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N E U R O S C I E N C E

Noninvasive characterization of Alzheimer’s disease by 
circulating, cell-free messenger RNA next-generation 
sequencing
Shusuke Toden1*†, Jiali Zhuang1*, Alexander D. Acosta1, Amy P. Karns1,  
Neeraj S. Salathia1‡, James B. Brewer2, Donna M. Wilcock3, Jonathan Aballi1, Mike Nerenberg1, 
Stephen R. Quake4,5, Arkaitz Ibarra1†

The lack of accessible noninvasive tools to examine the molecular alterations occurring in the brain limits our 
understanding of the causes and progression of Alzheimer’s disease (AD), as well as the identification of effective 
therapeutic strategies. Here, we conducted a comprehensive profiling of circulating, cell-free messenger RNA 
(cf-mRNA) in plasma of 126 patients with AD and 116 healthy controls of similar age. We identified 2591 dysregulated 
genes in the cf-mRNA of patients with AD, which are enriched in biological processes well known to be associated 
with AD. Dysregulated genes included brain-specific genes and resembled those identified to be dysregulated in 
postmortem AD brain tissue. Furthermore, we identified disease-relevant circulating gene transcripts that cor-
related with the severity of cognitive impairment. These data highlight the potential of high-throughput cf-mRNA 
sequencing to evaluate AD-related pathophysiological alterations in the brain, leading to precision healthcare 
solutions that could improve AD patient management.

INTRODUCTION
Alzheimer’s disease (AD) is the most common cause of dementia, 
affecting more than 40 million people, and is projected to triple by 
2050 (1). AD is a neurodegenerative condition characterized by the 
accumulation of extracellular amyloid- (A) peptide, deposition of 
tau proteins, and intracellular formation of neurofibrillary tangles 
in the brain, which manifests years before clinical symptomatology 
(2). Multiple interrelated causes of AD including synaptic loss, oxida-
tion, inflammation, misfolded proteins, and mitochondrial dysfunc-
tion subsequently lead to the loss of neurons and brain dysfunction 
(3–5). Although postmortem examination remains the gold standard 
for establishing AD pathology, current diagnostic guidelines use 
psychometric tests and clinical criteria, to establish the severity of 
cognitive impairment and evaluate A and tau levels in cerebrospinal 
fluid (CSF), or use positron emission tomography (PET) brain imaging 
(6, 7). While medications available for patients with AD can tempo-
rarily manage the symptoms, there are no effective therapies that 
can cure or prevent AD. Furthermore, the development of effective 
therapies is hampered by the inherent difficulties associated with 
studying molecular changes in the brain without invasive tests. 
Therefore, accessible noninvasive tools that may be used to evaluate 
the molecular alterations in the brain of patients with AD should 
accelerate the development and monitoring of therapeutic strategies 
and the identification of biomarkers for early diagnosis and prog-
nosis of patients with AD for precision health (8).

Gene expression profiling studies using postmortem human brain 
tissue samples have demonstrated that the transcriptional profile of 
patients with AD differs substantially from healthy individuals (9, 10). 
Moreover, these studies confirmed that AD pathogenesis reflects 
previously postulated mechanisms, as well as previously unidenti-
fied pathways that may contribute to the development of dementia 
(11). Considering that AD is a heterogeneous disease, characteriza-
tion of cognitively impaired patients at the transcriptomic level 
would help elucidate the etiologies of AD and, thereby, improve the 
precision of AD patient management and drug development. How-
ever, difficulties associated with accessing brain tissues from patients 
with AD limit the applicability of tissue-based transcriptomic char-
acterization of AD.

Recently, blood-based liquid biopsies assessing circulating nucleic 
acids have emerged as an alternative for noninvasive examination 
of molecular alterations (12–16). In particular, circulating cf-mRNA 
has been shown to contain transcripts that are derived from multiple 
organs, including the brain, and can be used to evaluate organ-specific 
transcriptional changes (17). The short half-life of cell-free mRNA 
(cf-mRNA) suggests the potential to track dynamic pathological 
changes. With accumulating evidence that RNA molecules cross the 
blood-brain barrier (18) and the identification of AD- and glioblastoma-
specific transcripts in plasma of those patients (19, 20), circulating tran-
scripts derived from the brain are promising bioanalytes for noninvasive 
molecular characterization of neurological disorders such as AD.

Here, we profiled plasma cf-mRNA of 126 patients with AD and 
116 healthy controls with a similar age distribution. We identified 
gene transcripts differentially present in plasma of patients with AD, 
as well as genes correlated with the severity of dementia. These iden-
tified genes are enriched in biological processes associated with AD, 
such as synaptic dysfunction, mitochondrial dysfunction, and in-
flammation. Furthermore, we used genes differentially present in 
circulation to categorize pathological subtypes among patients with 
AD and built cf-mRNA–based classifiers that robustly discriminate 
controls from patients with AD. Collectively, our work highlights 
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cf-mRNA profiling as a potential tool to noninvasively character-
ize diseases such as AD. Moreover, integrated analysis of cf-mRNA 
profiling with clinical information could be used for improved AD 
patient management and identification of new therapeutic targets 
for precision health.

RESULTS
cf-mRNA sequencing technical performance assessment
AD and control samples were sourced from patients across four 
academic centers and one commercial source. We sequenced cf-mRNA 
extracted from up to 1 ml of plasma obtained from 126 patients with 
AD and 116 non-cognitive controls (NCIs) with a similar age distri-
bution (table S1). The average plasma cf-RNA yield did not differ 
between AD and control groups (P = 0.27, Student’s t test; fig. S2A), 
and approximately 4  ng of cf-RNA was used to generate each se-
quencing library. Following library preparation and sequencing runs, 
the median protein-coding genes identified was 11,714 [genes de-
tected at >5 transcripts per million (TPM)] (Fig. 1A). Using external 
RNA spike-in mix controls ERCC (External RNA Controls Con-
sortium) (21), the accuracy of the sequencing assay was confirmed, 
with the observed levels of ERCC transcripts correlating tightly with the 
expected spiked-in copy numbers (median  = 0.93, Spearman’s rank 
correlation; Fig. 1B). Of the 242 samples, we generated technical rep-
licates in the first 96 samples processed. We generated two replicates 
by splitting RNA samples into two aliquots and subsequently gen-
erating cDNA and libraries independently. Comparison of the tran-
scriptomic profiles between 96 pairs of technical replicates showed 
satisfactory correlation (median  = 0.84, Spearman’s rank correla-
tion), highlighting the technical reproducibility of our approach, 
and was used as the rationale for including only one replicate for the 
remainder of the samples (fig. S2B). Last, the read distribution 
across exon-intron splice junctions showed that DNA contami-
nation was negligible (Fig. 1C). Together, these results demonstrated 
reliable technical performance of the cf-mRNA sequencing assay for 
generating diverse, quantitative, and reproducible sequencing data.

cf-mRNA profiling reveals AD-associated molecular changes
While AD-associated transcriptomic alterations in the postmortem 
brain tissues are well characterized (22–24), the cf-mRNA transcrip-
tome of patients with AD has yet to be characterized. Profiling of 
AD molecular changes compared to NCI used the complete dataset, 
and the analysis steps are described in Fig. 2A and tables S1 and S2 
for participant characteristics. Comparison of age between patients 
with AD and controls showed no difference between these groups 
(P = 0.3, Student’s t test; table S1). To account for preanalytic site-
specific effects, we adjusted for source site in our analysis. Sample 
distribution based on the first two principal components (PCs) from 
a PC analysis (PCA) before and after adjustment is shown in fig. S2 
(C and D) (see also Materials and Methods). Applying a negative 
binomial model adjusting for site using DESeq2, we identified 2591 
genes differentially expressed between AD and NCI groups using 
raw read counts from all samples [false discovery rate (FDR) < 0.05; 
Fig. 2B]. The majority (2057; 79%) of genes were down-regulated, 
while 534 (21%) of genes were up-regulated in the circulation of 
patients with AD (the terms “up-regulated” and “down-regulated” 
are used to describe changes in the number of RNA molecules in the 
circulation of patients with AD compared to controls) (data file S1). 
Next, we used Ingenuity Pathway Analysis (IPA; ver. 47547484; 

QIAGEN) to evaluate the functional roles and biological processes 
reflected by these differentially expressed genes. The top canonical 
pathways identified using the genes down-regulated in patients 
with AD were associated with nervous system functions, including 
-aminobutyric acid (GABA) receptor signaling, cyclic adenosine 
monophosphate (cAMP) response element–binding protein (CREB) 
signaling in neurons, netrin signaling, and synaptogenesis signaling 
pathway (Fig. 2C and data file S1). Up-regulated genes in patients 
with AD were significantly enriched in pathways associated with 
immune response activation [e.g., interleukin-8 (IL-8) signaling and 
inflammasome pathway], mitochondrial activity (e.g., mitochondrial 
dysfunction, oxidative phosphorylation, and sirtuin signaling pathway), 
and proteostasis (e.g., SUMOylation and protein ubiquitination) 
(Fig. 2C). Moreover, genes down-regulated in patients with AD were 
enriched in the “nervous system development and function” category. 
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Fig. 1. cf-mRNA sequencing is an accurate approach for characterizing the 
cf-mRNA transcriptome. (A) Histogram of genes detected per sample (TPM > 5). 
(B) Histogram of Spearman’s correlation coefficient of observed versus expected copy 
number based on spiked-in ERCC control. (C) Aggregated coverage across all the exon-
intron junctions of consistently detected genes (TPM > 5 in all NCI controls). bp, base pairs.
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In particular, “development of neurons,” “neurotransmission,” and 
“synaptic transmission” were the most enriched terms for these genes, 
consistent with the overall decline of neurons and synaptic connections 
associated with AD (fig. S3, A and B) (25). Consistently, we observed 
that a significant portion of genes down-regulated in cf-mRNA of 
patients with AD were brain-specific genes (P = 6.17 × 10−10, hyper-
geometric test; fig. S3C). Last, Gene Ontology biological process 
enrichment analysis confirmed that the genes that are down-regulated 
in patients with AD are associated with neuronal function, while 
up-regulated genes are enriched in immune response– and RNA 
splicing–related processes, all consistent with well-recognized AD 
pathophysiology (fig. S3D).

To further ascertain whether alterations observed in the cf-mRNA 
of patients with AD reflected the AD-associated transcriptional 
changes in the brain, we compared the differentially expressed genes 
identified in our study with those found in a previous RNA sequenc-
ing (RNA-seq) dataset examining transcriptional changes in the 
hippocampal region of patients with AD postmortem (23). We ob-
served significant concordance between both up- and down-regulated 
sets of genes found in plasma and those reported in brain tissue 
(up-regulated genes, P = 0.017 and down-regulated genes, P < 10−5, 
hypergeometric test). Consistently, there was a substantial overlap 
of the molecular pathways identified between cf-mRNA profiling 
and RNA-seq of brain tissue (fig. S3E) (17). These data collectively 
support that circulating transcriptome captures transcriptional changes 
of the brain of patients with AD.

cf-mRNA profiling reveals gene signatures that correlate 
with AD severity and patient heterogeneity
We next explored whether genes dysregulated in the circulation of 
patients with AD were organized into functionally related clusters. 

Unsupervised decomposition analysis on DESeq counts using non-
negative matrix factorization (NMF) identified six clusters of genes 
(Fig. 3A; see data file S2 for the complete list of genes). IPA pathway 
analyses revealed that these clusters are associated with the processes 
involved in AD onset and progression (Fig. 3B; see data file S2 for 
the complete list of pathways). For instance, cluster 3 is enriched in 
genes associated with synaptic transmission pathways, while cluster 
5 is enriched in genes that are associated with immune response and 
neuroinflammation (Fig. 3B). We found that a heterogeneous AD 
patient population can be stratified into subgroups on the basis of 
the molecular profiles of these six gene clusters. In particular, unsu-
pervised hierarchical clustering of all 126 patients with AD based on 
the magnitudes of the six gene clusters revealed five distinct groups 
(Fig. 3C). For example, “Group D” patients are characterized by 
elevated levels of cluster 5 genes (immune response and neuro
inflammation; fig. S4A). The observed patient grouping was not due 
to sample source, age differences, or the severity of cognitive impair-
ment (fig. S4B). These data suggest that once combined with detailed 
disease characteristics and patient outcome information, cf-mRNA 
profiling could potentially be used for noninvasive pathological sub-
typing of patients with AD.

Next, to better understand the relationship between changes in 
these pathways/processes and the severity of dementia in patients 
with AD, we investigated whether any of these clusters correlate with 
the patient Clinical Dementia Rating (CDR) scores. The analysis 
revealed that the normalized expression values of two clusters of 
genes, clusters 3 (synaptic transmission) and 5 (“immune response 
and neuroinflammation”) significantly correlated with the CDR score 
(Fig. 3D). In particular, the synaptic transmission gene cluster showed 
decreased expression with increasing CDR scores ( = −0.47, P value 
of correlation P < 0.0001, Spearman’s rank correlation), and significant 
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differences were observed even between individuals without dementia 
(CDR = 0) and patients with very mild dementia (CDR = 0.5) 
(P < 0.001, Mann-Whitney rank sum test). In contrast, the expres-
sion levels of immune response and neuroinflammation cluster in-
creased with CDR score ( = 0.54, P value of correlation P < 0.0001, 
Spearman’s rank correlation), with most acute changes occurring 
between CDR stages 0 and 1.

On the basis of these observations, we assessed individual genes 
whose expression levels significantly correlated with disease severity. 
We identified 246 genes that correlated with CDR score (FDR < 0.1; 
fig. S5A and data file S3). Gene Ontology enrichment analyses re-
vealed that these genes are primarily involved in biological processes 
such as RNA splicing, oxidative phosphorylation, and mitochondrial 
dysfunction (fig. S5B and data file S3), processes that are all well 
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known to be related to AD. To ensure that the genes correlated with 
cognitive impairment were consistent, we repeated the same analy-
sis using Mini Mental State Exam (MMSE) score, another widely 
used clinical metric for cognitive impairment assessment. A total of 
1186 genes correlated with MMSE score (FDR < 0.1; fig. S5C and 
data file S3). As expected, genes correlated with CDR and MMSE 
scores overlapped significantly (top 20 genes are determined by the 
average rank of genes between CDR and MMSE scores for FDR 
values). Similarly, the molecular pathways identified using these 
genes also overlapped significantly (Fig. 3, E and F, and fig. S5E). 
For example, we identified prokineticin 2 (PROK2), a chemokine 
commonly dysregulated in AD (26), and leucine rich repeat kinase 2 
(LRRK2), a well-known Parkinson’s disease gene that has been 
shown to be associated with AD tau pathology (27). In addition, we 
identified SLU7, a gene involved in pre-mRNA splicing, which has 
been shown to be dysregulated in the brain tissues of aging indi-
viduals and patients with neurodegenerative disorders (28).

Recent tissue RNA-seq data have shown that marked disease-
associated transcriptomic changes are detectable in neurons from 
individuals with mild cognitive impairment (29). We therefore tested 
whether disease-associated gene signatures can be detected in the 
cf-mRNA of patients with AD having mild or very mild dementia. 
We used CDR scores to identify patients with AD having mild or 
very mild dementia (CDR ≤ 1, n = 36 and control n = 77). We found 
1496 dysregulated genes in patients with AD having CDR ≤ 1 when 
compared to healthy controls (FDR < 0.05) (fig. S6A). Genes down-
regulated in “early stage” patients with AD are primarily enriched 
in nervous system function and developmental processes (e.g., netrin 
signaling, CREB signaling in neurons, calcium transport, and regu-
lation of neurogenesis) and up-regulated genes in immune response 
and proteostasis (e.g., protein ubiquitination, inflammasome pathway, 
and activation of immune response), consistent with our previous 
analyses (fig. S6B).

cf-mRNA–based classification of patients with AD
Next, we sought to build classifiers that discriminate patients with 
AD from NCI patients using machine learning algorithms. To min-
imize bias and overtraining, we first built a classifier exclusively us-
ing samples from the University of Kentucky by logistic regression 
with L2 regularization (control n = 24 and AD n = 66) (Fig. 4A). 
Differentially expressed genes identified in the University of 
Kentucky only cohort (1658 genes with FDR < 0.05) were selected 
as input features for the classifier. This set of genes significantly 
overlapped with the 2591 dysregulated genes identified using the 
entire cohort (i.e., 942 of the 1094 down-regulated genes identified 
using the University of Kentucky cohort overlap with those identi-
fied using the entire cohort, P < 10−8; 451 of the 564 up-regulated 
genes identified using the University of Kentucky cohort overlap 
with those identified using the entire cohort, P < 10−8; hypergeo-
metric test). The classifier model was then tested on the testing set 
composed of the remainder of the AD (n = 60) and control samples 
(n = 92) derived from four independent sources. Biological path-
ways represented in the classifier include immune response and 
cellular metabolic processes (Gene Ontology analysis; data file S4), 
the pathways known to be associated with AD pathogenesis. The 
receiver operating characteristic (ROC) for the classifier in the test 
set is shown in Fig. 4B [area under the curve (AUC) = 0.83] and 
suggests that cf-mRNA signals can be used to noninvasively discern 
patients with AD.

DISCUSSION
Here, we performed a transcriptome-wide comparison of plasma 
cf-mRNA profiles between patients with AD and control individuals. 
We first demonstrated the robust technical performance of the 
cf-mRNA next-generation sequencing (NGS) assay, which resulted 
in detection and quantification of a significant number of genes in 
circulation. Our proof-of-concept study showed that the circulating 
transcriptome has the potential to provide, in a noninvasive manner, 
molecular and functional information of neurodegenerative diseases 
such as AD. Furthermore, we showed that genes dysregulated in the 
plasma of patients with AD reflected biological processes and path-
ways known to be associated with cognitive impairment and neuro-
degenerative disorders. In particular, our data showed an overall 
decline in multiple pathways implicated in nervous system function 
and development (e.g., synapse loss, GABA signaling, and neuro-
transmission) in patients with AD, accompanied by elevated levels 
of genes involved in inflammation, mitochondrial dysfunction, oxi-
dation, and proteostasis (30). Differential expression analysis showed 
that 79% of differentially expressed genes were down-regulated, which 
may be contributed from neurodegeneration and subsequent down-
regulation of neuronal gene expression in patients with AD. Con-
sistently, tissue sequencing data also showed substantially higher 
number of down-regulated genes in the brains of patients with AD 
compared to their controls (23). In addition, we showed that the genes 
and biological processes found to be dysregulated in the plasma of 
patients with AD substantially overlapped with those identified in the 
RNA-seq datasets from postmortem brain biopsy specimens (23). While 
these data suggest that gene dysregulation in the brain is reflected in 
the circulation, further studies are needed to confirm that these AD-
associated transcriptional changes originated in the brain and not 
from other tissue or blood cells. Nevertheless, these results indicate that 
plasma cf-mRNA profiling could be used as a proxy for noninvasive 
molecular evaluation of brain homeostasis in patients with AD.
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One potential application that may benefit from a better molec-
ular characterization of AD is AD therapeutic drug discovery and 
development. cf-mRNA sequencing provides a granular characteri-
zation of the circulating transcriptomes of patients with AD, including 
the identification of a number of genes that are either dysregulated 
in patients with AD or correlated with the severity of cognitive im-
pairment. In addition to identifying biological processes that are 
known to be linked with AD (e.g., 26 dysregulated genes involved 
in GABA signaling), we also observed reduced levels of genes asso-
ciated with neurogenesis in patients with AD. The attenuation of 
neurogenesis-associated genes supports the recent hypothesis of 
adult neurogenesis being disrupted in AD (31). Furthermore, we 
have identified several genes that are associated with the severity of 
cognitive impairment including PROK2 and SLU7 (26, 28). PROK2 
is a chemokine that plays a major role in neurodegeneration and 
has been shown to be involved in A toxicity (26).

The heterogeneous nature of AD (32), as a complex neuro
degenerative disease affecting multiple biological pathways and pro-
cesses during onset and progression (33), represents one major 
hurdle for AD drug discovery and development. Another hurdle, 
but simultaneously an opportunity, includes the length of time over 
which AD develops. To date, therapeutic drugs targeting A and 
tau proteins have shown modest results (34, 35). As a result, several 
drugs targeting alternative pathways that are commonly dysregulated 
in AD, such as inflammation and mitochondrial dysfunction, are 
being actively tested as potential AD treatments (34). Furthermore, 
the development of biomarkers to stratify patients with AD and 
identify likely responders would help accelerate the discovery and 
development of therapies for patients with AD. Since molecular 
characterization of patients with AD using brain biopsy is not feasible, 
the deployment of noninvasive tools that can evaluate the molecular 
dysregulations in patients with AD will substantially improve the 
outcomes of future clinical trials. While the precise criteria for pa-
tient eligibility before therapeutic treatment remain to be determined, 
our results indicate that cf-mRNA profiling could be used to measure 
the molecular characteristics of individual patients and may help 
inform precision treatment strategies and more effective patient 
management plans.

Despite postmortem histology remaining the gold standard for 
AD diagnosis, currently, tests including CSF, PET, and magnetic 
resonance imaging are widely used to diagnose patients with AD 
(36, 37). However, imaging modalities are costly, and CSF collection 
is invasive. Therefore, scalable, accessible, and cost-effective blood-
based tests are highly desired for the diagnosis of patients with AD. 
To date, several protein-based blood biomarkers, including those 
that measure circulating levels of A peptides, appear to be promis-
ing diagnostic biomarker candidates of AD. However, A levels can 
be elevated in individuals without dementia (38–41) and have been 
shown to be an inconsistent predictor for the rate of cognitive de-
cline (2). We showed that the cf-mRNA transcriptome profiling 
represents a new noninvasive approach for the development of clas-
sifiers to diagnose patients with AD, and our data confirmed that the 
cf-mRNA–based classifiers can robustly discriminate patients with 
AD from control individuals.

The present proof-of-concept study has several limitations that 
need to be addressed in future studies. First, samples used in this 
study were obtained from five different sources, and PCA showed 
relative site differences, likely because of differences in the preana-
lytical sample processing of these retrospective cohorts. While 

source-related differences were adjusted, validation of the classifiers 
in a well-characterized multicenter study under standardized oper-
ating procedures are needed to avoid potential site-related preana-
lytical effects. In addition, it is important to evaluate the performance 
of cf-mRNA classifiers in the intended use population of those with 
cognitive impairment with complete PET data to develop clinically 
relevant diagnostic AD classifiers. Furthermore, disease specificity 
of the classifiers should be evaluated using specimens from patients 
with other neurodegenerative diseases. Despite these qualifications, 
our data support the circulating transcriptome as a tool that may 
be used to identify transcriptional alterations of organs that are dif-
ficult to access, such as the brain. Furthermore, our results highlight 
the potential utility of high-throughput cf-mRNA sequencing to 
noninvasively characterize dynamic transcriptomic alterations as-
sociated with neurodegenerative diseases and, subsequently, poten-
tially aid the development of other blood-based biomarkers for AD 
diagnosis, monitoring, and patient stratification for drug discovery 
and development in precision health.

MATERIALS AND METHODS
Clinical specimens
We examined a total of 242 retrospectively collected plasma speci-
mens from five independent patient cohorts of AD and NCIs. These 
cohorts included: University of California, San Diego, University of 
Kentucky, University of Washington in St. Louis, University of In-
diana, and BioIVT (fig. S1). The detailed patient demographics and 
clinicopathological characteristics are shown in tables S1 and S2. 
Written informed consent was obtained from all patients, and the 
study was approved by the institutional review boards of all the par-
ticipating institutions.

RNA extraction, library preparation, and  
cf-mRNA sequencing
Plasma samples isolated from control and patients with AD were 
centrifuged at 12,000g, and RNA was extracted from up to 1 ml of 
plasma using QIAamp Circulating Nucleic Acid Kit (QIAGEN) and 
eluted in a volume of 15 l. AD and NCI samples across centers 
were processed together across batches. ERCC RNA Spike-In Mix 
(Thermo Fisher Scientific, catalog no. 4456740) was added to plasma 
samples as an exogenous spike-in control according to the manu-
facturer’s instructions. Agilent RNA 6000 Pico chip (Agilent Tech-
nologies, catalog no. 5067-1513) was used to assess the integrity of 
extracted RNA. RNA samples were converted into cDNA, and li-
braries were prepared using a Swift 2S kit (Swift, catalog no. 28096), 
followed by whole-exome capture (Agilent). Qualitative and quan-
titative analysis of the NGS library preparation process were con-
ducted by chip-based electrophoresis (Agilent Technologies, catalog 
no. 5067-4626) and by quantitative polymerase chain reaction (Roche, 
catalog no. KK4824), respectively. Sequencing was performed using 
Illumina NextSeq 500 platform (Illumina Inc.), using paired-end 
sequencing and 76-cycle sequencing. Base calling was performed on 
an Illumina BaseSpace platform (Illumina Inc.), using the FASTQ 
Generation Application. For sequencing data analysis, adaptor se-
quences were removed and low-quality bases were trimmed using 
cutadapt (v1.11). Reads shorter than 15 base pairs were excluded 
from subsequent analyses. Read sequences greater than 15 base pairs 
were aligned to the human reference genome GRCh38 using STAR 
(v2.5.2b) with GENCODE v24 gene models. Duplicated reads were 
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removed using the SAMtools (v1.3.1) rmdup command. RNA-Seq by 
expectation-maximization (RSEM) (v1.3.0) was used to estimate the 
number of fragments (read counts) assigned to each gene using the 
deduplicated BAM files. Gene expression levels (in the unit of TPM) 
were calculated by normalizing RSEM. When counting the number 
of genes detected, we implemented a cutoff of TPM > 5. On the 
basis of the analysis of replicate correlation, TPM < 5 is below the 
limit of quantification, and therefore, we chose to consider only 
the observations with TPM > 5.

Brain-specific gene establishment
Tissue (cell type)–specific genes, including brain-specific genes, are 
defined as genes that show substantially higher expression in a par-
ticular tissue (cell type) compared to other tissue types (cell types). 
We first identified potential tissue (cell)–type genes using a combi-
nation of two publicly available databases of tissue (cell type) tran-
scriptome expression levels from

Genotype-Tissue Expression (www.gtexportal.org/home/) for 
gene expression across 51 human tissues and Blueprint Epigenome 
(www.blueprint-epigenome.eu/) for gene expression across 56 human 
hematopoietic cell types. For each individual gene, the tissues (cell 
types) were ranked by their expression of that particular gene, and 
if the expression in the top tissue (cell type) is >5-fold higher than 
all the other tissues (cell types), then the gene was considered specific 
to the top tissue (cell type). In addition, we also required that the 
cf-mRNA level of the gene in consideration should be >3-fold 
higher than its level in the matching whole-blood sample (12 
matching plasma/whole-blood samples were obtained from the 
San Diego Blood Bank) to rule out the possibility of circulating 
blood cell contamination.

Differential expression analysis, site adjustment, 
and pathway analysis
Differential expression analysis was implemented with DESeq2 
(v1.12.4) (42) using read counts for each gene (derived from RSEM) 
as input. Genes with fewer than 250 total reads across the entire 
cohort were excluded from subsequent analyses. Normalization ac-
counting for library sequencing depth was performed by DESeq2 
according to its standard algorithm (41). Samples were obtained from 
five different sources described in table S2. To adjust for preanalytic 
variability associated with sample source, we implemented a 
multifactor negative binomial model “~ source + disease status,” in-
cluding sample source to account for this substantial source of vari-
ation using DESeq2 (41). The site adjustment was effective as indicated 
by the PCA plot of the first two PCs after correction. Benjamini-
Hochberg correction was used to correct for multiple testing and 
obtain adjusted P values (FDR cutoff of 0.05 was used to identify dif-
ferentially expressed genes).

Pathway analysis was conducted using IPA software version 
47547484. A complete list of differentially expressed genes and genes 
correlated with MMSE and CDR was uploaded to IPA, and expression 
analysis was used to determine pathways that are highly enriched. 
IPA categories including Canonical pathways and “Top diseases and 
bio functions” were examined.

Classifier construction and performance evaluation
To minimize bias and overtraining when evaluating classifier per-
formance, we used the AD and NCI samples sourced from the Uni-
versity of Kentucky as the “training cohort” and samples from all 

other sources as the “test cohort.” None of the samples in the test 
cohort were used in any way during model training. At the feature 
selection step, we ran DESeq2 on the training cohort and selected 
the top 1658 genes differentially expressed between AD and NCI 
samples. The expression levels (TPM) of those 1658 genes were then 
used in the subsequent training of the classifiers. The training of the 
classifiers was implemented using the Python library scikit-learn 
(https://scikit-learn.org/stable/; v0.20.1). Logistic regression with L2 
regularization was used. Metaparameters were determined by 15-fold 
cross-validation on the training cohort. Next, we applied the trained 
classifiers to the test cohort and obtained the predicted risk score 
for each sample in the test cohort. By comparing the risk score with 
the true disease status of the samples, we were able to plot the ROC 
curves and calculated the AUC. Confidence intervals for the ROC 
curves were calculated according to DeLong (18).

Computational transcriptome deconvolution analysis  
using NMF
A normalization was first implemented whereby the expression levels 
(DESeq2-normalized counts) of each gene were divided by its max-
imum value across the samples. This step is designed to rescale the 
expression levels among different genes so as to avoid a few highly 
expressed genes dominating the decomposition process. The normal-
ized expression matrix was then subject to NMF decomposition using 
sklearn.decomposition.NMF within the Python library scikit-learn 
(https://scikit-learn.org/stable/). NMF decomposition achieves a 
more parsimonious representation of the data by decomposing ex-
pression matrix into the product of two matrices X = WH. X is the 
expression matrix with n rows (n samples) and m columns (m genes). 
W is the coefficient matrix with n rows (n samples) and p columns 
(p components). H is the loading matrix with p rows (p components) 
and m columns (m genes). W is, in a sense, a summarization of the 
original expression matrix X with fewer dimensions. H contains in-
formation about how much each gene contributes to the components. 
Biological interpretation of the derived components was achieved 
by performing pathway analysis on the top genes that contribute the 
most to each component. We performed patient grouping by per-
forming hierarchical clustering on the coefficient matrix W. Hi-
erarchical clustering was implemented using the Python library 
SciPy (v1.3.0) class scipy.cluster.hierarchy.linkage with parame-
ters method = “average” and metric = “correlation.”

Statistical analysis
Risk scores derived from the multivariate logistic regression classi-
fication model were used to plot ROC curves and calculate AUCs. 
The AUC is calculated for each of the 15 iterations of cross-validation. 
Confidence intervals for the ROC curves were calculated using the 
method of DeLong (18). Spearman’s rank correlation was used to 
examine the correlation between gene expression and cognitive im-
pairment scores. More specifically, the “stats.spearmanr” class in 
the SciPy library was used for the implementation of the correlation 
analysis. Student’s t test was used to evaluate the difference between 
the two variables. The hypergeometric test was used to test the sig-
nificance of overlapping gene sets and implemented using the “stats.
hypergeom” class in the SciPy library. The Benjamin-Hochberg 
method was used to correct for multiple testing and implemented 
with the “stats.multitest” class in the statsmodels Python library 
(v0.8.0). All other statistical analyses were performed using R (3.3.3, 
R Development Core Team; https://cran.r-project.org/) and MedCalc 

https://www.gtexportal.org/home/
http://www.blueprint-epigenome.eu/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://cran.r-project.org/
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statistical software version 19 (MedCalc Software bvba, Ostend, 
Belgium).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/50/eabb1654/DC1
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