on diet costs for women of reproductive age because 
they are often at risk of malnutrition, with severe consequences for 
themselves and for child health (12). To allow for substitution among 
foods in delivering nutrients, we computed the least-cost combination 
of foods at each place and time needed to meet all requirements, and 
compared that to bare subsistence cost of daily energy from starchy 
staples only (13, 14). Each food list includes a wide variety of nutrient 
sources, including starchy staples, pulses/nuts/seeds, animal foods, 
fruits/vegetables, oils/fats, and sweets. Not all foods are available at 
each market every month, but only 102 of the 25,522 market-months 
in our study had an insufficient variety of foods to meet all nutrient 
needs, and all of those were in Ethiopia. After computing least-cost 
diets, we used harmonic regression to extract the seasonal component 
of variation in cost of nutrients and daily energy at each location, and 
report differences in timing and intensity as a metric of food system 
performance and vulnerability to climatic fluctuations. Our method 
would also be useful to identify price anomalies due to disruptions 
such as armed conflict or disease outbreaks.

Measuring seasonality in the cost of nutrients over all major 
food groups, allowing for substitution among items as their relative 
prices change, allows us to compare the ability of local farmers and 
traders to deliver year-round access to all essential nutrients in the 
proportions needed by people. This permits us to quantify the 
nutritional performance of local agroecosystems, distinguishing 
nutrition security from food security, and identify how each type of 
food contributes to seasonal variation so as to guide interventions 
that could improve year-round access to a nutritious diet.

RESULTS
Seasonality of individual food prices
The timing of harvest leads to seasonality in prices at each market 
location, if not offset by storage and trade with other places. Figure 1A 
reveals the national average pattern in rainfall and temperature over 
each calendar year. Tanzania and Malawi have a cooler dry season 
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approximately from May to October, and Ethiopia, located north 
of the equator, has a dry season from November to March. We 
found that these recurring cycles lead to statistically significant 
seasonality in most food items in all three countries (36 of 61 items 
in Tanzania, 31 of 48 items in Malawi, and 72 of 82 items in Ethiopia; 
tables S1 to S3).

To visualize these data in Fig. 1B, we show the estimated seasonal 
intensity and peak timing for 22 standard items from six major food 
groups. Fruits and vegetables generally have stronger seasonality than 
other food groups, especially in Malawi. For example, tomatoes 
have a high seasonal intensity of 25.8% (18.7%, 33.3%) in Tanzania, 
60.3% (46.1%, 75.9%) in Malawi, and 38.7% (31.7%, 46.2%) in Ethiopia. 
High seasonal intensities were also found in prices of locally represent-
ative dark leafy vegetables, notably 12.8% (7.5%, 18.4%) for mchicha 
(amaranth leaves) in Tanzania, 32.7% (22.2%, 44.2%) for rape leaves 
and 20.7% (10.7%, 31.6%) for pumpkin leaves in Malawi, and 46.9% 
(38.0%, 56.4%) for kale in Ethiopia. Potatoes and sweet potatoes 
also have high seasonality in their prices, while cereal grains and 
pulses, nuts, and seeds have less seasonal fluctuation, and animal- 
sourced foods have little or no seasonality in these data. Seasonal 
peaks in Tanzania and Malawi were synchronized for starchy staples 
and pulses/nuts/seeds in the late rainy seasons before harvesting, 
while fruits and vegetables have diverse price peaks that could help 
to stabilize diet costs if they offer similar nutrients, allowing substi-
tution among them over the course of each year.

Seasonality of diet costs
The ability of local food systems to deliver all nutrients needed for 
health is revealed by the cost of nutrient adequacy from all foods, 
which we abbreviate CoNA. We compare that to the cost of caloric 
adequacy from starchy staples, abbreviated CoCA, which is what 
would be needed for bare subsistence at each location every month. 
National average levels of CoNA over the period of observation 
were TZS (Tanzanian shilling) 912.1 [$1.50 in 2011 USD (U.S. 
dollar) at purchasing power parity (PPP) prices] in Tanzania, MWK 
(Malawian kwacha) 129.6 ($1.21) in Malawi, and ETB (Ethiopian 
birr) 6.74 ($1.34) in Ethiopia. These costs were 2.41, 3.11, and 
3.49 times the country’s average level of CoCA required for sub-
sistence (tables S4 to S6).

Seasonal fluctuation in the overall cost of all nutrients is large 
and statistically significant. As shown in Fig. 2A and tables S4 to S6, 
seasonality was much stronger in Malawi with a seasonal intensity 
of 10.0% (5.7%, 14.6%), compared to 6.3% (3.7%, 9.0%) in Tanzania 
and 4.0% (2.5%, 5.5%) in Ethiopia. Seasonal intensities in CoCA were 
significant in all three countries. The intensity was strongest at 
13.9% (12.2%, 15.6%) in Ethiopia, and 8.0% (1.5%, 14.9%) in Malawi 
and 5.9% (0.8%, 11.3%) in Tanzania. The premium for nutrients 
above dietary energy, measured by the gap between CoNA and 
CoCA, also has significant seasonality with an intensity of 6.3% 
(2.4%, 10.4%) in Tanzania, 9.0% (2.7%, 15.6%) in Malawi, and 5.3% 
(3.8%, 6.8%) in Ethiopia.
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Fig. 1. Intensity and timing of seasonality in market prices for commonly consumed foods in Tanzania, Malawi, and Ethiopia. (A) National average monthly rainfall 
(in millimeters) and temperature (in degrees Celsius) between 1991 and 2016 (32). (B) Ninety-five percent confidence intervals (CIs) around the peak month for each food, 
shown as a black dot, with the magnitude of intensity shown by the color gradation of each bar. Gray dots show the peak month for foods without statistically significant 
harmonic seasonality. Price variation is estimated from data in local currency units (LCUs) per item, on average over all market locations in each country shown.
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Fig. 2. Seasonality in diet costs and composition of least-cost nutrient adequate diets in East Africa. (A) Estimated harmonic seasonality over a 1-year cycle for the 
three indicators, with error bars showing 95% CIs around the magnitude of seasonal intensity along the vertical axis and peak month along the horizontal axis. (B) Average 
energy composition by food group and item of the least-cost diet selected for CoNA over all observations in each country. CoCA is a least-cost diet that meets energy 
needs using only starchy staples. The CoNA premium is the cost of meeting nutrient requirements beyond daily energy, defined as CoNA-CoCA, in LCUs per day.



Bai et al., Sci. Adv. 2020; 6 : eabc2162     4 December 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 10

Peak timings of the three indicators in Malawi and Tanzania 
were estimated to be about 3 months before the harvest season 
starting in May. In Ethiopia, although CoCA was estimated to peak 
in late August, which is about 2 months before the start of harvest 
season in November, CoNA and CoNA premium peaked earlier in 
late July and mid-April, respectively. The timing and magnitude of 
these peaks reflect the limited degree to which different foods can 
substitute for each other to deliver all required nutrients around the 
year. As shown in Fig. 3A, the cost of each food group in a least-cost 
diet varies over time, with high levels of overall seasonality in Malawi 
driven by its seasonality in fruit and vegetable prices. A different view 
of these substitutions is presented in Fig. 4, as each food group’s 
contribution of total calories, which has significant seasonality in Malawi 
and Ethiopia but not in Tanzania. In Malawi, energy intake from starchy 
staples in CoNA becomes minimum before the harvest season and, 
therefore, more energy from fruits and vegetables, animal foods, and 
sweets. Figure 3B also reveals time trends in CoNA, for which the national 
averages increased from $1.31 to $1.56 over the 2011–2015 period 
in Tanzania, from $0.96 to $1.46 over the 2007–2016 period in 
Malawi, and from $1.04 to $1.68 over the 2002–2016 period in Ethiopia. 
In both Malawi and Tanzania, seasonality in the cost of fruits and 
vegetables contributed the most in the seasonality of CoNA (Fig. 3A), 
although fruits and vegetables do not take a large portion in total 
cost or energy of CoNA (Figs. 2B and 4B and tables S4 to S6).

Seasonal intensity in CoNA also presents great regional varia-
tions within countries. Regional results are shown in Figs. 5 and 6, 

where 12 of 21 regions in Tanzania, 14 of 25 districts in Malawi, and 
27 of 57 zones in Ethiopia showed significant results. In Tanzania, 
the inland region of Singida and the west border region of Kigoma 
showed strong seasonality in CoNA with an intensity of 24.7% (8.2%, 
43.7%) and 18.2% (9.9%, 27.2%). In Malawi, five districts suffered se-
vere seasonality with an intensity of more than 20%, among which the 
Dowa district, close to the capital of Lilongwe City, showed a seasonal 
intensity of 35.2% (15.5%, 58.2%), and its peak timing was estimated 
approximately 1 month earlier than the national estimation. In 
Ethiopia, three zones had unusual higher seasonality in CoNA than 
the rest of the country, which are Kemashi with an intensity of 25.2% 
(16.9%, 34.1%) and Agnuak with an intensity of 27.7% (3.4%, 57.8%) 
on the west borders to Sudan and South Sudan, as well as Yem, a 
special woreda in the Southern Nations, Nationalities, and Peoples’ 
Region, with a seasonal intensity of 36.7% (22.7%, 52.3%). Last, we 
note the role of variation in individual dietary requirements, which 
affects the level of cost but has little effect on seasonality. For example, 
a higher level of physical activity would require 12% more daily 
energy, which raised CoNA by about 4% but led to negligible differ-
ences in the timing or intensity of seasonality.

DISCUSSION
This paper introduced a combination of techniques to characterize 
spatiotemporal variation in food prices across three countries in 
East Africa, measuring the ability of local farmers and traders to 
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Fig. 3. Seasonality in diet costs by food group over time. (A) Estimated harmonic seasonality over a 1-year cycle for the overall CoNA and for the selected components 
of that diet from each of the six food groups. Dashed lines are not statistically significantly different from zero. (B) Contribution of each food group to the CoNA each 
month, averaged over all marketplaces in the country shown. Diet costs are converted to USD at PPP exchange rates.
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achieve year-round delivery of all essential nutrients at low cost despite 
climatic fluctuations. We used government file data on a total of 
191 items at 170 locations in various years from 2002 through 2016, 
solved for the least-cost combination of foods needed to meet re-
quirements for 21 essential nutrients and dietary energy at each of 
25,522 market-months, and then applied harmonic regression to esti-
mate seasonal intensity and peak timing of diet costs at each location. 
Three important findings were found:

First, most individual foods have significant seasonality in retail 
prices, extending previous observations about major commodities 
to all food categories. Fruits and vegetables have the largest seasonal 
price variations, which averages over 20% for 7 of 21 items in 
Tanzania, 14 of 17 items in Malawi, and 8 of 24 items in Ethiopia. 
Items such as carrots, mangoes, papaya, oranges, avocado, tomatoes, 
green peppers, and onions are important not only for the essential 
nutrients they provide but also for other aspects of diet quality and 
local livelihoods. Foods that are more easily stored and transported, 
such as cereal grains and pulses, nuts, or seeds, have lower levels of 
seasonality than the highly perishable fruits and vegetables. We also 
find that seasonality in the prices of widely traded grains is lower on 
retail markets than previous studies had found in wholesale prices 
on commodity markets (11), implying that wholesale-to-retail margins 
help stabilize consumer prices. Nonetheless, peak times for various 
food groups tend to be synchronized before harvests in all three 
countries, limiting year-round access to all essential nutrients.

Next, even after allowing for substitution among foods, overall 
diet costs using the least-cost sources of nutrients and energy fluctuate 
seasonally in ways that are statistically and nutritionally significant. 
Substitution away from fruits and vegetables worsens diet quality 
during the lean season (15), and we find that scarcity of nutrient- 
dense foods typically precedes scarcity of calories from starchy staples 
as the peak timing for CoNA is earlier than the peak for CoCA. We 
also find large regional variation in the seasonality of diet costs, re-
vealing how local food systems differ in their ability to deliver low-
cost nutrients around the year. Reducing and stabilizing the cost of 
acquiring a nutritious diet is important not only for those who buy 
all their food but also for farmers who use markets to complement 
what they grow. Purchased foods from local markets contribute 
substantially to the diets of agricultural households in Africa (16) 
and are especially important in lean seasons and for diet diversity 
beyond what can be produced and stored on the household’s own 
farm (17, 18).

Our third major finding is that prices for animal-sourced foods 
had the least seasonality. This is one reason why the CoNA had less 
seasonality in Tanzania and Ethiopia than in Malawi, since their 
least-cost nutrient sources included more animal products. Overall, 
these findings point to opportunities for further improvement in 
low-cost, relatively stable supplies of animal-sourced foods, in addi-
tion to improvements in market access that would help people over-
come seasonality in local production of plant-based foods.
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Our analysis reveals the potential for high-frequency, high-density 
price observations to reveal the ability of local agroecosystems and 
food markets to deliver nutritionally complete diets at low cost, using 
data on food composition to compute the least-cost combination of 
foods that meet all essential nutrient requirements at each time and 
place. Protocols and software tools to automate the computation of 

least-cost diets allow us to extract nutrient costs from food price 
data over a total of 25,522 market-months, thereby measuring food 
system performance in ways that directly inform efforts to improve 
year-round access to nutritious diets in both rural and urban areas. 
Future studies may apply this method to identify the causes of 
differences in seasonality including local agricultural calendars, trade 
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opportunities, and storage costs interacting with consumer demand, 
affecting both peaks in diet costs that harm consumers and seasonal 
lows that affect farm income and farming-dependent populations.

One key limitation of these analyses is that governments may 
not collect prices for all foods that could be low-cost sources of 
essential nutrients, at the times and locations where they are needed 
by people at risk of malnutrition. Other limitations include variation 
in the nutrient composition of each food especially after cooking, 
variation in peoples’ nutrient requirements, and variation in retail 
prices within the month at each market, all of which are subject to 
further research. Last, our measure of seasonality in this paper is 
limited to harmonic fluctuations, which is just one component of all 
variation. Future work could address different kinds of price differ-
ences and identify ways to improve agricultural production, stor-
age, and transport to stabilize diet costs and improve year-round 
affordability of nutritious diets.

MATERIALS AND METHODS
Data sources
The food prices used in this study are historical file data provided by 
national statistical services in each country. Prices were originally 

collected for the purpose of measuring inflation using a consumer 
price index, based on a list of all goods and services needed to rep-
resent national average per capita consumption in that country over 
an entire year. Since individuals can substitute foods seasonally, and 
observed diets may not actually meet their nutritional needs, to 
address the impact of climate fluctuations on cost of nutrients, we 
link food prices with the nutrient composition of each item and 
model the least-cost combination of foods needed to meet human 
requirements of each nutrient.

For Tanzania, the National Bureau of Statistics collected monthly 
retail food prices of 71 food and nonalcoholic beverage items from 
all 21 regions of mainland Tanzania between January 2011 and 
December 2015. Price data are collected from different types of 
outlets, including open markets, supermarkets, neighborhood shops, 
groceries, shopping centers, and other retail outlets. The monthly 
price surveys are conducted in urban regional headquarters in all 
21 regions in approximately four outlets per item. For nonprocessed 
food items, price collectors go to the shops/markets on three 
consecutive days for price collection and retain the median of those 
three observations.

In Malawi, the National Statistical Office assembled monthly price 
data for 55 food items in 29 market locations across 25 administrative 
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districts between January 2007 and December 2016. Unlike the 
Tanzania dataset, all 29 markets in this dataset are in rural towns, 
17 of which are the district capitals known as “boma” markets, and 
the remaining 12 are in other towns. The data are collected during 
the first 2 weeks of each month usually from three retail shops pre-
selected by the National Statistical Office or vendors subject to data 
collectors’ judgement. They retain the geometric mean of the three 
observations. To reduce the disproportional effect of extreme values 
on model results, we have winsorized outliers beyond the top 1% of 
all ratios between reported price and the median for each item, re-
placing those outliers with the cutpoint value for that item.

The Ethiopia prices were obtained from the Consumer Price 
Survey, collected by the Central Statistical Agency (CSA). Monthly 
retail food prices considered in this study cover 97 food items in 
120 markets from 57 zones of 11 administrative regions between 
January 2002 and December 2016 of 15 years. Like the dataset in 
Tanzania, the surveys are conducted in towns and cities. To ensure 
the survey to be nationally representative, the CSA also assigns the 
number of markets in each region to be proportional to the region’s 
share of total urban population in Ethiopia. CSA enumerators col-
lect three price quotations from traders, retailers, and consumers in 
the first 15 days of each month. They retain the median of those 
three prices and, before our receipt of the data, also trimmed outliers 
below the 1st and above the 99th percentile of each item.

After assembling each country’s archival price data, we converted 
their units of measure to local currency per kilogram of edible matter 
(LCU/kg), and matched the item’s description to entries in local food 
composition tables (19–21) where available. To fill gaps where no 
local composition data are available, we used the U.S. Department 
of Agriculture National Nutrient Database for Standard Reference 
(SR28) (22). For data visualization and analysis, we also converted 
food prices to LCU per 100 kcal and classified foods on the basis of 
an adjusted form of the Minimum Dietary Diversity for Women guide-
lines (23) into six major mutually exclusive food groups: (i) grains, 
white roots and tubers, and plantains (“starchy staples”); (ii) pulses, 
nuts, and seeds; (iii) dairy and eggs, meat, poultry, and fish (“animal 
foods”); (iv) fruits and vegetables; (v) oils and fats; and (vi) sweets. 
Last, we dropped food items that have nutrients but would not be 
included in substantial quantities for adult meal plans such as in-
fant foods and condiments. There are finally 61, 48, and 82 food 
items included in the analysis for Tanzania, Malawi, and Ethiopia, 
respectively, representing all six major food groups. Descriptive 
statistics and numerical results are reported in the annex of ex-
tended data.

Computation of least-cost diets
To identify the most affordable sources of all essential nutrients, we 
automate the computation of least-cost diets at every time and place 
using linear programming approaches that were originally formu-
lated to solve this and related problems during the Second World War 
(24). With each food’s market price and nutrient composition as 
fixed parameters, we obtain the quantity of each food that delivers 
all nutrients within fixed lower and upper bounds at the lowest total 
cost. This least-cost diet for all nutrients is defined as the solution to

min{C = ipi × qi}, subject to six kinds of constraint:
(i) iaij × qi ≥ EARj.
(ii) iaij × qi ≤ ULj.
(iii) iaij × qi ≤ AMDRj,upper × E/ej.
(iv) iaij × qi ≥ AMDRj,lower × E/ej.

(v) iaie × qi = E.
(vi) q1 ≥ 0, q2 ≥ 0, q3 ≥ 0,…, qi ≥ 0.
The objective is lowest diet cost given the price of each food (pi), 

choosing quantities (qi) to meet or exceed the population’s estimated 
average requirement (EAR) for nutrient j given the quantity of 
nutrient j in each food nij, within the further constraint of overall 
estimated energy needs (E), while remaining below upper levels (UL) 
for most micronutrients and the chronic disease risk reduction 
(CDRR) upper bound for sodium, and within a range for macro-
nutrients determined by acceptable macronutrient distribution ranges 
(AMDRlower and AMDRupper) as percentages of daily energy needs 
(E). The reference number ej is the energy density of macronutrients, 
which is 4 kcal per gram of protein and carbohydrate and 9 kcal per 
gram of lipid. In the analysis, we included 21 nutrients, including 
3 macronutrients (protein, fat, and carbohydrate), 8 minerals (calcium, 
iron, magnesium, phosphorus, zinc, copper, selenium, and sodium), and 
10 vitamins (vitamin C, thiamin, riboflavin, niacin, vitamin B6, folate, 
vitamin B12, vitamin A, retinol, and vitamin E). Using this same 
framework, we also computed the CoCA for daily subsistence, using 
only starchy staples to meet the constraint of energy needs alone.

All the dietary reference intakes applied in our analysis include 
the most updated EAR, UL, AMDR, and estimated energy require-
ment developed by the U.S. Institute of Medicine (25), and we used 
healthy, not pregnant and lactating women of 57 kg and 163 cm be-
tween 19 and 30 years old with low active physical activity level as 
the reference population group. EAR is the amount of nutrient in-
take value meeting the requirement of half healthy population. For 
nutrients other than sodium, the upper limit indicates the UL, 
which is the highest level of daily nutrient intake that is likely to 
pose no risk of adverse health effects for the general population; for 
sodium, we used the CDRR developed in 2019 as the UL considering 
the beneficial effect of reducing sodium intake on cardiovascular 
disease risk, hypertension risk, systolic blood pressure, and diastolic 
blood pressure (26). The AMDR provides a range of intakes for macro-
nutrients that is associated with reduced risk of chronic disease.

To automate computations, we call the lpSolve package in R (27) 
to return solutions for each location every month. Those computations 
are done in nominal local currency terms to reflect choices at each 
place and time. Then, for comparison over time and across countries, 
we converted each diet cost into constant USD using 2011 PPP ex-
change rates provided by the World Bank (28). Since local infla-
tion occurs from month to month but PPP conversion factors 
are reported for each calendar year, we smooth over 12 months 
using the least squares technique as implemented in Stata using 
the -denton- command (29).

Measurement of seasonality
We extracted the magnitude and timing of seasonal fluctuations 
using harmonic regression, also known as a trigonometric model. 
This approach uses sine and cosine functions over time, offering a 
parsimonious representation using just two parameters to estimate 
smooth, symmetric rise and fall of a variable. The harmonic approach 
has been shown to be more efficient than traditional monthly indicator 
models that estimate one coefficient for each month, and the har-
monic form offers a closer fit for many seasonal patterns than other 
functional forms (11). The model specification is shown below

  ln( C  kt   ) =    0   +    s   × sin(2t ) +     c   × cos(2t ) +     T   × T(t ) +    y   ×  Y  t     
  (1)
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where Ckt is the monthly time series of food price or diet cost, in 
market k at month t. Coefficients of sin and cos terms, s and c, 
measure the magnitude (A) and peak timing (P) of seasonality 
where  is a constant equal to 1/12, indicating 12 months per annual 
cycle. T(t) is a cubic polynomial term of t, controlling the trend of 
time series. Yt controls the fixed effect of crop years. In Tanzania and 
Malawi, the first month of a crop year is May, while it is October in 
Ethiopia (30).

Seasonal intensity is defined as the difference between annual 
peak and nadir prices normalized to a unit-free percentage of the 
nadir price, expressed as exp{(2A) − 1}, where A is the amplitude of 
the seasonality. Therefore, the seasonality is comparable across 
different food items, price indicators, and countries, and over time. 
The estimates of amplitude (A) and peak timing (P) and their vari-
ances are calculated using the  method and the equations below (4)

  A =   √ 
_

   s  
2  +   c  

2   , where  = 1, if    c   > 0, and  = − 1, if    c   < 0 and  
(2)

   Var(A ) =  (     s  
2    s  

2  +   c  
2    c  

2  + 2    sc      s      c   )   /  (     s  
2  +   c  

2  )     (3)

  P =   
12 (  1 −  φ _    )  

 ─ 2  , where φ = − arctan (   s   /    c  )  (4)

   Var(φ ) =  (     s  
2    c  

2  +   c  
2    s  

2  + 2    sc      s      c   )   /   (     s  
2  +   c  

2  )     
2
    (5)

where s, c, and sc are the SDs of s and c parameters, and their 
joint covariance. We also calculated the 95% CIs for A and P using 
a standard constant from a t-distribution of 1.96. The 95% CI of the 
amplitude is from  A − 1.96  √ 

_
 Var(A)    to  A + 1.96  √ 

_
 Var(A)   . The 

harmonic regression models allow for assessing the significance 
of seasonal components, e.g., the significance of s and/or c param-
eters (for sin and cos terms, respectively). Thus, the peak timing 
estimates can be formally compared. If the 95% CI does not contain 
the value of zero, then seasonality will be determined significant (31).

For the seasonality analysis of energy intake compositions and 
cost components of CoNA contributed by different food groups, we 
applied a different harmonic model specification

   I  kt   =    0   +    s   × sin(2t ) +    c   × cos(2t ) +     T   × T(t ) +     y   ×  Y  t     
  (6)

where Ikt is the energy intake compositions of CoNA in kilocalories 
and the cost components of CoNA from each food group in k mar-
ket and time t. In this analysis, seasonal intensity is defined as 
the average absolute difference between the peak and nadir values 
in a yearly cycle, or simply the double of amplitude, 2A, estimated 
from Eq. 6.

We compared results from both harmonic regression and tradi-
tional monthly indicator models, for diet costs and individual food 
items across three countries, and the comparison results are shown 
in figs. S1 to S4. The model specification for the harmonic model 
followed Eq. 6 above, and the specification for the indicator variable 
approach is shown in Eqs. 7 and 8 below

   I  kt   =    0   +    m      m   ×  M  m   +    T   × T(t)  (7)

  ln( C  kt   ) =    0   +    m      m   ×  M  m   +    T   × T(t)  (8)

where Ikt is the diet costs or food prices in the kth market at month 
t. Mm is the dummy variable for calendar months, and we selected 
November as the base month in the analyses.

We used a multivariate mixed-effects model in estimations 
where observations are from multiple markets, with random inter-
cepts and coefficients on the seasonal terms (sin and cos terms) by 
markets. If an estimation was based on observations from a single 
market, an ordinary least squares model was applied instead. All 
regression models were run in Stata/SE 15.1.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/49/eabc2162/DC1

View/request a protocol for this paper from Bio-protocol.
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