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Abstract

Motivation: As the cost of sequencing decreases, the amount of data being deposited into public repositories is increas-
ing rapidly. Public databases rely on the user to provide metadata for each submission that is prone to user error.
Unfortunately, most public databases, such as non-redundant (NR), rely on user input and do not have methods for
identifying errors in the provided metadata, leading to the potential for error propagation. Previous research on a small
subset of the NR database analyzed misclassification based on sequence similarity. To the best of our knowledge, the
amount of misclassification in the entire database has not been quantified. We propose a heuristic method to detect po-
tentially misclassified taxonomic assignments in the NR database. We applied a curation technique and quality control
to find the most probable taxonomic assignment. Our method incorporates provenance and frequency of each annota-
tion from manually and computationally created databases and clustering information at 95% similarity.

Results: We found more than two million potentially taxonomically misclassified proteins in the NR database. Using
simulated data, we show a high precision of 97% and a recall of 87% for detecting taxonomically misclassified pro-
teins. The proposed approach and findings could also be applied to other databases.

Availability and implementation: Source code, dataset, documentation, Jupyter notebooks and Docker container
are available at https://github.com/boalang/nr.

Contact: hbagheri@iastate.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Researchers use BLAST on the non-redundant (NR) database on a
daily basis to identify the source and function of a protein/DNA se-
quence. The NR database encompasses protein sequences from
non-curated (low quality) and curated (high quality) databases.
It contains NR sequences from GenBank translations (i.e. GenPept)
together with sequences from other databases [Refseq (Pruitt et al.,
2007), PDB (Berman et al., 2003), SwissProt (Boeckmann et al.,
2003), PIR (Wu et al., 2003) and PRF]. NR removes 100% identical
sequences and merges the annotations and sequence IDs.

We have identified three root causes for annotation errors in the
public databases: user metadata submission, contamination error in
the biological samples and computational methods. NCBI relies on
the accuracy of the metadata provided by researchers that are depos-
iting sequencing data into the database. Data are deposited into
NCBI into Biosamples and Bioprojects as raw data, genome assem-
blies and transcriptomes. Biosamples contain metadata describing
the data type, scope, organism, publication, authors and attributes,
which include cultivar, biomaterial provider, collection date, tissue,
developmental stage, geographical location, coordinates and add-
itional notes. This metadata is then propagated to the sequences that

are deposited. For example, if data for DNA sequences were depos-
ited by a plant researcher studying soybeans obtained from a soy-
bean roots, then all sequences tied to that metadata will be labeled
with the organism name Glycine max. If the researcher had in fact
been working on Glycine soja then this would result in a misassign-
ment of all Glycine max sequences.

The second key challenge that all large databases have is the
issue of contamination (Schnoes et al., 2009). For example, if the
aforementioned hypothetical soybean research did not remove
the soybean root nodules during sample processing, then the tissue
sample could also contain DNA from Nitrogen fixating soil bacteria
that infect nodules leading to contamination of the sequences and ul-
timately the sequence database. NCBI is aware of the potential for
contamination in sequence databases and describes potential
sources of contamination that include: DNA recombination techni-
ques (vectors, adaptors, linkers and PCR primers, transposon and
insertion sequences) and sample impurities (organelle, DNA/RNA
and multiple organisms). NCBI encourages the use of programs to
try to reduce issues with contamination. Specifically, they recom-
mend screening for contamination using VecScreen (VecScreen;
https://www.ncbi.nlm.nih.gov/tools/vecscreen/) and BLAST for the
sequences used in sequencing library preparation. More broadly,
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they recommend BLAST to screen out bacterial, yeast and
Escherichia coli sequences and BLASTing against the NR database to
identify potential contaminating sequences. Unfortunately, despite
efforts to reduce contamination, sequences still end up in the NR
database that is incorrectly taxonomically classified. This can limit
our ability to identify contamination of future sequence submissions,
as BLASTing against the database could propagate these types of
errors as the database grows in size (Schnoes et al., 2009). The con-
tamination problem is not unique to NCBI but can be found in all
large databases. A large-scale study of complete and draft bacterial
and archea genomes in the NCBI RefSeq database revealed that 2250
genomes are contaminated by human sequences (Breitwieser et al.,
2019). Breitwieser et al. reported 3437 spurious protein entries that
are currently present in NR and TrEMBL protein databases.

The third key challenge is that there are errors in the annotations
due to the computational error in tools that are based on homology
to existing sequences to predict the annotations (Schnoes et al.,
2009). These errors have caused annotation accuracy and database
quality issues over the years. Annotation errors are not limited to
contamination or computationally predicted one. For instance, there
exists evidence that suggests some of the experimentally derived
annotations may be incorrect (Schnoes et al., 2009).

Therefore, it will be beneficial for researchers to utilize a quality
control method to detect misclassified sequences and propose the
most probable taxonomic assignment.

To address these well-known problems, there are two approaches
in the literature: phylogenetic-based approach and functional approach.
For the first approach, Kozlov et al. (2016) have proposed a phylogeny-
aware method to detect and correct misclassified sequences in public
databases. They utilized the Evolutionary Placement Algorithm (EPA)
to identify mislabeled taxonomic annotation. Edgar (2018) has studied
taxonomy annotation error in rRNA databases. They showed that the
annotation error rate in SILVA and Greengenes databases is about
17%. They also used the phylogenetic-based approach.

In the second approach, it is a common technique for quality con-
trol and data cleaning to utilize domain knowledge in the form of
ontologies (Chu et al., 2015). Gene Ontology (Ashburner et al.,
2000) has been suggested to infer aspects of protein function based
on sequence similarity (Holliday et al., 2017). The MisPred Nagy
and Patthy (2013) and FixPred (Nagy and Patthy, 2014) programs
are used to address the identification and correction of misclassified
sequences in the public databases. The FixPred and MisPred methods
are based on the principle that an annotation is likely to be erroneous
if its feature violates our knowledge about proteins (Nagy et al.,
2008). MisPred (Nagy and Patthy, 2013) is a tool developed to detect
incomplete, abnormal, or mispredicted protein annotations. There is
a web interface to check the protein sequence online. MisPred uses
protein-coding genes and protein knowledge to detect erroneous
annotations at the protein function level. For example, they have
found for a subset of protein databases that violation of domain in-
tegrity accounts for the majority of mispredictions. Modha et al.
(2018) have proposed a pipeline to pinpoint taxonomic error as well
as identifying novel viral species. There is another web-server for ex-
ploratory analysis and quality control of proteome-wide sequence
search (Medlar et al., 2018) that requires a protein sequence in a
FASTA format. European Bioinformatics Institute (EMBL-EBI)
developed InterPro (InterPro; http://www.ebi.ac.uk/interpro/) to clas-
sify protein sequences at the superfamily, family and subfamily levels.
UniProt has also developed two prediction systems, UniRule and the
Statistical Automatic Annotation System (SAAS) (SAS; https://www.
uniprot.org/help/saas), to annotate UniProtKB/TrEMBL protein
database automatically. CDD is a Conserved Domain Database for
the functional annotation of proteins (Marchler-Bauer et al., 2011).

Exploring public sequence databases and curating annotations at
large-scale are challenging. Previous research on the NR database
focused on a small subset of the NR database and analyzed annota-
tion error due to the computational requirements. There has been a
study (Schnoes et al., 2009) on misclassification levels for molecular
function for a model set of 37 enzyme families. To the best of our
knowledge, the amount of misclassification in the entire database
has not been well quantified.

Here, we attempt to address these limitations in detecting and
correcting annotations at large-scale and make the following
contributions:

i. We utilize a genomics-specific language, BoaG, that uses the

Hadoop cluster (Bagheri et al., 2019), to explore annotations in

the NR database that is not available in other works.

ii. We also present a heuristic-based method to detect misclassified

taxonomic assignments in the NR database that is low-cost and

easy to use. We automatically generate a phylogenetic tree from

a list of taxonomic assignments and use the tree, along with fre-

quency, the provenance (database of origin) of each taxonomic

annotation and clustering information from NR at 95% simi-

larity to identify potential misclassification and propose the

most probable taxonomic assignment.

iii. The technique proposed in this work could be generalized to

apply to other public databases and different kinds of annota-

tions like protein functions. In this work, we address the taxo-

nomic annotation error in protein databases. We also tested our

approach on the RNA dataset introduced in the literature.

We have identified ‘29 175 336’ proteins in the NR database that
have more than one distinct taxonomic assignments, among which
‘2 238 230’ (7.6%) are potentially taxonomically misclassified. We also
found that the total number of potential misclassifications in clusters at
95% similarity, above the genus level, is ‘3 689 089’ out of 88 M clus-
ters, which are 4% of the total clusters. This percentage of misclassifi-
cations in NR has a significant impact due to the potential for error
propagation in the downstream analysis (Mukherjee et al., 2015).

The rest of the paper is organized as follows. In Section 2, we
present methods and materials for dataset generation and our ap-
proach. In Section 3, we discuss the results of taxonomically misclas-
sified proteins within sequences and in NR 95%. We also present
the correcting approach for detected sequences. In Section 4, we
conclude with suggestions for the future.

2 Materials and methods

In this section, we will describe the overview architecture of our de-
tection and correction approach. Then, we describe the dataset gen-
eration and how we generate a phylogenetic tree from taxonomic
assignments. Next, we discuss our detection algorithm to find mis-
classified sequences. Then, we describe our approach to propose
taxonomic assignments for the sequences identified as misclassified.
Finally, we will describe the sensitivity analysis on changing the dif-
ferent parameters to propose the taxonomic assignments.

2.1 An overview of the method
Figure 1 shows an overview of our approach. The NCBI’NR data-
base files were downloaded from (ftp://ftp.ncbi.nlm.nih.gov/blast/
db/FASTA/) on October 20, 2018. Taxonomic information was
obtained from XML files on NCBI (https://ftp.ncbi.nlm.nih.gov/
blast/temp/DB\_XML/). CD-HIT (Fu et al., 2012) (version v4.6.8-
2017-1208) was used to cluster NR protein sequences into clusters
at 95% similarity using the following parameters (-n 5 -g 1 -G 0 -aS
0.8 -d 0 -p 1 -T 28 -M 0). These parameters use a word length of 5
and require that the alignment of the short sequences is at least 80%
of its length. The data acquisition, preprocessing and clustering took
about 3 days. The detection and correction part took about 8 h.

We took the NR protein FASTA files that have the definition
lines containing annotations from different databases and generate
the BoaG format that took about 2 h. Each definition line in the raw
data includes protein ID, protein name followed by an organism
name in square brackets, e.g. ‘>AAB18559 unnamed protein prod-
uct [E. coli str. K-12 substr. MG1655]’. BoaG is a domain-specific
language that uses a Hadoop-based infrastructure for biological
data (Bagheri et al., 2019). A BoaG program is submitted to the
BoaG infrastructure. It is compiled and executed on a distributed
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Hadoop cluster to execute a query on the BoaG-formatted database
of the raw data. BoaG has aggregators that can be run on the entire
database or a subset of the database taking advantage of protobuf-
based schema design optimized for a Hadoop cluster for both the
data and the computation. These aggregators are similar to but not
limited to aggregators traditionally found in SQL databases and
NoSQL databases like MongoDB. A BoaG script requires fewer
lines of code, provides storage efficiency and automatically parallel-
ized large-scale analysis.

2.1.1 Dataset generation

To describe our dataset, let D denotes the protein and clustering
dataset in our study: D ¼ fP;C; s;zg. Here, P ¼ fP1;P2; . . . ;Pmg is
a set of all the proteins in the NR database. C ¼ fC1;C2; . . . ;Cng
represents a set of all clusters at 95% similarity. jPj and jCj in
our dataset are about 174 M and 88 M, respectively. s is a set of
taxonomic assignment for proteins, and z is a set of functions in
the NR database. In this work, we focus on exploring taxonomic
assignments.

Definition 1. Cluster. We define cluster as a set of protein sequences such

that their sequence are 95% similar and their sequence length is 80%

similar. Every particular cluster, Cj, has k members:

Cj ¼ fP1;P2; . . . ;Pkg; and k 2 ½1; jPj� (1)

In Definition 1, each protein sequence belongs to exactly one
cluster at 95% similarity, and each cluster has one representative se-
quence. If a protein is not identical in sequence and length, it will
fall into a cluster with no other member.

2.1.2 Generating phylogenetic tree from taxonomic assignments

We get the list of taxonomic assignments that originate from differ-
ent databases (manually reviewed and computationally created) and
build a phylogenetic tree by utilizing the ETE3 library (Huerta-
Cepas et al., 2016). This library utilizes the NCBI taxonomy data-
base that is updated frequently.

Definition 2. Annotation List. Each phylogeny tree is associated with

one particular protein, Pi and has the set of taxonomic assignments that

originate from different databases. Here, Ai;j denotes annotation number

j for protein Pi:

sðPiÞ ¼ fAi;1;Ai;2; . . . ;Ai;jg; j 2 ½1; jsj� (2)

For example, the protein sequence AAB18559 has taxonomic
assignments of ‘511 145’ and ‘723 603’ that each appeared once.

Definition 3. Provenance. For the particular protein Pi, we define

provðAi;aÞ the provenance of annotation Ai;a as a set of databases that

the annotation Ai;a originates from:

provðAi;aÞ 2 fGenBank; trEMBL; PDB;RefSeq; SwissProtg (3)

In Definition 3, annotations from GenBank, trEMBL and PDB

are calculated computationally, while annotations from RefSeq and
SwissProt are manually reviewed. For example, provð511145Þ ¼
GenBank meaning that the tax id ‘511 145’ for the sequence

AAB18559 originates from the GenBank database.

Definition 4. Annotation Probability

We define probability for each taxonomic assignment based on the fre-

quency of each annotation divided by total taxonomic assignments from

different databases as follows:

probðAi;aÞ ¼
freqðAi;a2CompÞ þw� freqðAi;a2RevÞP

j2Comp freqðAi;jÞ þ
P

j2Rev w� freqðAi;jÞ
(4)

In Definition 4, Ai;a2Comp represents the annotation that calculated
computationally (Comp) from databases i.e. GenBank, trEMBL, PDB

and Ai;a2Rev denotes the reviewed (Rev) one from RefSeq, SwissProt.
One annotation might originate from both reviewed and computation-

al created databases. We use a conservative weighting factor, w, to de-
note the importance of the experimental annotation (manually
reviewed) in which w is an integer number and w � 1.

The upper bound for total proteins, i.e. jPj, is 174 M at the time
we downloaded NR. Each leaf node, Va, in the phylogenetic tree is

annotated with the information described in the Definitions 2, 3
and 4. There are list of frequencies and provenances, shows as top
bar, since one particular taxonomic annotation might originate

from different databases:

Va ¼ fprobðAi;aÞ; freqðAi;aÞ;provðAi;aÞg (5)

For particular protein Pi, we define most probable annotation
(MPA) as MPAðPiÞ ¼ Ai;j as an annotation with the highest prob-

ability among the set of annotations. In addition, we define least
probable annotation (LPA), with the lowest probability, that poten-
tially might be misclassified as LPAðPiÞ ¼ Ai;k, in which i 6¼ j.

Definition 5. Conserved Proteins. We define a conserved protein as a

protein that has more than 10 distinct taxonomic assignment. List of

these conserved proteins are shown in our repository (https://github.

com/boalang/nr).

Pi such that jsðPiÞj � 10 (6)

2.2 Approach to detect taxonomic misclassification

Algorithm 1 The NR misassignment detection algorithm. Input comes

from the BoaG query (Supplementary Material)

1: procedure DetectMisassignments D

2: NR Length jPj " m¼ 174 M proteins

3: while i � NRLength do

4: phylo PhyloTreeðPiÞ.

5: If misassigned(phylo) && not conserved(Pi) then

6: print (misassignment found in Pi)

7: procedure PhyloTreePi

Fig. 1. Overview architecture of the proposed method to detecting taxonomically

misclassified sequences in the NR database. Diagram shows the raw dataset and

steps for the proposed work
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8: ncbi ncbiTAXAðÞ " used to generate phylogeny tree

9: phyloTree ncbi:get topologyðPiÞ " From taxa list

10: for Ai;a in sðPiÞ do

11: Va  probðAi;aÞ; listðfreqðAi;aÞ;provðAi;aÞÞ

12: return phyloTree.

Our approach is as follows: first, we run a BoaG query
(Supplementary Fig. S1) on the NR database. This query runs on the
full NR database in the Hadoop cluster. The Algorithm 1 describes
the detection approach for misclassified sequences. It iterates over the
entire NR database. In line 4, it takes a protein Pi and generates a
phylogeny tree from the set of taxonomic assignments for Pi. Then, in
line 5, it checks if it has a misclassification. If the lowest common an-
cestor (LCA) is the root level, it means there is a considerable distance
between taxonomic assignments for that particular protein sequence.
Therefore, there is a potential misassignment among the list of the
taxonomic assignments due to the contamination in the sample, error
in the computational method, or data entry by the researchers who
deposited the sequence. We call this a root violation or conflict. We
also consider superkingdom, phylum, class, order and family viola-
tions. In addition, we looked at the highly conserved proteins to re-
move false positives because conserved proteins might appear in
species that are far from each other, i.e. belong to different domains in
the phylogeny tree. We did not remove the list of conserved proteins
in the dataset, since they contain taxonomic information that were
utilized for proposing taxonomic assignment for the misclassified
sequences. Assume Pi belongs to Cj. Once we detected the violation in
Pi, we look at the cluster Cj and consider the most frequent taxonomic
assignment as the correct taxa. Details are shown in Section 2.3.

The Algorithm 1 requires OðjPj � jsjÞ time. Here, jPj is the size of
proteins in the NR database and jsj is the upper bound of number of
taxonomic assignments per proteins. In line 5, misassigned(phylo)
verifies if the LCA of the generated tree shows a root violation or
any other violations. The conservedðPiÞ expression checks if the pro-
tein sequence is a conserved one (Equation 6). This requires Oð1Þ
time because this is a straight-forward fetch, and we have the point-
er to the root of the tree to check the LCA. In line 5, to check that a
protein is not in a conserved list, Definition 5, it requires a member-
ship test and takes Oð1Þ time. This conserved list is a precomputed
list from our dataset that is shown in our repository. We wrote a
multi-threaded Python code, and the total run time for the algorithm
was 7 h for the entire NR database on an iMac (Retina 5 K, 27-inch,
Late 2015) with core i7 and 32 GB RAM. For the second procedure,
in line 11, the algorithm requires OðjsjÞ to calculate the probability
of each leaf in the generated phylogenetic tree.

Algorithm 2 Annotation correction: The MPA for the misclassified

sequences. Input from the BoaG query (Supplementary Material)

1: procedure mostProbablePi; p; c

2: top ann maxðprobðsðPiÞÞÞ " Most probable taxa

3: if probðtop annÞ � p then

4: return (top ann).

5: else

6: cluster Cj in which Pi 2 Cj

7: top ann ClusterMostProbableðcluster; p; cÞ.

8: return top ann.

9: procedure ClusterMostProbableclustr, p, c

10: if sizeðclusterÞ � c then

11: for Ai;a in sðclusterÞ do

12: Va  probðAi;aÞ; listðfreqðAi;aÞ; provðAi;aÞÞ

13: top ann maxðprobðsðclusterÞÞÞ " Most probable taxa

14: if probðtop annÞ � p then

15: return top ann

16: else

17: return null " Cannot fix misclassification

2.3 The most probable taxonomic assignment for

detected misclassifications
For the detected misclassified sequences, we defined criteria to propose
the most probable taxonomic assignment (MPA). First, we ran a BoaG
query (Supplementary Fig. S2) to retrieve the annotations and cluster-
ing information at 95% similarity. As shown in Definition 4, we con-
sidered provenance or database of origin, frequency of annotations to
calculate the probable taxonomic assignment (MPA), which is the
highest probability. Let’s assume that Pi belongs to cluster Cj. If the al-
gorithm does not find the MPA within a certain threshold, probability
p, then we look at the cluster of 95% similarity that the sequence
belongs to. Second, we found the most probable taxonomic assignment
in Cj. If a particular taxonomic assignment was the most frequent one
in Cj then we return that annotation as the MPA for the protein se-
quence Pi. For example, in cluster Cj, 7 sequences out of 10 sequences
have a specific annotation. Then, we consider this annotation to be the
MPA protein sequence Pi with 70% confidence.

Details are shown in the Algorithm 2. In line 2, for a particular
protein Pi, it returns the most frequent taxonomic assignment within
a certain threshold p. Let’s assume we want a taxonomic assignment
that appears more than 70% of the time. If the algorithm does not
find the MPA, it checks the cluster Cj with 95% similarity that this
sequence belongs to and finds the one with a certain probability, p
and a cluster size, c (line 7). In line 9, ClusterMostProbable takes the
cluster id and finds the most probable taxonomic assignment in the
cluster (line 13).

The Algorithm 2 requires O
�
jsðPÞj

�
time, Definition 2, to find

the top(1) or maximum probability of an annotation in the list of
annotations.

2.4 Simulated and literature dataset
To evaluate the performance of our taxonomic misclassification ap-
proach, we generated a simulated dataset. We took a subset of one
million proteins of the reviewed dataset, i.e. RefSeq database and
randomly misclassified 50% of the proteins in the sample by adding
a taxonomic assignment from another phylum or kingdoms. Then,
we tested if the approach can detect these sequences. We also tested
our approach for detecting misclassified sequences and correcting
them on the real-world data, presented in the literature (Edgar,
2018; Kozlov et al., 2016). These works have focused on the RNA
dataset, and they quantified misclassified RNA sequences. We also
used CD-HIT to cluster RNA databases based on 95% sequence
similarity. Further details on the simulated dataset, scripts and data
files can be accessed from https://github.com/boalang/nr.

2.5 Sensitivity analysis
We define sensitivity analysis as a way that an input parameter affects
the output of the proposed approach. Here, probability based on

Fig. 2. Phylogenetic tree generated for sequence ID NP_001026909. Taxonomic

assignments originate from GenBank, trEMBL, PDB, RefSeq and SwissProt

database
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annotation frequencies and the cluster size are the two input parameters
that affect what percentages of detected misclassified sequences that we
can fix, i.e. MPA, as shown in Algorithm 2 on the NR dataset. The al-
gorithm will not give the same suggestion for changes in parameters.
For example, if we change the cluster size, number of proteins in the
cluster, it may or may not find correct taxa. We conducted a sensitivity
analysis based on the probability of each annotation that we defined in
Definition 4 and the size of the cluster of 95% that the sequence
belongs to. We run the algorithm to find the most probable taxonomic
assignments (MPA) with different clusters size, c and with different
probabilities, p. As it is shown in (Supplementary Fig. S3), with a prob-
ability of 0.4 and without giving more weight to the annotations that
verified experimentally, we could provide a most probable taxonomic
assignment to about 60% of the proteins that we detected as misclassi-
fied. We also extended sensitivity analysis by giving more weight to the
experimental taxonomic assignment with the probability of 0.4 we
could provide the most probable taxonomic assignment for more than
80% of the sequences that were identified as a misclassification.

3 Results

In this section, we present the number of proteins that are misclassi-
fied taxonomically. We also present the performance of our work
on the simulated dataset and the datasets presented in the literature.
Then, we describe our findings on misassignments in the clusters.
Next, we present correcting taxonomic misclassification. Finally, we
discuss a case study that we explored deeply to identify a subset of
clusters that contain sequences with a taxonomic misclassification.

3.1 Detected taxonomically misclassified proteins
We found ‘29 175 336’ proteins in the NR database that have more
than one distinct taxonomic assignments. The rest of the proteins
have identical taxonomic assignments, even though they originate
from different databases. The total number of potential taxonomically
misclassified sequences is ‘2 238 230’ out of ‘29 175 336’ (7.6%) at the
time of download. This percentage of NR is significant because of the
error propagation in the downstream analysis (Mukherjee et al., 2015).
Table 1 shows the number of violations in the protein sequences in NR
at the superkingdom to the family level that have been detected by
applying distance in the phylogenetic tree. The second column shows
the number of total proteins that have a certain number of taxonomic
assignments. For example, there are ‘17 496 167’ protein sequences in
NR that have 2 taxonomic assignments in which ‘30 237’ of them have
potential root violations and ‘47 271’, ‘202 205’, ‘59 606’, ‘177 132’,
‘290 065’ have kingdom, phylum, class, order and family violations, re-
spectively. For the NR datasets, we did a sample study of 1000 samples
and manually found 5.5% misassignment. The potentially misclassified
sequences detected by the approach was around 7.6% that is consistent
with the total number that was manually found, i.e. 5.5%.

Table 1 shows proteins that have less than 10 taxonomic assign-
ments. The last row shows all other proteins with more than 10
assignments. The first two bold rows show the highest potential

misassignments because if a protein has two or three taxonomic
assignments and shows a root or kingdom violation, it is more likely
to be misclassified. The full list of detected misclassified proteins,
and detailed analysis are shown in our GitHub repository. We did
not report the genus conflict since the probability of a false-positive
misclassification is much higher compared to other taxonomic levels
of conflict, such as root and superkingdom.

Figure 2 shows one example of a detected misclassified protein,
with an id of NP_001026909. Since the LCA in this tree is the root,
it means those taxonomic assignments belong to a different king-
dom. Leaves are annotated with a frequency of each taxonomic as-
signment as a bar chart from all reviewed and unreviewed databases
i.e. RefSeq (Pruitt et al., 2007), GenBank (Benson et al., 2009), PDB
(Berman et al., 2003), UniProt SwissProt (Boeckmann et al., 2003)
and UniProt TrEMBL (Consortium, 2014), respectively. As it is
shown in the annotations, there are potential misassignments even
though the key IDs originate from the reviewed databases, i.e.
RefSeq and SwissProt. In this example, synthetic construct is the
misassignment and the MPA for this protein is Homo sapiens.

We also explored some clusters in depth as a case study and iden-
tified proteins that are taxonomically misclassified as Glycine,
which are in fact contamination in the sample (Supplementary
Section S1.6).

3.2 Performance on simulated and real-world dataset
Our approach to detecting taxonomically misclassified proteins on
the simulated dataset showed 87% recall and 97% precision. We de-
fine true positive (TP) as sequences that misclassified in the sample,
and our approach retrieves those sequences. False positives (FP) are
sequences that do not have misassignments, but our approach classi-
fied them as misclassified sequences. False negative (FN) is a reviewed
sequence which the algorithm incorrectly classifies as correct (not
misclassified), while it is misclassified. Some of these false negatives
are due to changes in the taxonomies over time. Some taxonomic
IDs might be obsolete, deleted, or get merged into other tax ids.
We also found that some of the trees generated by NCBI API have
the root named ‘Cellular Organisms’ with rank equal to ‘no rank’,
that did not fall in any of the taxonomic ranking. We use the follow-
ing formula to calculate precision and recall (precision¼

TP
TPþFP ; recall ¼ TP

TPþFN).
We extended our experiment and added more than two random

assignments to the proteins and the precision increased. The reason
is that adding more random assignments increases the distance
among tax IDs in the phylogeny tree and hence increases the chance
of detection by the approach. We also tested our approach on the
dataset presented by (Edgar, 2018) in which they explored the
Greengenes and the SILVA database for taxonomic error. Our meth-
ods reproduced their finding on annotation conflicts among SILVA
and Greengenes (McDonald et al., 2012) database. We did not run
their approach on the simulated dataset since it was designed to

Fig. 3. Compare running time of the proposed work with the SATIVA method. We

used dataset from the SATIVA paper

Table 1. Detected misclassified taxonomic proteins in the NR

database

taxa Total root Kingdom Phylum Class Order Family

2 17 496 167 30 237 47 271 202 205 59 606 177 132 290 065

3 5 921 066 14 376 19 666 107 705 38 575 104 709 236 515

4 2 132 971 4673 21 587 64 801 17 662 47 914 94 054

5 1 022 482 3143 9469 34 322 10 050 27 295 53 276

6 642 760 2509 5662 24 136 7333 23 324 37 998

7 388 794 1572 3959 12 972 5905 13 488 27 221

8 262 682 1121 2803 5988 5375 10 075 16 340

9 190 756 783 2647 3825 3173 7557 12 681

10 156 767 667 1843 3805 2451 6413 11 327

>10 960 891 10 940 23 232 30 048 38 679 46 391 107 679

The first two bold rows show the highest potential misassignments because

if a protein has two or three taxonomic assignments and shows a root or king-

dom violation, it is more likely to be misclassified.
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detect misassignments in rRNA sequences, not proteins. For evaluat-
ing our work, we looked for similar works that focused on detecting
taxonomic misassignments. However, their approach was hard-
coded for RNA sequences. Therefore, we modified our approach to
test on their dataset. The proposed work focuses on inconsistencies
among the list of taxonomies, and it can be applied to the RNA
sequences as well. We clustered their dataset at 95% similarity and
used the same consensus-based technique to detect conflicts between
sequences and clusters. The phylogeny-aware technique proposed by
Kozlov et al. (2016), called SATIVA, identifies and corrects misclas-
sified sequences for RNA databases . They utilized the EPA to detect
misclassified sequences. In their approach, a reference tree is cre-
ated. Then, to estimate the most likely placements of the query se-
quence in the reference tree, they use EPA. We took their RNA
dataset and cluster the sequences at 95% similarity, then utilized
our technique to check if the annotation of each sequence has a con-
flict with a cluster that the sequence belongs to. There is a difference
between the NR dataset and the RNA dataset presented by Kozlov
et al. in terms of the number of taxonomic annotation. In their ex-
periment, they have one taxonomic label for each sequence; how-
ever, in the NR database, there are several annotations for each
protein sequence. Therefore, their technique is not designed to detect
misclassification in a set of given annotations. In terms of running
time, the clustering at 95% is less expensive than running sequence
alignment and generating phylogeny-tree and verifying each query
sequence. Therefore, our approach is scalable for large-scale se-
quence databases. In general, examining the distance on the phylo-
genetic tree of multiple annotations for the shorter sequences
performs better compared to the alignment-based approaches with
the reference databases. Table 2 shows the standard values for preci-
sion and recall, as well as the running time comparison. Our ap-
proach to detect misassignments on the sample RNA dataset has a
lower recall. This is due to the relatively smaller datasets that caused
some clusters to have few members and made it challenging to detect
misclassified sequences.

3.3 Detected misassignments in clusters
There are ‘12 960 476’ clusters at 95% similarity that have two
taxonomic assignments in which ‘17 099’ of them have potential
root violations and ‘92 526’, ‘263 844’, ‘100 560’, ‘267 251’ and
‘461 795’ have kingdom, phylum, class, order and family violations,
respectively. The number of root violations for 2 tax assignments in
clusters is less than sequences because there are protein sequences
that do not belong to any clusters at 95% similarity. In total 64 M
out of 174 M proteins (36%) in the NR database are unclustered
(Supplementary Table S1). The total number of potential misclassifi-
cations for clusters at 95% similarity, without genus level, is
‘3 689 089’ out of ‘25 159 866’ clusters that have more than 1 taxa,
which are 15% of total clusters. Detail numbers of misclassified
sequences in the clusters along with an example of detected taxo-
nomically assigned annotations in the cluster are shown in the
Supplementary Materials.

3.4 Correcting taxonomic misclassification
Each protein sequence belongs to one and only one cluster. We ana-
lyzed the set of top three taxonomic annotations of each sequence
and compared them with the top three taxonomic annotations of
the cluster the sequence belongs to. For example, top three taxo-
nomic assignment for sequence with id AAA32344 is ’10 743’,
‘1 182 665’ and ‘656 390’. This sequence falls in the cluster-id
8 461 728, and the top tax ids in this cluster are ‘562’, ‘83 334’ and
‘621’. We consider this as a conflict between sequence AAA32344
and cluster 8 461 728. All three annotations are different; therefore,
we consider this case as three conflicts. If two annotations out of
three are different, we classify this as two conflicts. If one taxonomic
annotation is different from the two sets, we classify it as one con-
flict. Finally, if the three annotations are identical, there is no con-
flict. Different percentages of conflicts from the subset of one
million sequences are shown in Supplementary Fig. S5.

Table 3 shows several examples of the protein sequences that we
have found to be misclassified in the NR database. The first column
represents the sequence id, and the second column is the cluster id cor-
responds to the sequence. The third column shows the original taxo-
nomic assignment, and the forth column is the proposed taxonomy
based on the consensus information from the clusters of the NR data-
base at 95% similarity. The last column is Confidence Score (CS), a
number between 0 and 1, shows how confident we are in proposing
new taxonomic assignment based on the consensus information from
the clusters at 95% similarity. This score calculated from the clusters’
information as top taxonomic assignment, i.e. most frequent one, in
the cluster divided by total taxa in the cluster. The assumption here is
that the consensus of multiple independent sequence annotations can
catch simple misannotation errors. For example, protein sequence
with id YP_950729 has Staphylococcus virus PH15 as its taxonomic
assignment. It falls in cluster id 83178931 and the recommended an-
notation is firmicutes. We also conducted similar analysis on the data-
set by SATIVA, and could reproduce the proposed taxa based on the
consensus information from the clusters. For the dataset by Edgar
(2018) since the number of sequences was small, we could not get
clusters with enough members to suggest annotations.

3.5 Running time
We conducted an analysis of the RNA dataset presented by SATIVA
with different samples of sequences. Firstly, we took 100 sequences
and ran SATIVA in the sample. Next, we took 500 sequences. In two
other experiments, we took 1000 and 2000 additional sequences and
recorded the running time. Figure 3 shows the comparison in terms of
running time between proposed work and the SATIVA method. The
most time-consuming part of our approach is the clustering time (run
by CD-HIT). By adding more sequences, the runtime slightly increased.
In contrast, for the SATIVA method, as we increase the number of
sequences, the running time increases significantly. The computational
expensive part of the SATIVA approach is the phylogenetic methods
(EPA) it uses. The comparison between the proposed approach and
SATIVA method has been made on the local system iMac (Retina 5 K,
27-inch and Late 2015) with core i7 and 32 GB RAM.

4 Discussion and conclusion

In this work, we addressed taxonomically misclassified sequences in
the large publicly available databases by utilizing our domain-specific
language and Hadoop-based infrastructure. We focused on the misas-
signments at the taxonomic level, and similar to MisPred (Nagy and
Patthy, 2013), we utilize the current knowledge of organismal classifi-
cation, to detect annotation errors. Similar to (Holliday et al., 2017),
we utilized this form of knowledge-based reasoning for quality control
and detect annotation errors. Compared to other works, our work dif-
fers in that we do not need to run sequence similarity to explore anno-
tations and find taxonomic inconsistency for each query sequence in
the NR database. Instead, first, we clustered the NR proteins at the
data generation phase and this is a one-time cost and used the clustering
information later to detect annotation error and propose the MPAs. In
this work, we proposed a heuristic method to find inconsistencies in the
metadata, i.e. taxonomic assignments. In our method, we proposed the
most probable taxonomic assignment for each protein sequence. We
applied this method to the entire database. We also provided a Python
implementation that could be used for analyzing a list of annotations
for any protein of interest and find the misclassification. The violations

Table 2. Accuracy of detecting misassignments and the compari-

son with work presented in SATIVA (Kozlov et al., 2016)

Precision Recall Runtime

SATIVA Proposed SATIVA Proposed SATIVA Proposed

0.93 0.98 0.98 0.90 116 min 12 min

Note: The best values are highlighted.
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reported in this paper in Table 1 are the upper bound of the misassign-
ments. The more stringent filter includes hypothetical protein and mem-
brane protein functions in the list of conserved protein, which will
lower the number of identified misclassification. We use open-source
CD-HIT clustering software only at the data generation phase, and we
could utilize any other clustering software. Steinegger and Söding,
(2018) have built a novel clustering tool that clusters a huge protein
database in linear time . Since this one-time cost happens only in the
data generation phase, our approach to detect misassignments and pro-
pose the most probable taxonomic assignment is scalable.

4.1 Applications and limitations
At 95% similarity, 64 M sequences in the NR remain unclustered.
Therefore, if a particular protein remains unclustered, there is not
enough consensus information to correct annotation for that pro-
tein. A solution for this might be to take the EPA approach (Kozlov
et al., 2016) for these sequences that remains as future work. The
proposed technique to detect misassignments may fail with recent
horizontal gene transfer (HGT) events since HGT is not transferred
from parent to offspring. However, the consensus information from
the clusters might reveal annotation errors. The proposed heuristic
technique and findings could also be applied to other databases.
Current work focuses on detecting and correcting misassignments at
the level of taxonomic assignments, and we do not address protein
function annotations.

5 Conclusion

Misclassification can lead to significant error propagation in the
downstream analysis. In this work, we proposed a heuristic ap-
proach to detect misclassified taxonomic assignments and find the
MPAs for misclassified sequences. This method will be a valuable
tool in cleaning up on large-scale public databases. The technique
we proposed could be extended in the form of ontologies to address
other annotation errors like protein functions.
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Table 3. Proposed taxa for the detected misclassified sequences in NR

Protein ID Cluster ID Original taxa Proposed taxa CS

AAB18559 18 982 245 Uncultured actinobacterium Escherichia coli 1

AAT83007 21 005 513 Mycobacteroides abscessus Cutibacterium acnes 0.8

CCW09133 9 901 357 Streptococcus pneumoniae Bacillus cereus 0.5

KFV03115 13 041 247 Tauraco erythrolophus Pelodiscus sinensis 0.4

YP_950729 83 178 931 Staphylococcus virus PH15 firmicutes 0.8

Note: Last column shows the confidence score (CS).
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