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Abstract

Differentiating epileptic seizures (ES) and psychogenic nonepileptic seizures (PNES) is commonly 

based on electroencephalogram and concurrent video recordings (vEEG). Here, we demonstrate 

that these two types of seizures can be discriminated based on signals related to autonomic 

nervous system activity recorded via wearable sensors. We used Empatica E4 Wristband sensors 

worn on both arms in vEEG confirmed seizures, and machine learning methods to train classifiers, 

specifically, extreme gradient boosting (XGBoost). Classification performance achieved a 

predictive accuracy of 78 ± 1.5% on previously unseen data for whether a seizure was epileptic or 

psychogenic, which is 6 standard deviations above the baseline of 68% accuracy. Our dataset 

contained altogether 35 seizures from 18 patients out of which 8 patients had 13 convulsive 

seizures. Prediction of seizure type was based on simple features derived from the segments of 

autonomic activity measurements (electrodermal activity, body temperature, blood volume pulse, 

and heart rate) and forearm acceleration. Features related to heart rate and electrodermal activity 

were ranked as the top predictors in XGBoost classifiers. We found that patients with PNES had a 

higher ictal heart rate and electrodermal activity than patients with ES. In contrast to existing 

published studies of mainly convulsive seizures, our classifier focuses on autonomic signals to 

differentiate convulsive or nonconvulsive semiology ES from PNES. Our results show that 

autonomic activity recorded via wearable sensors provides promising signals for detection and 

discrimination of psychogenic and epileptic seizures, but more work is necessary to improve the 

predictive power of the model.
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I. Introduction

Psychogenic nonepileptic seizures (PNES) consist of paroxysmal events with or without 

alterations in consciousness that resemble epileptic seizures (ES) without the common 

associated signatures in neocortical, mesial and subcortical epileptiform electrophysiological 

activity [1], [2]. For this reason, PNES are considered functional neurological or conversion 

disorders. Misdiagnosis of seizures is a common problem. About one quarter of the patients 

referred to comprehensive epilepsy centers, for apparent drug-resistant epilepsy, are found to 

have nonepileptic seizures [3], [4], [5]. Furthermore, approximately 10% of individuals with 

PNES also have ES [6].

Commonly, laboratory differentiation between ES and PNES is based on examination of 

concurrent video and electroencephalogram (vEEG) recordings, which is the gold standard 

for seizure diagnosis [7]. However, vEEG can be costly, time consuming, not always 

available, and inconclusive in some cases. More recently, there have been attempts to 

examine the contribution of autonomic nervous system (ANS) activity to both understanding 

PNES, as well as using it for diagnosis, detection and discrimination [8]. Changes in 

autonomic system physiology are mediated by the spread of paroxysmal activity to centers 

involved in autonomic function such as amygdala, hypothalamus, hippocampus, insula, and 

spinal cord [9]. Autonomic dysfunction is known to be associated with both ES and PNES. 

For example, autonomic dysfunction can lead to sudden death in patients with epilepsy [10], 

[11], [12].

Despite this common association, autonomic dysfunction may manifest itself in different 

ways in ES and PNES. In this study, we examine ANS signals recorded by Empatica E4 

Wristband © sensors and use machine learning methods to attempt to discriminate between 

ES and PNES recorded in the epilepsy monitoring unit. Previous studies examining ANS 

signals recorded via wearable sensors have reported mostly kinematic biomarkers (e.g. wrist 

acceleration or surface EMG) limiting analyses to only convulsive seizures (e.g. [13], [14], 

[15]) or have focused only on epileptic seizure identification [16]. Likewise, studies of heart 

rate variability (HRV) have distinguished only convulsive ES and PNES [17]. In contrast, 

our dataset included a mix of convulsive and non-convulsive seizures. We assessed the 

discrimination power of several ANS related signals, including electrodermal activity 

(EDA), heart rate (HR), blood volume pressure (BVP) and body temperature. We 

hypothesized that EDA and HR would distinguish between ES and PNES.

II. Methods

A. Data acquisition and preprocessing

Of 30 participants with inpatient video EEG long-term monitoring, 18 had at least one 

seizure during the monitoring period of the data collection. The 18 patients had altogether 35 

seizures: 10 patients had 23 ES, and 8 patients had 12 PNES. Most of the seizures were 

measured by two devices - one device worn on each wrist. 13 out of the 35 seizures are 

convulsive. Seizure type (ES or PNES) and semiology (convulsive or non-convulsive) was 
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determined by a board-certified neurologist/neurophysiologist (AB). An example of on 

participant’s recordings of a 24 hours epoch is illustrated in Fig. 1.

Data preprocessing included dividing the variable-length seizure periods into fixed-length 

segments and removing segments if the Empatica device was not in contact with the patients 

skin. The 35 seizures were divided into 1-minute segments with no temporal overlap. Data 

from periods when the wrist sensor was not in contact with the patients skin were excluded 

from our model. Excluded periods were identified when the standard deviation of the BVP 

was less than 20 or larger than 600 in a segment. If the standard deviation of the BVP was 

outside the range, we observed the HR to be above 100–120 beats per minute, which is 

inconsistent with sedentary activity for patients lying in bed, and the HR changed erratically 

(see the grey region on Fig. 1). The BVP limits were determined by visually inspecting the 

data.

The final dataset contains 86 ES and 190 PNES segments, each of which are 1 minute long 

from 16 patients. A larger number of PNES segments were present with the smaller number 

of PNES because of the longer duration of the PNES. Some PNES lasted more than 10 

minutes, while ES were maximum 4–5 minutes long, which is consistent with their typical 

ictal types.

B. The machine learning pipeline

We generated a set of simple features to illustrate that it is possible to differentiate ES from 

PNES based on autonomic activity signals. Each 1-minute segment was described by nine 

summary features: the mean, standard deviation, skewness, minimum, maximum, 25th, 50th, 

75th percentiles, and the linear trend of the measurement (slope). As we have five 

measurements (net acceleration, blood volume pulse, electrodermal activity, heart rate, and 

body temperature - see Fig. 1), each segment was described by 45 features (nine features 

calculated for the five measured quantities).

Extra care was taken to ensure that the trained classification model generalizes to data from 

new patients. We performed three-fold patient-level cross validation (CV). The dataset was 

divided into training, test and holdout sets based on anonymous patient IDs. The 

classification model learns on the training set, the test set is used to select the model 

parameters that maximize the accuracy of the test set, and the holdout set is used to report 

the accuracy of the final trained model on previously unseen data. We used two CV 

methods. CV1 collects all segments of one patient in the test set, all segments of another 

patient are in the holdout set, and the remaining segments from the other patients are in the 

training set. CV2 collects segments from one patient with psychogenic and one with 

epileptic seizures in the test set, and segments of another patient with psychogenic and 

another with epileptic seizures are in the holdout set. The remaining segments of the other 

patients are in the training set.

XGBoost was used to train the classification model [18]. XGBoost (eXtreme Gradient 

boosting) is a tree-based classification/regression algorithm. We chose a tree-based method 

because they generally perform well on small datasets. XGBoost is the most advanced tree-

based method to our knowledge and it generates models that are easy to interpret. Several 
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parameters can be optimized to improve the accuracy of model (learning rate, subsampling 

parameters, regularization parameters, etc). We tuned the depth of the trees using grid search 

and explored tree depth values between 2 and 10. The number of trees is another parameter 

which is tuned by early stopping. In early stopping, the number of trees is increased until the 

accuracy of the resulting model on the cross-validation set does not improve for some time 

(a parameter described by early_stopping_rounds in XGBoost). Other parameters were 

unexplored: learning_rate = 0.03, subsample = 0.66, colsample_by_tree = 0.9.

We looped through all possible ways the dataset can be split into the three folds and repeated 

the process 10 times with different random seeds to calculate uncertainty estimates. There 

were 240 different combinations to split our dataset into three folds with CV1, and 3024 

combinations with CV2. We looped through each possible combination and accumulated the 

predicted and true labels of the holdout set. The accumulated information was used to 

calculate the accuracy score and the confusion matrix. The uncertainty estimate was 

calculated by repeating this whole process 10 times. Even-though the exact same dataset was 

used in each iteration, tree-based methods have an inherent randomness and this uncertainty 

is what we assessed with our pipeline. We developed the machine learning pipeline in 

python 3.6 using packages like scikit-learn, numpy, pandas, and xgboost.

III. Results

A. Classification accuracy

The predictive power of a classifier was assessed based on the confusion matrix and derived 

metrics. The confusion matrix (C) is defined such that Ci,j is equal to the observations that 

are known to be in group i but are predicted to be in group j. Thus the i = j elements are the 

correctly predicted observations (true positives and true negatives, TP and TN respectively) 

and the i ≠ j elements are the misclassified observations. It is not obvious in our case what 

should be called a false positive (FP or false alarm) and a false negative (FN or miss). The 

reason is that we do not distinguish between a positive and a negative condition (i.e., no 

seizure or seizure) rather differentiate between two seizure types. As FP and FN cannot be 

unambiguously defined, we report the accuracy metric of the classifier ((TP + TN)/

(nsamples)) and the confusion matrix.

The classification accuracy was 78% which is at least 6 standard deviations above the 

baseline accuracy (see Table I). The baseline accuracy (the accuracy if all segments in the 

holdout set are predicted to be PNES) is 68% with CV1 and 74% with CV2. The standard 

deviation of the accuracy is 1.5% with CV1 and 0.5% with CV2. The difference is due to the 

larger number of combinations and more accumulated data in the CV2 pipeline where we 

select data from two patients in the test set and data from two patients in the holdout set.

B. Predictive features

Feature importance measures helped us identify that the most predictive features are derived 

from the HR and EDA measurements. Feature importance measures how useful/valuable a 

feature is in constructing the decision trees. We calculated the feature importances in both 
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models and the HR and EDA emerged as the two most predictive features of differentiating 

ES from PNES.

We plot the histograms of the two most predictive features during interictal and ictal periods 

(see Figs. 2 and 3) to understand their clinical relevance, which indicate how the autonomic 

functions differ during ES and PNES. As the interictal periods are much longer than the ictal 

periods, the interictal distributions are much better constrained (≈ 104 interictal data points 

vs 276 ictal data points.) We find that the minimum HR measured within the 1-minute 

segments is the most predictive feature. The interictal HR of ES and PNES patients are 68 ± 

11 BPM and 72 ± 10 BPM, respectively. The ictal HR of ES and PNES patients are 73 ± 14 

BPM and 94 ± 12 BPM, respectively. We performed two two-sample two-sided K-S tests on 

the HR data. First, we compared the interictal vs ictal HRs of ES patients and found that the 

null hypothesis that the distributions of the two samples are the same cannot be rejected at a 

1% level (p = 0.018). However, when we compared the interictal vs ictal HRs of PNES 

patients (p = 3 × 10−82), we can confidently reject the null hypothesis. Thus the heart rates 

of ES patents during the ictal and interictal periods are similar, while PNES patients have a 

higher ictal heart rate. The second most important feature is the the minimum EDA. The 

interictal EDA of ES and PNES patients are 0.71 ± 1.5 and 1.3 ± 2.4, respectively. The ictal 

EDA of ES and PNES patients are 0.33 ± 0.6 and 3.5 ± 3.6, respectively. The K-S test of the 

interictal vs ictal EDA of ES patients was not significant (p = 0.09, null hypothesis cannot be 

rejected at a 5% level), while the interictal vs ictal EDA of PNES patients is significant (p = 

2 × 10−32, the null hypothesis is confidently rejected). These findings indicate that the EDA 

of ES patients are similar during the interictal and ictal periods, but PNES patients have a 

high EDA during seizures.

Limitations of this pilot study are the sample size, and collection from a single site. Novel 

aspects of the study include comparing multiple ANS signals to differentiate convulsive and 

nonconvulsive ES from PNES. The preliminary findings reflect a robust signal for 

differentiating ES from PNES, and can be strengthened with a multi-site large sample trial.

IV. Summary and outlook

Our results indicate that ANS signals recorded via wrist-worn wearable sensors provide 

promising biomarkers for differentiating vEEG confirmed ES and PNES, both convulsive 

and nonconvulsive. Among the ANS signals, statistical features related to HR and the EDA 

were ranked as the top discriminating features. In particular, the ictal HR during PNES 

appears to be higher than in ictal ES. Other studies have previously examined HR 

differences in ES and PNES using different sensors and statistical methods [19], [17], [20]. 

In contrast to our findings, [19] has found higher HR changes in ES ictal events than in 

PNES, using HR measures relative to baseline references, while we have used absolute rates. 

Other studies have found prominent peri-ictal increases in EDA in association with ES [21] 

but comparative studies in PNES versus ES have not been previously reported. We find that 

EDA responses are higher in PNES than in ES in our cohort. The results of this pilot ictal 

physiology biomarker study are promising and warrant further data collection and more 

sophisticated feature-engineering in future studies.
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Fig. 1. 
Example of the Empatica data of one patients session covering roughly 24 hours. The skin 

temperature (TEMP), heart rate (HR), the net acceleration (ACC), electrodermal activity 

(EDA) and blood volume pulse (BVP) were measured by the wrist-worn sensor. This patient 

wore two sensors (one on each wrist) and the left/right side shows the measurements of the 

left/right wrist device, respectively. The shaded red regions show the time of a seizure, the 

ictal period. The shaded grey regions show time intervals when the sensor was not in proper 

contact with the skin of the patient based on the BVP measurements and were not included 

in the machine learning analysis. Only the ictal period is used in our analysis.
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Fig. 2. 
The most predictive feature in our classification model is the minimum heart rate. The left 

figure shows the ES and PNES HR histograms during the interictal period. The figure on the 

right shows the same histograms during the ictal periods. The ES histogram is shown in 

blue, the PNES histogram is red, the purple area is overlap between the two distributions. 

The y axis is the fraction of segments present in a bin (1 equals 100%). The heart rate of 

PNES patients is higher during the ictal period compared to the interictal period and the ictal 

HR of ES patients.
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Fig. 3. 
The second most predictive feature is the minimum electrodermal activity measured during 

the segments. Similarly to Fig. 2, the left(right) side shows the interictal(ictal) histograms. 

The EDA of PNES patients is higher during the ictal period compared to the interictal period 

and the ictal EDA of ES patients.
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TABLE I

Confusion matrices of the holdout set. The values are in percentage points. The complete dataset was analysed 

with the CV1 and CV2 patient-level cross validation approaches described in Sect. II-B. All possible 

combinations were explored for the uncertainty estimates.

CV1, 240 combinations, 78 ± 1.5% accuracy with a balance of 68%.

Predicted label

ES PNES

True label
ES 23.1 ± 0.4% 8.0 ± 0.4%

PNES 14.4 ± 1.3% 54.5 ± 1.3%

CV2, 3024 combinations, 78.6 ± 0.5% accuracy with a balance of 74%.

Predicted label

ES PNES

True label
ES 19.3 ± 0.1 % 6.7 ± 0.1 %

PNES 14.6 ± 0.05 % 59.3 ± 0.05 %
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