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Abstract
Cassava (Manihot esculenta Crantz) is a clonally propagated 
staple food crop in the tropics. Genomic selection (GS) has been 
implemented at three breeding institutions in Africa to reduce 
cycle times. Initial studies provided promising estimates of predic-
tive abilities. Here, we expand on previous analyses by assess-
ing the accuracy of seven prediction models for seven traits in 
three prediction scenarios: cross-validation within populations, 
cross-population prediction and cross-generation prediction. We 
also evaluated the impact of increasing the training population 
(TP) size by phenotyping progenies selected either at random 
or with a genetic algorithm. Cross-validation results were mostly 
consistent across programs, with nonadditive models predicting 
of 10% better on average. Cross-population accuracy was gener-
ally low (mean = 0.18) but prediction of cassava mosaic disease 
increased up to 57% in one Nigerian population when data from 
another related population were combined. Accuracy across 
generations was poorer than within-generation accuracy, as ex-
pected, but accuracy for dry matter content and mosaic disease 
severity should be sufficient for rapid-cycling GS. Selection of a 
prediction model made some difference across generations, but 
increasing TP size was more important. With a genetic algorithm, 
selection of one-third of progeny could achieve an accuracy 
equivalent to phenotyping all progeny. We are in the early stages 
of GS for this crop but the results are promising for some traits. 
General guidelines that are emerging are that TPs need to contin-
ue to grow but phenotyping can be done on a cleverly selected 
subset of individuals, reducing the overall phenotyping burden.
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Core Ideas

•	 Accuracy	is	generally	similar	across	breeding	
populations.

•	 Data	sharing	across	programs	improves	predictions	
in	some	circumstances.

•	 Accuracy	across	generations	is	sufficient	for	rapid-
cycling	genomic	selection	(GS)	on	several	traits.

•	 Phenotyping	small	numbers	of	progeny	can	have	a	
large	impact	on	prediction	accuracy.

•	 Prospects	for	GS	in	cassava	are	good	and	improving.
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Cassava,	a	root	crop	with	origins	in	the	Amazon	
basin	(Olsen	and	Schaal,	1999),	provides	staple	food	

for	more	than	500	million	people	worldwide	(Howeler	et	
al.,	2013).	It	is	widely	cultivated	in	Sub-Saharan	Africa,	
where	the	storage	roots	serve	as	primary	source	of	car-
bohydrates	and	can	be	processed	into	a	wide	variety	of	
products	such	as	fufu,	lafun,	gari,	abacha,	tapioca,	and	
starch	(Chukwuemeka,	2007;	Bamidele	et	al.,	2015).

Cassava	is	a	diploid	(2n	=	36)	and	highly	heterozygous	
non-inbred	crop	that	is	propagated	vegetatively	by	farmers	
using	stem	cuttings,	though	most	genotypes	flower	and	
can	be	used	to	produce	botanical	seeds	from	either	self-	or	
cross-pollination.	Among	the	most	important	traits	tar-
geted	for	improvement	are	storage	root	yield,	dry	matter	
content	(DM),	starch	content,	tolerance	to	postharvest	
physiological	deterioration,	carotenoid	content,	and	resis-
tance	to	pests	or	diseases	(Esuma	et	al.,	2016).

Development	and	implementation	of	breeding	strate-
gies	in	cassava	represent	a	challenge	because	of	the	crop’s	
heterozygous	nature	and	long	breeding	cycle.	A	tradi-
tional	cassava-breeding	program	relies	on	phenotypic	
characterization	of	mature	plants	that	have	been	clonally	
propagated.	Typically,	cycles	of	selection	take	3	to	6	yr	
from	seedling	germination	to	multilocation	yield	trials	
and	additional	years	are	required	to	evaluate	promising	
genotypes	before	variety	release	(Fig.	1).

Marker-assisted	selection	has	been	effective	in	cas-
sava	for	the	selection	of	promising	genotypes	for	resis-
tance	to	cassava	mosaic	disease	(CMD)	(Okogbenin	
et	al.,	2007;	Ceballos	et	al.,	2015;	Parkes	et	al.,	2015).	
However,	the	use	of	marker-assisted	selection	is	limited	
primarily	to	traits	with	known	large-effect	loci,	which	
makes	this	method	infeasible	for	complex	traits	(Dekkers	
and	Hospital,	2002;	Heffner	et	al.,	2009).

With	the	advent	of	next-generation	sequencing	tech-
nologies,	it	is	now	affordable	to	profile	single	nucleotide	
polymorphism	(SNP)	markers	genome-wide	(Barabaschi	
et	al.,	2015),	which	can	support	the	use	of	GS,	a	breeding	
method	that	uses	such	markers	to	predict	the	breeding	
values	of	unevaluated	individuals	(Meuwissen	et	al.,	
2001).	Genomic	selection	can	optimize	and	accelerate	
pipelines	for	population	improvement	and	variety	devel-
opment	and	release	(Heffner	et	al.,	2009)	with	a	reduc-
tion	in	breeding	time	resulting	from	selection	of	parental	
genotypes	with	superior	breeding	values	at	the	seedling	
stage	based	on	genotypes	alone.

Many	genomic	prediction	models	are	available,	dif-
fering	from	each	other	primarily	with	respect	to	the	
genetic	architecture	that	they	assume.	For	example,	
genomic	best	linear	unbiased	prediction	(GBLUP)	
assumes	an	infinitesimal	genetic	architecture	(nearly	
equal	and	small	contributions	by	all	genomic	regions	to	
the	phenotypes).	In	contrast,	models	like	BayesB	alter	
that	assumption,	putting	emphasis	on	major-effect	loci	
and	variable	selection	(Gianola	et	al.,	2009;	Legarra	et	
al.,	2011;	Habier	et	al.,	2011).	Evaluation	of	different	GS	
models	with	nonsimulated	data	indicates	that	prediction	
accuracy	varies	across	species	and	traits	(Heslot	et	al.,	

2012;	Resende	et	al.,	2012;	Gouy	et	al.,	2013;	Charmet	et	
al.,	2014;	Rutkoski	et	al.,	2014;	Cros	et	al.,	2015).

Previous	studies	in	cassava	have	estimated	genetic	
parameters	and	evaluated	prediction	accuracy	by	apply-
ing	the	GBLUP	model	with	small	training	sets	and	
low-density	markers	(Oliveira	et	al.,	2012,	2014).	Histori-
cal	phenotypic	data	from	the	International	Institute	of	
Tropical	Agriculture	(IITA),	combined	with	markers	
obtained	from	genotyping-by-sequencing	(GBS),	showed	
promising	results	for	cassava	breeding	with	GS	(Ly	et	al.,	
2013).	In	that	study,	the	predictive	ability	(accuracy)	was	
measured	as	the	correlation	between	predictive	values	
and	the	phenotypic	value	ranged	from	0.15	to	0.47	across	
traits	(Ly	et	al.,	2013).

There	are	ongoing	efforts	within	the	Next	Genera-
tion	Cassava	Breeding	project	(www.nextgencassava.
org,	accessed	14	Aug.	2017)	to	increase	the	rate	of	genetic	
improvement	in	cassava	and	unlock	the	full	potential	of	
cassava	production.	The	project	is	currently	in	the	early	
stages	of	implementing	GS	at	three	African	research	insti-
tutes:	the	National	Crops	Resources	Research	Institute	
(NaCRRI)	in	Uganda,	the	National	Root	Crops	Research	
Institute	(NRCRI)	in	Nigeria,	and	the	IITA,	also	in	Nigeria.

In	the	present	study,	we	evaluated	the	potential	of	
GS	as	a	breeding	tool	to	increase	the	rates	of	genetic	
gain	in	datasets	associated	with	all	three	Next	Genera-
tion	Cassava	Breeding	breeding	programs.	We	assessed	
predictive	ability	by	cross-validation	within	TP	datasets	
for	seven	traits:	DM,	fresh	root	weight	(RTWT),	root	
number	(RTNO),	shoot	weight	(SHTWT),	harvest	index	
(HI),	severity	of	CMD	(MCMDS),	and	plant	vigor.	We	
compared	the	performance	of	seven	GS	models	for	these	
traits	in	each	of	the	breeding	programs.

One	important	topic	in	GS	concerns	the	feasibility	
of	prediction	across	generations	and	across	TPs	from	
different	breeding	populations	or	programs.	To	increase	
the	rate	of	gain	achievable	by	GS,	prediction	models	will	
need	to	accurately	rank	unevaluated	progenies	rather	
than	genotypes	contemporary	with	the	TP.	It	is	well	
known	that	recombination	and	divergence	relative	to	the	
TP	associated	with	recurrent	selection	reduces	the	accu-
racy	of	cross-generation	prediction,	making	this	kind	
of	prediction	a	major	challenge	for	GS	(Jannink,	2010;	
Lorenz	et	al.,	2011).	Accuracies	in	these	scenarios	have	
not	been	previously	estimated	in	cassava.	Therefore,	we	
tested	the	accuracy	of	cross-generation	prediction	with	
the	IITA	TP	and	two	successive	cycles	of	progeny	that	
have	been	phenotyped.	Similarly,	given	that	the	previous	
results	indicated	only	a	small	level	of	genetic	differentia-
tion	among	clones	from	different	populations	(Wolfe	et	
al.,	2016b),	we	tested	whether	combining	information	
from	different	populations	could	increase	prediction	
accuracy	in	the	smaller	populations.

Finally,	in	a	typical	scenario,	a	GS	program	will	
phenotype	all	selected	materials	and	a	subset	of	the	
unselected	material	to	update	the	training	model.	We	
further	investigated	the	impact	of	phenotyping	differ-
ent	sized	subsets	of	materials	for	the	TP	update.	We	

www.nextgencassava.org
www.nextgencassava.org
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compared	random	subset	selections	to	selections	based	
on	a	TP	optimization	algorithm	(Akdemir	et	al.,	2015).

This	study	is	a	starting	point	for	successful	applica-
tion	of	GS	in	African	cassava.	Similar	to	other	studies,	
factors	such	as	trait	heritability,	the	prediction	model,	
and	TP	composition	play	important	roles	in	determining	
the	prediction	accuracy	and	the	rate	the	of	genetic	prog-
ress.	For	example,	traits	with	higher	heritability	like	DM	
are	considered	to	be	more	likely	to	respond	to	selection	
and	lead	to	larger	genetic	gain	over	cycles	of	selection	
(Kawano	et	al.,	1998;	Ceballos	et	al.,	2015).	Our	results	
will	serve	to	guide	implementation	strategies	for	GS	in	
cassava	breeding	programs.

Materials & Methods

Germplasm
In	this	study,	we	analyzed	data	from	the	GS	programs	
at	three	African	cassava	breeding	institutions:	NaCRRI,	
NRCRI,	and	IITA.	Germplasm	from	NaCRRI	included	
411	clones	descended	from	crosses	among	accessions	
from	East	Africa,	West	Africa,	and	South	America.	The	
collection	from	NRCRI	was	made	up	of	899	clones,	211	
of	them	in	common	with	the	IITA	breeding	germplasm.	
The	remaining	688	clones	were	materials	derived	either	
in	part	or	directly	from	the	International	Center	for	
Tropical	Agriculture	in	Cali,	Columbia.	Wolfe	et	al.	
(2016b)	shows	details	of	the	origins	and	pedigrees	of	the	
NaCRRI	and	NRCRI	clones	used	in	this	study.

The	primary	IITA	germplasm	we	analyzed	is	also	
known	as	the	Genetic	Gain	(GG)	collection,	which	
comprises	709	elite	and	historically	important	breed-
ing	clones	and	a	few	landraces	that	have	been	collected	

starting	in	the	1970s.	These	materials	have	also	been	pre-
viously	described	in	Okechukwu	and	Dixon	(2008),	Ly	et	
al.	(2013),	and	Wolfe	et	al.	(2016b).

In	addition,	two	generations	of	GS	progeny	were	
analyzed	(Fig.	2).	The	parents	of	each	set	of	progeny	were	
chosen	on	the	basis	of	their	GEBVs	as	described	previ-
ously	(Wolfe	et	al.,	2016b).	The	first,	GS	cycle	1	(C1)	com-
prised	2890	clones	from	166	full-sib	families	with	85	par-
ents	from	the	GG	collection.	Because	of	inconsistency	in	
the	timing	and	amount		of	flowering	and	seed	set	among	
clones,	successful	crossing	is	a	challenge	in	cassava.	To	
obtain	the	full	set	of	desired	matings	among	parents	of	
C1,	crossing	blocks	were	planted	in	two	successive	years	
(2013	and	2014).	In	2013,	79	parents	produced	2322	seed-
lings	(135	full-sib	families).	In	2014,	17	parents,	11	of	
which	were	reused	from	the	previous	year	and	another	
six	of	which	were	new	parents	from	the	GG	collection,	
gave	rise	to	an	additional	568	seedlings	(31	new	full-sib	
families).	The	C1	families	had	a	mean	size	of	17.4	siblings	
(median:	15,	range:	2–78).

Finally,	in	2014,	a	crossing	block	was	planted	with	89	
selected	C1	parents,	which	generated	1648	GS	Cycle	2	(C2)	
seedlings	in	242	full-sib	families.	The	Cycle	2	families	had	
a	mean	size	of	6.8	individuals	(median:	6,	range:	1–20).

Phenotyped Traits
Seven	traits	were	analyzed	in	this	study.	Plant	vigor	was	
recorded	as	3	=	low,	5	=	medium,	and	7	=	high	1	mo	after	
planting	at	IITA	and	NRCRI	and	3	mo	after	planting	at	
NaCRRI.	We	used	the	across-season	average	MCMDS	for	
our	analyses;	this	was	the	mean	of	measurements	taken	
at	1,	3,	and	6	mo	after	planting,	on	a	scale	of	1	(no	symp-
toms)	to	5	(severe	symptoms).	Dry	matter	content	was	

Fig. 1. Schematic of a conventional cassava breeding cycle. Arrows between trials indicate the selection of materials for further pheno-
typing trials. Red arrows indicate the selection of materials as parents for crossing.
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expressed	as	a	percentage	of	dry	root	weight	relative	to	
fresh	root	weight	(RTWT).	At	IITA,	DM	was	measured	by	
drying	100	g	of	fresh	roots	in	an	oven,	whereas	at	NRCRI	
and	NaCRRI,	the	specific	gravity	method	(Kawano	et	al.,	
1987)	was	used.	Root	weight	and	SHTWT	were	expressed	
in	kilograms	per	plot,	whereas	HI	was	the	proportion	of	
total	biomass	per	plot	(i.e.,	RTWT).	Root	number	was	the	
number	of	fresh	roots	harvested	per	plot.	For	all	analyses	
below,	RTNO,	RTWT,	and	SHTWT	were	natural-log	
transformed	to	obtain	normally	distributed	residuals.

The	phenotyping	trials	analyzed	in	this	study	have	
been	described	in	part	in	previous	publications	(Wolfe	
et	al.,	2016a;	2016b).	However,	complete	details	on	the	
phenotyping	trial	design	particular	to	this	study	are	
provided	in	Supplemental	File	S1.	All	phenotyping	tri-
als	were	conducted	between	2013	and	2015.	Clones	from	
NaCRRI	were	evaluated	in	three	locations	with	differ-
ent	agro-ecological	conditions	in	Uganda:	Namulonge,	
Kasese,	and	Ngetta.	Clones	from	NRCRI	were	tested	in	
three	locations	in	Nigeria:	Kano,	Otobi,	and	Umudike.	
Meanwhile,	IITA	clones	were	evaluated	in	four	locations	
within	Nigeria:	Ibadan,	Ikenne,	Ubiaja,	and	Mokwa.

Two-Stage Genomic Analyses
Except	where	noted	otherwise,	a	two-step	approach	
was	used	to	evaluate	genomic	predictions	in	this	study.	
This	approach	was	used	to	correct	for	heterogeneity	in	
the	experimental	designs	and	increase	computational	
efficiency.	The	first	stage	involved	accounting	for	trial	
design-related	variables	with	a	linear	mixed	model.

For	NaCRRI	we	fitted	the	model	shown	in	Eq.	[1]:	

( ) ( )= b+ + + +ey X Z Z Zclone range loc.year block range	 	 c r b ,	 [1]

where	b	included	a	fixed	effect	for	the	population	mean,	
the	location–year	combination,	and	for	plot-basis	traits	
(RTWT,	RTNO,	and	SHTWT);	the	number	of	plants	
harvested	per	plot	was	included	as	a	covariate;	the	vector	
c	and	the	corresponding	incidence	matrix	Zclone	repre-
sented	a	random	effect	for	the	clone	where	 ( )s2~ N 0, cc I ;	
I	represented	the	identity	matrix;	and	the	range	variable	
was	nested	in	location–year–replication	and	was	repre-
sented	by	the	incidence	matrix	Zrange(loc.year)	and	the	ran-
dom	effects	vector	 ( )s2~ N 0, rr I .	Ranges	were	equivalent	
to	the	row	or	column	along	which	plots	were	arrayed.	
Blocks	were	also	modeled,	with	a	block	being	a	subset	
of	a	range.	Block	effects	were	nested	in	ranges	and	were	
incorporated	as	random	variables	with	the	incidence	
matrix	Zblock(range)	effects	vector	 ( )s2~ N 0, bb I .	Finally,	the	
residuals	 e 	were	random,	with	 ( )ee s2~ N 0,I .

The	model	for	NRCRI	was:	

( ) ( ) ( )= b+ + + + +ey .	 	 c s r bclone set loc year rep set block repX Z Z Z Z ,	[2]

where	Zset	was	the	incidence	matrix	corresponding	to	
the	random	effect	for	the	planting	group	(see	above),	
which	was	nested	in	location–year,	with	 ( )s2~ N 0, ss I .	
Replication	effects	were	nested	in	sets	and	treated	as	
random	with	the	incidence	matrix	Zrep(set)	and	the	effects	
vector	 ( )s2~ N 0, rr I .	Blocks	were	nested	in	replications,	
treated	as	random,	and	represented	by	the	design	matrix	
Zblock(rep)	and	the	effects	vector	 ( )s2~ N 0, bb I .	The	fixed	
effects	for	NRCRI	included	were	the	same	as	those	for	
NaCRRI,	with	the	addition	of	a	term	for	trial	(i.e.,	TP1	
and	TP2;	see	above).

For	IITA,	data	from	all	trials	described	above	were	
fitted	together	using	the	model	in	Eq.	[3]:

Fig. 2. Schematic of International Institute of Tropical Agriculture (IITA) genomic selection, 2012–2015. Three generations of the IITA 
genomic selection program are illustrated here. From the genetic gain (GG) population, 85 parents were selected and crosses over 2 
yr (‘TMS13F’ in 2012–2013 and ‘TMS14F’ in 2013–2014) gave rise to 2890 Cycle 1 (C1) progeny. Predictions based on data from the 
GG were used to select 89 parents from among C1 in 2013, giving rise to 1648 Cycle 2 (C2) progeny in 2014. The GG were clonally 
evaluated in 2013–2014 and 2014–2015. The ‘TMS13’ C1 progeny were evaluated in 2013–2014 and 2014–2015. The ‘TMS14’ C1 
progeny were evaluated with the C2 progeny in 2014–2015.
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( )= b+ + +ey .	 	 c rclone range loc yearX Z Z .	 [3]

The	range	effect	was	fitted	as	random.	The	fixed	
effects	were	the	same	as	those	described	for	NaCRRI,	
except	the	proportion	of	harvested	plants	(out	of	the	total	
originally	planted)	was	used	instead	of	the	number	har-
vested	as	a	cofactor.	This	was	done	to	correct	for	differ-
ences	in	plot	sizes.

For	the	clone	effect,	the	best	linear	unbiased	predic-
tion	(BLUP)	(ĉ),	which	represents	an	estimate	of	the	total	
genetic	value	(estimated	genetic	value,	EGV)	for	each	
individual,	was	extracted.	The	EGVs	were	de-regressed	

by	dividing	by	their	reliability	( -
s21 	 )

c

PEV ,	where	PEV	is	

the	prediction	error	variance	of	the	BLUP.	This	was	done	
to	avoid	applying	shrinkage	to	the	same	data	twice	(once	
in	the	first	step	and	again	in	the	genomic	prediction	
step).	The	mixed	models	above	were	solved	with	the	lmer	
function	of	lme4	package	(Bates	et	al.,	2014)	in	R	(https://
cran.r-project.org,	accessed	30	Aug.	2017).

We	used	de-regressed	the	EGVs	as	the	response	
variables	and	weighted	error	variances	in	downstream	
genomic	evaluations.	Error	variances	were	weighted	
according	to	Garrick	et	al.	(2009)	via	Eq.	[4]:

-
-

+

2

2
2

2

1

1
10.1

H
r H

r

,	 [4]

where	H2	is	the	proportion	of	the	total	variance	
explained	by	the	clonal	variance	component,	s2

c .	Weight-
ing	error	variances	during	the	genomic	prediction	step	
was	done	to	preserve	information	from	the	first	step	
about	differences	between	clones	in	the	reliability	of	the	
de-regressed	BLUPs	being	used	to	represent	their	genetic	
value.	These	differences	occur	mostly	because	of	imbal-
ances	in	the	number	of	observations	among	clones.	This	
information	would	otherwise	be	ignored	when	making	
genomic	predictions	with	a	two-step	procedure.

Genotyping Data
The	cassava	collections	described	above	were	genotyped	
with	GBS	(Elshire	et	al.,	2011)	with	the	ApeKI	restriction	
enzyme	recommended	by	Hamblin	and	Rabbi	(2014).	
Single	nucleotide	polymorphisms	were	called	with	the	
TASSEL	5.0	GBS	pipeline	version	2	(Glaubitz	et	al.,	2014)	
and	aligned	to	the	cassava	reference	genome,	version	6.1	
(http://phytozome.jgi.doe.gov,	accessed	14	Aug.	2017;	
International	Cassava	Genetic	Map	Consortium,	2015).	
Genotype	calls	were	only	allowed	when	a	minimum	
of	two	reads	was	present;	otherwise,	the	genotype	was	
imputed	(see	below).	Furthermore,	the	GBS	data	were	
filtered	so	that	clones	with	>80%	missing	and	mark-
ers	with	>60%	missing	genotype	calls	were	removed.	
Markers	with	extreme	deviation	from	Hardy–Weinberg	

equilibrium	(Χ2	>	20)	were	also	removed.	Only	biallelic	
SNP	markers	were	considered	for	further	analyses.	We	
used	a	combination	of	custom	scripts	and	common	vari-
ant	call	file	(Danecek	et	al.,	2011)	manipulation	tools	to	
accomplish	this	pipeline.	Finally,	imputation	was	con-
ducted	with	Beagle	version	4.0	(Browning	&	Browning,	
2009).	A	total	of	155,871	markers	were	obtained	follow-
ing	these	procedures.	For	genomic	prediction	in	a	given	
population	or	dataset,	we	further	filtered	out	SNPs	with	a	
minor	allele	frequency	less	than	0.01.

Assessment of Prediction Accuracy  
via Cross-Validation
To	obtain	unbiased	estimates	of	prediction	accuracy,	we	
used	a	k-fold	cross-validation	scheme	(Kohavi,	1995).	In	
brief,	each	breeding	program	dataset	[NRCRI	collection	
(NR),	NaCRRI	collection	(UG),	and	GG]	was	split	ran-
domly	into	k	=	fivefold	mutually	exclusive	training	and	
validation	sets.	The	training	set	composed	of	four	out	of	
five	of	the	subsets	was	used	to	estimate	marker	effects	for	
predictions.	The	estimated	marker	effects	were	used	to	
predict	the	breeding	value	of	the	validation	set	individu-
als.	The	process	of	subset	assignment	and	genomic	pre-
diction	was	repeated	25	times	for	each	model.	For	each	
repeat,	predictions	were	accumulated	from	each	indi-
vidual	when	it	was	in	the	validation	subset.	Prediction	
accuracy	was	then	calculated	as	the	Pearson	correlation	
between	the	EGV	(not	de-regressed)	and	the	accumu-
lated	predicted	values	for	that	repeat.

Genomic Prediction Methods
In	this	study,	we	compared	the	accuracy	of	genomic	pre-
diction	via	seven	methods	that	are	briefly	described	below.	
These	methods	differ	in	their	assumptions	about	genetic	
architecture	and	whether	the	prediction	being	made	
represents	a	genome	estimated	breeding	value	(GEBV	
that	included	additive	effects	or	a	genome	estimated	total	
genetic	value,	which	includes	additive	and	nonadditive	
effects.	Prediction	models	were	compared	by	examining	
several	prediction	scenarios	(described	in	detail	below),	
including	25	replications	of	fivefold	cross-validation,	cross-
generation,	and	cross-population	prediction.

Genomic BLUP
Prediction	with	GBLUP	involves	fitting	a	linear	mixed	
model	of	the	following	form:	 = + +y g	 	X Zb e .	Here,	y	is	
a	vector	of	the	phenotype	and	b	is	a	vector	of	fixed,	non-
genetic	effects	with	the	design	matrix	X.	The	vector	g	is	a	
random	effect,	the	BLUP,	which	represents	the	GEBV	for	
each	individual.	Z	is	a	design	matrix	indicating	observa-
tions	of	genotype	identities,	and	ε	is	a	vector	of	residuals.	
The	GEBV	is	obtained	by	assuming	 ( )sg 2~ N 0, gK ,	where	
s2

g 	is	the	additive	genetic	variance	and	K	is	the	square,	
symmetric	genomic	realized	relationship	matrix	based	
on	SNP	markers.	The	genomic	relationship	matrix	was	
constructed	with	the	function	A.mat	in	the	R	package	
rrBLUP	(Endelman,	2011)	and	follows	the	formula	of	
VanRaden	(2008),	Method	2.	Predictions	using	GBLUP	

https://cran.r-project.org
https://cran.r-project.org
http://phytozome.jgi.doe.gov
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were	made	with	the	function	emmreml	in	the	R	package	
EMMREML	(Akdemir	and	Okeke,	2015).

Reproducing Kernel Hilbert Spaces
We	made	predictions	with	reproducing	kernel	Hilbert	
spaces	(RKHS).	The	genomic	relationship	matrix	used	
in	the	GBLUP	model	described	above	can	be	considered	
as	a	parametric	(additive	genetic)	kernel	function	and	
exists	as	a	special	case	of	RKHS	(Gianola	and	van	Kaam,	
2008;	Morota	and	Gianola,	2014).	For	RKHS	predictions,	
we	used	a	mixed	model	of	the	same	form	as	for	GBLUP	
above.	Unlike	the	case	of	GBLUP,	we	used	a	Gaussian	
kernel	function:	

( )( )	 ijexpijK d= - q ,	 [5]

where	Kij	was	the	measured	relationship	between	two	
individuals,	dij	was	their	Euclidean	genetic	distance	based	
on	marker	dosages,	and	θ	was	a	tuning	(sometimes	called	
a	“bandwidth”)	parameter	that	determines	the	rate	of	
decay	of	correlations	among	individuals.	Because	this	is	a	
nonlinear	function,	the	kernels	we	used	for	RKHS	could	
capture	nonadditive	as	well	as	additive	genetic	variation.	
Thus	the	BLUPs	from	RKHS	models	represent	genome	
estimated	total	genetic	values	rather	than	GEBVs.

Because	the	optimal	θ	must	be	determined,	a	range	of	
values	was	tested	in	two	ways.	First,	we	did	cross-valida-
tion	with	the	following	θ	values	and	selected	the	one	with	
the	best	accuracy:	0.0000005,	0.000005,	0.00005,	0.0001,	
0.0005,	0.001,	0.004,	0.006,	0.008,	0.01,	0.02,	0.04,	0.06,	
0.08,	and	0.1	(single-kernel	RKHS).	Second,	we	used	the	
emmremlMultiKernel	function	in	the	EMMREML	pack-
age	(Akdemir	and	Okeke,	2015)	to	fit	a	multikernel	model	
with	six	covariance	matrices,	with	the	following	band-
width	parameters	and	allowed	restricted	maximum	likeli-
hood	to	find	optimal	weights	for	each:	0.0000005,	0.00005,	
0.0005,	0.005,	0.01,	and	0.05	(multikernel	RKHS).

Bayesian Marker Regressions
We	tested	four	well-established	Bayesian	prediction	
models:	BayesCpi	(Habier	et	al.,	2011),	the	Bayesian	
LASSO	(BL;	Park	and	Casella,	2008),	BayesA,	and	BayesB	
(Meuwissen	et	al.,	2001).	In	ridge-regression	(equivalent	
to	GBLUP),	marker	effects	were	all	shrunk	by	the	same	
amount,	because	we	assume	they	are	all	drawn	from	a	
normal	distribution	with	the	same	variance.	Further,	all	
markers	have	a	nonzero	effect	and	most	have	small	effects,	
essentially	assuming	that	the	genetic	architecture	of	the	
trait	is	infinitesimal.	In	contrast,	the	Bayesian	models	we	
tested	allow	for	alternative	genetic	architectures	by	induc-
ing	differential	shrinkage	of	marker	effects.	For	BayesA	
and	Bayesian	LASSO,	all	markers	have	a	nonzero	effect	
but	the	marker	variances	are	drawn	from	scaled-t	and	
double-exponential	distributions	respectively,	which	are	
both	distributions	with	thicker	tails	and	greater	density	
at	zero.	Both	BayesB	and	BayesCpi	are	variable	selec-
tion	models	because	the	marker	variances	come	from	a	

two-component	mixture	of	a	point	mass	at	zero	and	either	
a	scaled-t	distribution	(BayesB)	or	a	normal	distribu-
tion	(BayesCpi).	Fitting	BayesB	and	BayesCpi	begins	by	
estimating	a	parameter	pi,	representing	the	proportion	of	
markers	with	a	nonzero	effect.	We	performed	Bayesian	
predictions	with	the	R	package	BGLR	(Pérez	and	De	Los	
Campos,	2014).	Following	Heslot	et	al.	(2012)	and	others,	
we	ran	BGLR	for	10,000	iterations,	discarded	the	first	1000	
iterations	as	burn-in,	and	thinned	the	remainder	to	every	
fifth	sample.	Marker	dosages	were	mean-centered	on	the	
combination	of	training	and	test	sets	before	analysis.	Con-
vergence	was	confirmed	visually	in	initial	test	runs	using	
the	CODA	package	in	R	(Plummer	et	al.,	2006).

Random Forest
Random	Forest	(RF)	is	a	machine	learning	method	used	
widely	in	regression	and	classification	(Breiman,	2001;	
Strobl	et	al.,	2009).	The	use	of	RF	regression	with	marker	
data	has	been	shown	to	capture	epistatic	effects	and	has	
been	successfully	used	for	prediction	of	genome	estimated	
total	genetic	value	(Breiman,	2001;	Motsinger-Reif	et	al.,	
2008;	Michaelson	et	al.,	2010;	Heslot	et	al.,	2012;	Charmet	
et	al.,	2014;	Sarkar	et	al.,	2015;	Spindel	et	al.,	2015).	In	
prediction,	a	random	forest	is	a	collection	of	r	regression	
trees	grown	on	a	subset	of	the	original	dataset	that	is	boot-
strapped	over	observations	and	randomly	sampled	over	
predictors.	Averaging	the	prediction	over	trees	for	valida-
tion	observations	then	aggregates	the	information.	We	used	
RF	with	the	parameter	with	ntree	set	to	500	and	the	num-
ber	of	variables	sampled	at	each	split	(mtry)	equal	to	300.	
We	implemented	RF	with	the	randomForest	package	in	R	
(Liaw	and	Wiener,	2002).	As	in	the	Bayesian	regressions,	
marker	dosages	were	mean-centered	before	RF	analysis.

Comparison of Models Based  
on the Similarity of Rankings
To	test	for	GS	model	similarities	among	breeding	pro-
grams,	we	clustered	the	GEBV	output	on	a	breeding	
program	basis.	Genomic	estimated	breeding	values	from	
each	model	were	scaled	and	centered	on	a	column	basis	
with	the	scale	function	in	R	and	were	then	used	to	con-
struct	a	matrix	of	Euclidean	distances	between	models.	
Distance	matrices	were	used	as	an	input	for	hierarchical	
clustering	using	the	Ward	criterion	implemented	in	the	
hclust	R	function	(Heslot	et	al.,	2012).

Cross-Generation Genomic Predictions
Because	nearly	all	of	the	IITA	germplasm	from	C1	and	C2	
had	been	clonally	evaluated,	we	were	able	to	test	the	pros-
pects	for	predicting	unevaluated	progeny.	We	predicted	
all	traits	via	all	methods	in	four	scenarios:	GG	predicting	
C1,	GG	predicting	C2,	C1	predicting	C2,	and	GG	+	C1	
predicting	C2.	Unlike	the	other	predictions	presented	in	
this	study,	cross-generation	predictions	were	done	in	a	
single	step	(raw	phenotype	and	genomic	data	were	fitted	
simultaneously).	The	exception	was	for	RF,	where	correc-
tion	for	location	and	blocking	factors	is	not	supported.	
For	RF	prediction,	we	used	the	same	de-regressed	EGVs	
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as	for	cross-validation.	The	software	and	parameters	used	
were	the	same	as	already	described.	The	design	model	was	
the	same	as	that	described	for	IITA	above.

Training Population Update
We	evaluated	the	impact	on	cross-generation	prediction	
accuracy	of	phenotyping	different	size	subsets	of	the	un-
selected	C1	(materials	selected	for	crossing	in	each	cycle	
were	phenotyped,	but	unselected	materials	were	not	phe-
notyped	in	all	cases).	We	selected	subsets	of	C1	using	two	
methods:	randomly	and	with	a	genetic	algorithm	imple-
mented	in	the	R	package	STPGA	(Akdemir	et	al.,	2015).

The	STPGA	package	uses	an	approximation	of	the	
mean	PEV	expected	for	a	given	set	of	training	individu-
als	in	combination	with	a	given	set	of	test	genotypes	as	
a	criterion	(which	does	not	require	phenotype	data)	for	
selecting	the	“optimal”	training	set.	The	genetic	algo-
rithm	implemented	by	STPGA	is	used	to	rapidly	find	the	
training	set	that	minimized	the	selection	criterion	(the	
mean	PEV	of	the	test	set;	Akdemir	et	al.,	2015).	To	speed	
up	computation,	STPGA	uses	principal	components	
rather	than	raw	SNP	markers	as	genetic	predictors.

Parents	selected	for	further	recombination	were	
cloned	into	a	crossing	block.	This	was	the	point	at	which	
additional	unselected	seedlings	must	be	chosen	for	phe-
notyping	to	incorporate	their	data	in	predictions	of	the	
eventual	progeny	that	are	produced.	Since	the	next	gen-
eration	of	progeny	had	not	yet	been	produced,	we	targeted	
STPGA	on	the	parents	of	C2.	Figure	3	provides	a	sche-
matic	of	GS	with	the	TP	update	and	optimization	with	
STPGA.	We	constructed	a	genomic	relationship	matrix	
with	only	C1	(including	the	parents	of	C2).	We	did	a	prin-
cipal	component	analysis	on	the	kinship	matrix	and	took	
the	first	100	principal	components	as	genomic	predictors.	
We	ran	1000	iterations	of	the	genetic	algorithm	10	times	
at	each	sample	size.	Sample	sizes	ranged	from	200	to	2400	
at	increments	of	400	(Supplemental	Table	S1).	Predictions	
at	each	sample	size	were	then	made	with	each	of	10	ran-
dom	and	10	optimized	training	sets	using	GBLUP	in	two	
scenarios:	either	just	the	sample	of	C1	was	used	to	train	
the	model	or	the	sample	of	C1	plus	all	of	GG	were	used.

Cross-Population Genomic Predictions
We	predicted	all	traits	using	all	methods	in	three	scenar-
ios:	GG	+	NR	predicting	UG,	GG	+	UG	predicting	NR,	
and	NR	+	UG	predicting	GG	(Supplemental	Table	S2A).	
Cross-population	predictions	were	made	with	the	predic-
tion	models	described	above	and	followed	the	two-step	
approach	as	described	above.

We	selected	optimized	subsets	of	the	combined	data-
sets	with	a	genetic	algorithm	implemented	in	the	R	pack-
age	STPGA	(Akdemir	et	al.,	2015).	Random	subsets	of	the	
same	size	as	the	optimized	subsets	(300,	600,	900,	and	
1200)	were	selected	for	comparisons	between	predictive	
accuracies.	Predictions	at	each	sample	size	were	then	made	
for	10	random	and	10	optimized	training	sets	with	GBLUP.

Results
After	quality	control	and	keeping	only	markers	with	>1%	
minor	allele	frequency,	the	datasets	had	between	70,010	
and	78,212	SNP	markers	(Table	1).	Principal	component	
analysis	of	the	genomic	relationship	matrix	indicated	some	
genetic	differentiation	between	Nigerian	populations	(GG	
and	NR)	and	the	Ugandan	TP	(UG;	Supplemental	Fig.	
S1a).	In	contrast,	there	was	little	differentiation	between	
the	NRCRI	and	IITA	GG	datasets,	even	when	we	com-
pared	only	the	nonoverlapping	clones.	We	also	calculated	
the	FST	between	populations	as	implemented	in	vcftools	
(Danecek	et	al.,	2011).	In	agreement	with	results	from	
the	principal	component	analysis,	the	FST	between	GG	
and	NR	was	only	0.008,	but	was	0.019	and	0.021	between	
the	Ugandan	and	the	Nigerian	populations,	GG	and	NR,	
respectively.	There	was	a	similar	amount	of	genetic	dif-
ferentiation	between	the	IITA	C2	progeny	and	its	grand-
parental	GG	population	(FST	=	0.02),	as	there	was	between	
GG	and	UG	(Table	1,	Supplemental	Fig.	S1b).

The	mean	inbreeding	coefficient	(F),	as	measured	
by	the	mean	of	the	diagonal	of	the	genomic	relationship	
matrix,	was	similar	for	all	populations,	ranging	from	0.933	
in	GG	to	0.965	in	C1.	The	mean	rate	of	heterozygous	loci	
was	also	similar	between	populations,	ranging	from	0.15	
to	0.17.	There	was	no	notable	decrease	in	heterozygosity	
or	increase	in	the	inbreeding	coefficient	from	GG	to	C1	or	
from	C1	to	C2	(Table	1;	Supplemental	Fig.	S2).

In	general,	broad-sense	heritability	was	highest	in	
the	C1	(mean	=	0.46	across	traits),	lowest	for	NRCRI	
(mean	=	0.13),	and	similar	for	the	IITA	GG,	and	NaCRRI	
TPs.	Averaging	across	populations,	broad-sense	heri-
tability	was	highest	for	MCMDS	(0.57),	followed	by	HI	
(0.43)	and	DM	(0.39).	However,	broad-sense	heritability	
was	generally	low	for	yield	components	(Table	1).

Prediction Within Breeding Populations
We	tested	seven	genomic	prediction	models	that	differed	
in	their	extent	and	the	kind	of	shrinkage,	which	is	rel-
evant	in	modelling	different	genetic	architectures,	and	in	
their	ability	to	capture	nonadditive	effects	(Supplemental	
Fig.	S3	to	Supplemental	Fig.	S5).

Overall,	breeding	populations	exhibited	differences	
in	the	cross-validated	prediction	accuracies	between	
methods	and	across	traits	(Table	2	and	Supplemental	Fig.	
S3	to	Supplemental	Fig.	S5).	For	NRCRI	(n	=	899),	the	
mean	predictive	accuracy	values	across	methods	ranged	
between	-0.02	for	plant	vigor	and	0.27	for	HI.	For	
NaCRRI	(n	=	411),	the	mean	predictive	accuracy	values	
ranged	between	0.23	for	SHTWT	and	0.46	for	HI.	Mean-
while,	the	predictive	accuracy	values	for	GG	(n	=	709)	
ranged	between	0.22	for	plant	vigor	and	0.66	for	DM.

In	the	NRCRI	population,	RKHS	and	RF,	which	cap-
ture	nonadditive	effects,	had	the	highest	predictive	accu-
racy	values	for	all	traits	except	plant	vigor.	The	trait	with	
the	highest	predictive	accuracy	was	RTWT	(RF	(0.34))	
and	the	lowest	predictive	accuracy	was	found	for	vigor	
(multi-kernel	RKHS	(-0.03)).
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In	the	NaCRRI	population,	the	multikernel	RKHS	
model	showed	the	highest	predictive	accuracies	for	all	
traits	except	for	CMD,	for	which	BayesB	showed	the	
highest	value	(r	=	0.50).	In	this	population,	CMD	had	the	
overall	highest	predictive	accuracy	across	traits,	whereas	
SHTWT	exhibited	the	lowest	predictive	accuracy	(Bayes-
ian	LASSO,	r	=	0.18).

In	the	IITA	GG	population,	Bayesian	approaches	
performed	better	for	vigor,	CMD,	SHTWT,	and	DM,	but	
the	RKHS	method	showed	higher	predictive	accuracies	
for	HI	and	for	yield	related	traits	such	as	RTWT	and	
RTNO.	Meanwhile,	RF	gave	better	predictive	accuracy	
when	it	was	used	to	estimate	GEBVs.

Some	trait–dataset	combinations	exhibited	better	pre-
dictive	accuracies	than	others.	For	example,	NaCRRI	popu-
lation	had	better	predictive	accuracies	for	yield	components	
like	HI,	RTWT	and	RTNO	but	the	highest	predictive	values	
for	CMD	and	DM	were	obtained	in	the	GG	population.

Similar	to	Heslot	et	al.	(2012),	we	compared	the	
cross-validated	GEBVs	following	a	clustering	approach.	
The	results	in	Supplemental	Fig.	S6	show	the	hierarchi-
cal	cluster	trees	from	the	combined	results	of	the	three	
breeding	populations.	Differences	in	the	clustering	of	
methods	are	observed	across	datasets	(Fig.	4).	In	the	
NRCRI	data,	we	found	two	groups	of	clustering	GS	
methods,	with	BayesB,	BayesC,	and	GBLUP	in	one	group	
and	the	rest	on	the	other	group.	In	the	NaCRRI	and	IITA	
populations,	nonparametric	methods	such	as	RKHS	and	
RF	clustered	together,	BayesA	clustered	with	Bayesian	
LASSO,	and	GBLUP	clustered	with	BayesC	or	BayesB.

Cross-Population Prediction
Previous	studies	have	reported	close	relatedness	between	
the	clones	in	the	next-generation	TPs	(Wolfe	et	al.,	
2016b).	One	important	question	within	this	project	is	
whether	or	not	datasets	from	different	breeding	pro-
grams	can	be	combined	in	a	training	set	to	increase	pre-
dictive	accuracy.	The	application	of	any	prediction	model	
with	the	combined	dataset	would	then	benefit	from	an	
increase	in	the	TP	size	with	the	prospect	of	using	such	

Table 2. Summary of cross-validated predictive accura-
cies by prediction model, trait, and breeding program. 
The highest predictive accuracy across methods within a 
trait and within a breeding program is indicated in bold. 

Trait Program
Bayes 

A
Bayes 

B
Bayes 

C BL‡ GBLUP

Multi- 
kernel-
RKHS

Random 
Forest Mean

NRCRI 0.12 0.12 0.11 0.12 0.10 0.18 0.15 0.13
DM NaCRRI 0.29 0.29 0.30 0.29 0.30 0.33 0.34 0.31

GG 0.67 0.67 0.67 0.68† 0.67 0.67 0.63 0.66
NRCRI 0.27 0.26 0.27 0.24 0.27 0.30 0.31 0.27

HI NaCRRI 0.46 0.45 0.45 0.45 0.45 0.48† 0.47 0.46
GG 0.37 0.39 0.39 0.40 0.39 0.41 0.39 0.39

NRCRI 0.23 0.22 0.23 0.24 0.22 0.32 0.34 0.26
RTWT NaCRRI 0.31 0.30 0.30 0.29 0.31 0.37† 0.35 0.31

GG 0.31 0.31 0.33 0.33 0.32 0.33 0.34 0.33
NRCRI 0.19 0.18 0.18 0.19 0.18 0.21 0.20 0.19

RTNO NaCRRI 0.35 0.34 0.34 0.30 0.35 0.39† 0.36 0.34
GG 0.33 0.33 0.34 0.35 0.35 0.34 0.35 0.34

NRCRI 0.18 0.19 0.19 0.19 0.17 0.25 0.24 0.20
SHTWT NaCRRI 0.21 0.22 0.22 0.18 0.24 0.26 0.25 0.23

GG 0.31 0.32 0.32 0.33† 0.32 0.33† 0.29 0.31
NRCRI 0.23 0.22 0.20 0.21 0.19 0.24 0.29 0.23

MCMDS NaCRRI 0.50 0.50 0.42 0.41 0.40 0.45 0.48 0.45
GG 0.58 0.60† 0.57 0.56 0.56 0.57 0.60† 0.57

NRCRI -0.03 -0.02-0.02 -0.03 -0.02 -0.03 -0.03 -0.02
VIGOR NaCRRI 0.35 0.34 0.34 0.34 0.35 0.38† 0.38† 0.34

GG 0.23 0.23 0.24 0.24 0.23 0.22 0.18 0.22
Mean 0.31 0.31 0.30 0.30 0.30 0.33 0.33

† The highest predictive accuracy within a trait across breeding programs.

‡ BL, Bayesian Lasso; GBLUP, genomic best linear unbiased prediction; RKHS, reproducing kernel 
Hilbert spaces; GG, International Institute of Tropical Agriculture Genetic Gain germplasm collection; 
NRCRI, National Root Crops Research Institute; NaCRRI, National Crops Resources Research Institute; 
DM, dry matter content; HI, harvest index; RTWT, root weight; RTNO, root number; SHTWT, shoot 
weight; MCMDS, mean cassava mosaic disease severity; VIGOR, early plant vigor.

Table 1. Summary and comparison of phenotype and 
genotype datasets analyzed in this study.

Broad-sense heritability

Trait

IITA¶

NRCRI NaCRRIAll IITA GG C1 C2

VIGOR 0.25 0.25 0.31 0.19 0.06 0.15
MCMDS 0.69 0.60 0.86 0.25 0.44 0.62
DM 0.49 0.59 0.62 0.51 0.01 0.14
HI 0.57 0.36 0.62 0.55 0.12 0.36
RTWT 0.31 0.10 0.36 0.00 0.10 0.27
RTNO 0.24 0.09 0.26 0.00 0.06 0.22
SHTWT 0.22 0.14 0.21 0.00 0.13 0.25
No. Clones 5247 709 2890 1648 899 411
Raw data points 8501 2924 3875 1702 2391 7662

Genetic diversity statistics

Mean Inbreeding Coefficient† 0.933 0.965 0.949 0.946 0.954
Std Dev. Kinship Coefficient‡ 0.080 0.089 0.092 0.080 0.118
MAF > 1% 76137 73096 70010 78212 75923
Median (MAF) 0.009 0.0067 0.0047 0.01 0.01

Mean Heterozygosity§ 0.16 0.15 0.17 0.15 0.15
Max. Heterozygosity 0.29 0.27 0.28 0.26 0.24
Min. Heterozygosity 0.07 0.07 0.10 0.07 0.08

Mean (MAF) 0.056 0.054 0.056 0.055 0.054

Mean FST between datasets

Populations 
compared FST

Populations 
compared FST

GG vs. NR 0.008 GG vs. C1 0.010
GG vs. UG 0.019 GG vs. C2 0.020
NR vs. UG 0.021 C1 vs. C2 0.014

† Mean of the diagonal of the genomic relationship matrix.

‡ Off-diagonal of the genomic relationship matrix.

§ Heterozygosity per individual per dataset.

¶ IITA, International Institute of Tropical Agriculture; GG, IITA Genetic Gain germplasm collection; C1, 
IITA Cycle 1; C2, IITA Cycle 2; NR, National Root Crops Research Institute (NRCRI); UG, National Crops 
Resources Research Institute (NaCRRI); DM, dry matter content; HI, harvest index; RTWT, root weight; 
RTNO, root number; SHTWT, shoot weight; MCMDS, mean cassava mosaic disease severity; VIGOR, 
early plant vigor;MAF, minor allele frequency.
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models	in	other	cassava	breeding	programs	in	Africa.	
With	that	in	mind,	we	used	combined	datasets	of	GG	+	
NR,	GG	+	UG,	and	UG	+	NR	to	predict	the	population	
that	was	not	included	in	the	training	set	(UG,	NR,	and	
GG,	respectively).

When	we	predicted	the	traits	in	the	UG	dataset	with	
the	combined	GG	+	NR	full	set,	Bayesian	models	gave	
better	predictive	accuracies	for	MCMDS,	RTNO,	and	
DM.	Random	Forest	gave	better	predictive	accuracies	for	
HI	and	RKHS	was	best	for	RTWT	and	SHTWT	(Supple-
mental	Table	S2a).

The	average	predictive	accuracy	with	the	combined	
GG	+	NR	full	set	as	the	training	set	with	the	GBLUP	
model	was	consistently	lower	for	all	the	traits	than		the	
average	GBLUP	cross-validation	results	(Supplemental	
Table	S2a).	Furthermore,	the	subsets	selected	by	STPGA	
to	predict	the	NaCRRI	(UG)	validation	set	gave,	for	all	
traits	and	all	subset	sizes,	lower	predictive	accuracies	
than	the	GBLUP	cross-validation	model	(Table	3;	Supple-
mental	Fig.	S7;	Supplemental	Table	S2b).

For	plant	vigor,	MCMDS,	and	HI,	the	optimized	
STPGA	subsets	gave	higher	predictive	accuracies	than	
the	combined	GG	+	NR	full	training	dataset.	With	few	
exceptions	(MCMDS,	SHTWT,	and	DM),	the	optimized	
STPGA	datasets	gave	better	prediction	accuracies	than	
the	same	sized	random	sets.	As	the	optimized	STPGA	
dataset	increased	in	size,	the	predictive	accuracy	did	not	
increase,	except	for	RTNO,	where	the	highest	predictive	
accuracy	was	found	when	the	TP	size	was	1200.

When	the	combined	GG	+	UG	full	training	dataset	
was	used	to	predict	the	NRCRI	TP,	Random	Forest	and	
RKHS	prediction	models	performed	better	for	RTWT,	
SHTWT,	RTNO,	and	plant	vigor.	Bayesian	models	gave	
better	predictive	accuracies	for	MCMDS	and	DM.	For	
plant	vigor,	MCMDS	and	DM,	the	combined	UG+GG	full	
dataset	gave	better	predictive	accuracies	than	the	GBLUP	
cross-validation	model	(Supplemental	Fig.	S8;	Supple-
mental	Table	S2b).	For	prediction	of	the	NRCRI	TP,	the	
optimized	STPGA	selected	datasets	gave	better	predictive	
accuracies	for	plant	vigor,	RTWT,	RTNO,	and	SHTWT	
than	the	combined	UG+	GG	full	training	dataset.

To	predict	the	NRCRI	TP	for	all	traits	except	RTNO	(at	
n	=	900	and	n	=	1200)	and	CMD	(n	=	900),	the	optimized	
datasets	gave	higher	predictive	accuracies	than	the	random	
datasets.	For	plant	vigor,	CMD	resistance,	and	DM,	the	
selection	of	optimized	datasets	with	STPGA	gave	better	pre-
dictive	accuracies	than	the	GBLUP	cross-validation	model.

Among	the	STPGA	datasets,	the	highest	predictive	
accuracy	was	not	always	the	result	of	an	increase	in	TP	
size.	For	CMD	resistance,	the	highest	predictive	accuracy	
was	found	for	the	smallest	optimized	dataset,	with	the	
same	value	as	the	highest	optimized	size,.

The	predictive	accuracy	results	of	traits	in	the	GG	
dataset	using	the	full	training	set	(UG+NR)	varied	across	
methods.	Whereas	Bayesian	methods	gave	better	predic-
tive	accuracy	values	for	MCMD	and	plant	vigor,	RKHS	
performed	better	for	DM,	HI,	RTWT,	and	SHTWT.	The	
combined	(UG+NR)	full	training	dataset	for	predicting	

Fig. 4. Hierarchical clustering of genomic prediction models based on cross-validated genomic estimated breeding values (GEBVs). 
Height on the y-axis refers to the value of the dissimilarity criterion. (A) Clustering of prediction models in the National Root Crops 
Research Institute (NRCRI) population. (B) Clustering of prediction models in the National Crops Resources Research Institute (NaCRRI) 
population. (C) Clustering of prediction models in the Genetic Gain (GG) population. GBLUP, genomic best linear unbiased predictor; 
BL, Bayesian Lasso; RF, random forest; RKHS, reproducing kernel Hilbert spaces multikernel model.
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the	GG	population	gave	lower	predictive	accuracies	than	
the	GBLUP	cross-validation	model	for	all	traits.	The	
GBLUP	cross-validation	model	also	gave	better	predictive	
accuracies	for	all	the	traits	than	the	random	and	opti-
mized	STPGA	datasets.	The	optimized	STPGA	datasets	
gave	better	predictive	accuracies	than	the	random	sets	
for	all	traits	except	for	plant	vigor	and	for	DM	(optimized	
dataset	n	=	900)	(Supplemental	Fig.	S9;	Supplemental	
Table	S2b).	For	all	traits	except	MCMDS	and	DM,	the	
optimized	STPGA	subsets	gave	higher	predictive	accura-
cies	than	the	combined	UG+NR	full	training	dataset.

For	all	the	cross-population	results,	we	tested	if	the	
optimized	STPGA	sets	would	do	better	than	random	
with	a	binomial	test,	assuming	the	independence	of	the	
comparisons.	We	compared	how	many	times	the	predic-
tion	accuracy	of	STPGA	was	greater	than	random	for	all	
traits.	We	found	that	for	prediction	of	the	NR	and	UG	
sets,	the	STPGA-optimized	sets	performed	better	than	
the	random	sets.	On	the	contrary,	when	we	applied	the	
same	comparison	of	the	STPGA	sets	with	the	predictions	
with	full	sets,	the	latter	had	a	significantly	higher	num-
ber	of	full	sets	that	was	greater	than	STPGA’s	predictive	
accuracy	results.

Additionally,	we	tested	if	there	was	differential	
enrichment	in	the	optimized	STPGA	training	set	of	any	
of	the	populations	relative	to	the	source	sets.	We	found	a	
significant	enrichment	of	the	GG	population	(p	<	0.001)	
in	the	STPGA	of	different	sizes	for	the	prediction	of	the	

NR	set	with	GG	+	UG.	Similarly,	we	found	a	significant	
enrichment	of	the	NR	population	(p	<	0.001)	in	the	
STPGA	of	different	sizes	for	predicting	the	GG	set	with	
the	UG-NR.	On	the	contrary,	we	found	no	significant	
enrichment	of	any	population	in	the	STPGA-optimized	
sets	predicting	the	UG	population.

Cross-Generation Prediction
One	major	area	where	analysis	was	needed	concerned	
prediction	across	generations.	Selections	can	be	done	at	
the	seedling	stage	if	GEBV	can	be	predicted	from	the	pre-
vious	generations	and	training	data.	Because	nearly	all	of	
the	IITA	germplasm	from	C1	and	C2	were	clonally	evalu-
ated,	we	were	able	to	use	these	data	to	assess	the	accuracy	
of	genomic	predictions	on	unevaluated	genotypes	of	the	
next	generation.	In	general,	the	accuracy	of	prediction	
across	generations	was	greatest	when	predicting	C2,	as	
shown	by	averaging	across	prediction	models	and	traits	
for	predictions	trained	either	with	C1	(mean	=	0.19	±	SE	
0.02)	or	GG	+	C1	(0.19	±	0.02).	The	accuracy	was	lower	on	
average	when	we	predicted	C2	with	GG	(0.11	±	0.01)	than	
when	we	predicted	C1	with	GG	(0.17	±	0.02).	Accuracy	
was	lowest	for	both	plant	vigor	and	RTWT	(0.06	±	0.005)	
and	was	highest	for	MCMDS	(0.32	±	0.03)	and	DM	(0.38	
±	0.01).	Most	prediction	models	performed	similarly,	as	
shown	by	the	averaged	accuracy	across	traits	and	train-
ing–test	combinations,	with	RF	performing	worst	(0.08	±	
0.01)	and	BayesA	and	BayesB	performing	best	(both	0.20	

Table 3. Summary of mean genomic best linear unbiased prediction (GBLUP) cross-validated predictive accuracies 
across populations. Four subset selection methods (random vs. STPGA) and the full set were considered. The high-
est predictive accuracy across subsets and the full set is indicated in bold.

Train Test Trait

300 600 900 1200

Full CVGBLUP†STPGA Random STPGA Random STPGA Random STPGA Random

NR + GG UG VIGOR 0.199 0.083 0.182 0.102 0.221 0.152 0.200 0.174 0.193 0.353
NR + GG UG MCMDS 0.293 0.224 0.284 0.264 0.262 0.279 0.284 0.291 0.285 0.404
NR + GG UG DM 0.272 0.209 0.282 0.227 0.258 0.254 0.252 0.272 0.284 0.296
NR + GG UG HI 0.294 0.176 0.278 0.230 0.266 0.215 0.228 0.214 0.206 0.454
NR + GG UG RTWT 0.155 0.072 0.165 0.124 0.181 0.156 0.179 0.174 0.193 0.314
NR + GG UG RTNO 0.149 0.068 0.171 0.151 0.175 0.167 0.195 0.190 0.206 0.348
NR + GG UG SHTWT -0.014 0.059 0.042 0.075 0.027 0.066 0.037 0.071 0.075 0.244
UG + NR GG VIGOR -0.011 0.054 0.032 0.049 0.050 0.061 – – 0.060 0.231
UG + NR GG MCMDS 0.374 0.325 0.377 0.341 0.372 0.374 – – 0.382 0.558
UG + NR GG DM 0.216 0.173 0.221 0.212 0.235 0.238 – – 0.244 0.666
UG + NR GG HI 0.261 0.210 0.252 0.204 0.222 0.213 – – 0.215 0.386
UG + NR GG RTWT 0.079 0.077 0.095 0.073 0.084 0.061 – – 0.063 0.320
UG + NR GG RTNO 0.132 0.096 0.130 0.110 0.113 0.097 – – 0.099 0.345
UG + NR GG SHTWT 0.154 0.110 0.163 0.160 0.145 0.156 – – 0.162 0.321
GG + UG NR VIGOR 0.054 -0.003 0.029 0.003 0.039 0.014 0.017 0.011 0.016 -0.024
GG + UG NR MCMDS 0.193 0.138 0.186 0.154 0.189 0.190 0.193 0.188 0.213 0.188
GG + UG NR DM 0.116 0.110 0.151 0.142 0.166 0.155 0.168 0.167 0.184 0.104
GG + UG NR HI 0.149 0.122 0.157 0.145 0.151 0.151 0.164 0.155 0.181 0.271
GG + UG NR RTWT 0.080 0.070 0.120 0.048 0.099 0.058 0.096 0.071 0.082 0.220
GG + UG NR RTNO 0.074 0.064 0.066 0.051 0.041 0.054 0.040 0.053 0.053 0.180
GG + UG NR SHTWT 0.094 0.089 0.107 0.088 0.107 0.099 0.112 0.106 0.119 0.169

† CVGBLUP = cross-validation GBLUP within the test population; GG, International Institute of Tropical Agriculture Genetic Gain germplasm collection; NR, National Root Crops Research Institute; UG, National Crops 
Resources Research Institute; DM, dry matter content; HI, harvest index; RTWT, root weight; RTNO, root number; SHTWT, shoot weight; MCMDS, mean cassava mosaic disease severity; VIGOR, early plant vigor.
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±	0.03).	For	MCMDS,	we	found	that	prediction	accuracy	
was	greatest	with	BayesA	and	BayesB	(Fig.	5,	Supplemen-
tal	Fig.	S10,	Supplemental	Table	S3).

Training Population Update
The	first	100	principal	components	of	the	C1	kinship	
matrix	were	used	as	predictors	for	STPGA	and	explained	
97.7%	of	the	genetic	variance.	In	all	cases,	the	genetic	
algorithm	converged	within	the	1000-iteration	run	(Sup-
plemental	Fig.	S11).

Given	the	constraints	of	breeding	programs	
described	above,	it	was	necessary	to	select	samples	of	
C1	that	were	optimized	for	predicting	the	parents	of	C2,	
rather	than	the	C2	themselves.	Despite	targeting	the	
parents	of	C2,	we	used	selected	training	sets	to	predict	
C2,	thus	simulating	the	addition	of	phenotypes	to	the	
training	set.	Because	of	this,	we	compared	the	accuracy	of	
subsets	of	C1	predicting	C2	to	the	accuracy	of	predicting	
the	parents	of	C2.	As	the	number	sampled	increased	from	
200	to	2400,	averaging	across	traits	and	methods	for	sub-
set	selection	(STPGA	and	at	random),	accuracy	increased	
by	120	and	105%	when	predicting	C2	and	the	parents	of	
C2,	respectively.	The	increase	in	accuracy	was	smaller	
when	we	included	the	709	GG	clones	in	the	prediction,	
increasing	only	by	43	and	36%	respectively	when	predict-
ing	C2	and	parents	of	C2	(Supplementary	Table	S4).

The	STPGA	approach	consistently	selected	training	
datasets	with	a	lower	expected	mean	PEV	on	the	test	set	
than	random	sampling,	across	training	set	sizes	(Supple-
mental	Fig.	S12).	Further,	using	STPGA	to	select	clones	
for	phenotyping	gave	13%	better	accuracy	on	average	
(average	accuracy	of	0.242	vs.	0.214,	two-tailed	t =	6.29,	
df	=	4458,	p	<	0.0001)	than	random	sampling.	Broken	
down	by	validation	set,	STPGA	was	significantly	better	
than	random	for	predicting	the	parents	of	C2	(t	=	9.8,	
df	=	2147,	p	<	0.0001)	but	was	not	significantly	better	for	
predicting	C2	(t	=	1.41,	df	=	2227,	p	=	0.16).

We	compared	these	accuracies	with	that	of	the	full	
set	of	C1	(or	GG	+	C1)	and	to	the	cross-validation	accu-
racy	within	the	test	set	(C1	for	prediction	of	the	parents	
of	C2,	and	C2	for	predictions	of	C2).	When	predicting	
C2,	which	was	our	primary	goal,	the	subsets	were	almost	
always	inferior	to	the	full	set,	with	the	exceptions	of	the	
middle	sizes	for	RTWT,	but	the	advantage	was	very	small	
(Fig.	6,	Supplemental	Fig.	S13).	However,	STPGA-selected	
subsets	tended	to	have	better	accuracy	than	the	full	set,	
especially	for	yield	components	when	predicting	the	
parents	of	C2,	which	were	the	genotypes	targeted	by	the	
optimization	algorithm	(Fig.	7,	Supplemental	Fig.	S14).

The	correlation	between	the	selection	criterion	
(mean	PEV)	used	by	STPGA	and	the	training	set	size	is	
strong	for	all	traits	(range	=	-0.57	to	-0.61).	Aside	from	

Fig. 5. Plot of cross-generation prediction accuracies. Seven genomic prediction methods were tested for seven traits (panels). For each 
model (colors, x-axis within panels), four predictions were made: Genetic Gain (GG) predicting Cycle 1 (C1), GG predicting (Cycle 2) 
C2, C1 predicting C2, and GG + C1 predicting C2, indicated by shapes. All data are from the International Institute for Tropical Agri-
culture (IITA) genomic selection program. DM, dry matter content; HI, harvest index; RTWT, root weight; RTNO, root number; SHTWT, 
shoot weight; MCMDS, mean cassava mosaic disease severity; VIGOR, early plant vigor.
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simply	increasing	the	TP	size,	we	wanted	to	assess	the	
extent	to	which	the	mean	PEV	could	be	used	as	a	pre-
dictor	of	the	achievable	accuracy.	Regression	of	predic-
tion	accuracies	for	each	sample	(regardless	of	whether	
it	was	selected	randomly	or	by	STPGA)	on	mean	PEV	
explained	between	8%	(RTNO)	and	46%	(DM)	of	the	
variance	in	accuracy.	Multiple	regression	including	mean	
PEV	and	training	set	size	as	predictors	showed	PEV	to	be	
the	more	significant	predictor	(across	all	traits).	In	fact,	
training	set	size	was	not	a	significant	explanatory	vari-
able	for	RTWT	or	RTNO	(Supplemental	Table	S5).

Discussion
The	Next	Generation	Cassava	Breeding	Project	(www.
nextgencassava.org,	accessed	15	Aug.	2017)	aims	to	assess	
the	potential	of	genomic	selection	in	cassava	to	reduce	the	
length	of	the	breeding	cycle	and	increase	the	number	of	
crosses	and	selections	per	unit	of	time.	The	project	is	imple-
menting	GS	in	three	breeding	programs	from	Nigeria	and	
Uganda,	with	genotypic	and	phenotypic	data	from	TPs	and	
two	cycles	of	selection	available	on	a	database	dedicated	to	
cassava	(www.cassavabase.org,	accessed	15	Aug.	2017).

Using	a	cross-validation	scheme,	we	contrasted	the	per-
formance	of	GBLUP,	RKHS	(single-kernel	and	multikernel),	
BayesA,	BayesB,	BayesCpi,	Bayesian	LASSO,	and	RF	for	
yield	components	(RTWT,	RTNO,	SHTWT,	HI,	and	DM)	
and	CMD	resistance	data	from	the	breeding	programs.

In	general,	the	performance	of	predictive	models	is	
known	to	be	conditional	on	the	genetic	architecture	of	
the	trait	under	consideration	(Daetwyler	et	al.,	2010;	Su	
et	al.,	2014).	Although	nonadditive	models,	including	
RF	and	RKHS,	capture	dominance	and	epistasis	effects,	
GBLUP	is	more	suitable	for	prediction	when	traits	are	
determined	by	an	infinite	number	of	unlinked	and	non-
epistatic	loci,	with	small	effects.

Not	surprisingly,	heritability	varied	between	popula-
tions,	conceivably	as	a	consequence	of	the	differences	in	
the	number	and	design	of	field	trials	among	breeding	pro-
grams.	For	most	traits,	it	is	not	possible	to	determine	the	
reason	for	differences	in	heritability	exactly.	However,	for	
DM,	we	can	hypothesize	that	the	difference	in	phenotyping	
protocols	between	programs	(the	specific	gravity	method	
at	NRCRI	and	NaCRRI	versus	oven	drying	at	IITA)	could	
account	for	the	observed	differences.	We	note	the	estimate	
of	zero	heritability	for	RTWT,	RTNO,	and	SHTWT	in	the	

Fig. 6. The relationship between training set size and the accuracy of predicting the International Institute for Tropical Agriculture Cycle 
2 (C2) (across generations). The accuracy of prediction for seven traits (panels) with the IITA Genetic Gain (GG) population training 
data plus data from different sized subsets (x-axis) of their progeny, Cycle 1 (C1) is shown. Subsets of a given size were selected either 
at random or with the genetic algorithm implemented in the R package STPGA. Ten random and 10 STPGA-selected subsets were 
made for each training set size. Error bars are the SE around the mean for the ten samples. Horizontal black lines show the mean cross-
validation accuracy for C2 (validation set; solid line) and the accuracy of the full set of GG + C1 predicting C2 (dashed line). DM, dry 
matter content; HI, harvest index; RTWT, root weight; RTNO, root number; SHTWT, shoot weight; MCMDS, mean cassava mosaic dis-
ease severity; VIGOR, early plant vigor.

www.nextgencassava.org
www.nextgencassava.org
http://www.cassavabase.org
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IITA	C2	and	acknowledge	this	is	likely	to	account	for	the	
quality	of	cross-generation	prediction	in	that	dataset.

The	cross-validation	results	were	mostly	consistent	
across	breeding	programs	and	the	superiority	of	one	
prediction	method	over	the	others	was	trait-dependent.	
Random	Forest	and	RKHS	usually	predicted	phenotypes	
more	accurately	for	yield-related	traits,	which	are	known	
to	have	a	significant	amount	of	nonadditive	genetic	
variation	(Wolfe	et	al.,	2016a).	Similar	findings	have	been	
made	in	wheat	(Triticum aestivum	L.)	for	grain	yield,	an	
additive	and	epistatic	trait,	in	which	RKHS,	radial	basis	
function	neural	networks,	and	Bayesian	regularized	neu-
ral	networks	models	clearly	had	a	better	predictive	ability	
than	additive	models	like	BL,	Bayesian	ridge-regression,	
BayesA,	and	BayesB	(Perez-Rodriguez	et	al.,	2013).

Though	the	cross-validation	results	within	the	
breeding	programs	are	encouraging	for	the	use	of	GS,	
prediction	values	across	breeding	programs	were	fairly	
low.	Mean	FST	values	were	low	(less	than	0.05),	indicating	
that	the	three	breeding	populations	share	genetic	mate-
rial.	Despite	this,	our	results	indicate	that	the	prospect	
for	sharing	data	across	Africa	to	assist	in	GS	is	limited	to	
certain	traits	(most	notably	MCMDS)	and	populations.	

Indeed,	obtaining	a	larger	training	set	by	combining	TP	
did	not	always	lead	to	higher	prediction	accuracies	than	
what	could	already	be	achieved	within	that	population,	
as	shown	by	the	cross-validation	results.

In	animal	models,	prediction	with	multibreed	popu-
lations	has	also	been	shown	to	be	poor,	with	most	of	
the	observed	accuracy	caused	by	population	structure	
(Daetwyler	et	al.,	2012).	An	alternative	kernel	function	
has	been	proposed	to	estimate	the	covariance	between	
individuals	based	on	markers,	which	can	improve	the	
fit	to	the	data	to	account	for	the	genetic	heterogeneity	of	
breeding	populations	(Heslot	and	Jannink,	2015).

Conceivably,	in	our	study,	the	addition	of	individuals	
from	different	breeding	programs	was	detrimental	caused	
by	the	inconsistent	heritability	of	most	traits.	Another	pos-
sibility	is	genotype	×	environment	interaction.	The	impact	
of	genotype	×	environment	interactions	on	predictive	accu-
racy	has	been	reported	in	wheat	when	the	same	population	
was	evaluated	in	different	environments	(Crossa	et	al.,	
2010;	Endelman,	2011).	Similarly,	in	cassava	with	historical	
data	from	the	IITA’s	GG	population,	prediction	across	loca-
tions	led	to	a	decrease	in	accuracy	(Ly	et	al.,	2013).

Fig. 7. The relationship between training set size and the accuracy of predicting the parents of Cycle 2 (C2) [from Cycle 1 (C1), within-
generation). The accuracy of the predictions for seven traits (panels) with the International Institute for Tropical Agriculture Genetic Gain 
(GG) population training data plus data from different sized subsets (x-axis) of their progeny, Cycle 1 is shown. Subsets of a given 
size were selected either at random or with the genetic algorithm implemented in the R package STPGA. Ten random and 10 STPGA-
selected subsets were made for each training set size. Error bars are the SE around the mean for the 10 samples. Horizontal black lines 
show the mean cross-validation accuracy for C1 (validation set; solid line) and the accuracy of the full set of GG + C1 predicting the 
parents of C2 (dashed line). DM, dry matter content; HI, harvest index; RTWT, root weight; RTNO, root number; SHTWT, shoot weight; 
MCMDS, mean cassava mosaic disease severity; VIGOR, early plant vigor.
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Using	the	training	sets	selected	based	on	an	optimized	
algorithm	gave	better	predictive	ability	than	randomly	
assigned	samples	but	showed	a	decrease	in	accuracy	
when	compared	with	the	GBLUP	cross-validation	results.	
Although	in	previous	studies,	the	predictive	accuracies	
with	full	sets	were	lower	than	those	obtained	with	opti-
mized	subsets	(Rutkoski	et	al.,	2015),	in	our	study,	we	found	
the	opposite,	indicating	that	a	larger	training	set	was	more	
advantageous.	Combining	data	from	different	experiments	
and	populations	for	cross-population	prediction	remains	
promising	for	traits	like	CMD,	where	the	GWAS	results	
indicate	a	stable	large-effect	quantitative	trait	loci	through-
out	the	tested	breeding	populations	(Wolfe	et	al.,	2016b).

When	predicting	unevaluated	progenies	from	the	
next	generation	(cross-generation	prediction),	our	results	
indicated,	in	our	judgment,	that	accuracy	should	be	suf-
ficient	for	DM,	MCMDS,	and,	to	a	lesser	extent,	HI	(Fig.	5).	
Although	accuracy	is	stable	across	the	generations	tested	
for	DM	with	most	models,	for	MCMDS	to	be	successful,	
we	recommend	using	a	Bayesian	shrinkage	model	such	
as	BayesA	or	BayesB.	The	advantage	of	these	models	over	
GBLUP	for	CMD	resistance	probably	arises	because	of	the	
major	known	quantitative	trait	loci	segregating	in	the	popu-
lation	(Rabbi	et	al.,	2014;	Wolfe	et	al.,	2016a)	and	the	ability	
of	these	two	models	to	allow	differential	contributions	of	
markers	near	the	quantitative	trait	loci	to	the	prediction.	
One	disadvantage	of	BayesB,	in	particular,	is	that	the	known	
polygenic	background	resistance	for	CMD	may	become	de-
emphasized	in	favor	of	heavy	selection	on	the	major	effect	
gene(s)	(Hahn	et	al.,	1980;	Legg	and	Thresh,	2000;	Akano	et	
al.,	2002;	Rabbi	et	al.,	2014;	Wolfe	et	al.,	2016b).

We	noted	that	RF	and	RKHS	performed	poorly	across	
generations;	this	is	a	result	that	makes	sense,	given	that	
the	predictability	of	epistatic	and	dominant	interactions	
declines	with	recombination	(Lynch	and	Walsh,	1998).

On	the	basis	of	the	datasets	analyzed	in	this	study,	it	
was	apparent	that	the	size	of	a	TP	had	a	significant	impact	
on	prediction	accuracy	for	most	traits.	Thus	breeding	
programs	will	benefit	from	phenotyping	the	maximum	
possible	amount.	In	agreement	with	the	results	in	other	
crops	(Rincent	et	al.,	2012;	Akdemir	et	al.,	2015;	Isidro	et	
al.,	2015),	our	results	indicate	that	optimization	algorithms	
like	STPGA	can	provide	at	least	a	small	advantage	over	
random	selection	of	materials	for	phenotyping.

Each	breeding	program	will	need	to	determine	the	
amount	of	phenotyping	vs.	genotyping	to	do	to	maximize	
prediction	accuracy	and	selection	gain	based	on	the	cost	
and	availability	of	land,	labor,	and	genotyping.	An	analysis	
in	barley	(Hordeum vulgare	L.)	by	Endelman	et	al.	(2014)	
provides	a	good	example	of	the	potential	complexity	of	
these	decisions.	The	authors	show,	as	we	do,	that	having	a	
larger	number	of	phenotyped	individuals	is	always	benefi-
cial,	and	that	it	is	usually	beneficial	to	focus	on	evaluating	
new	lines	at	the	expense	of	additional	phenotyping	of	old	
lines.	However,	if	genotyping	costs	are	high,	the	cost–ben-
efit	balance	shifts	toward	more	evaluation	of	the	existing	
lines	(Endelman	et	al.,	2014).	Endelman	et	al.’s	(2014)	study	
focused	on	prediction	in	biparental	populations.	Although	

this	is	likely	to	apply	to	cassava	breeding	populations,	
we	stress	the	necessity	of	doing	such	an	analysis	for	each	
breeding	application separately.

An	important	result	is	that	STPGA	was	able	to	find	
subsets	that	were	better	than	the	full	set	for	predicting	
the	parents	of	C2.	The	parents	of	C2	are	members	of	
C1	and	were	the	individuals	targeted	by	STPGA.	One	
possible	interpretation	is	that	the	benefit	comes	from	
phenotyping	members	of	the	same	generation.	If	that	
were	true,	we	could	make	a	significant	difference	in	accu-
racy	by	phenotyping	a	subset	of	clones	from	the	current	
generation	before	predicting	GEBV	for	the	entire	set	of	
selection	candidates.	To	do	this	without	lengthening	
the	selection	and	recombination	cycle,	harvested	stems	
would	need	to	be	stored	long	enough	for	phenotypic	data	
to	be	curated,	predictions	and	selections	to	be	conducted,	
and	STPGA	to	be	run.	Methods	of	storing	cassava	stakes	
for	up	to	30	d	are	available,	indicating	that	such	a	scheme	
could	be	possible	(Sungthongw	et	al.,	2016).	Even	without	
improved	stem	cutting	storage,	this	could	be	done	while	
only	lengthening	the	selection	and	recombination	cycle	
to	perhaps	1.5	to	2	yr,	which	would	still	be	significantly	
faster	than	conventional	cassava	breeding.

A	related	possibility	is	to	place	annual	selection	pres-
sure	on	traits	that	are	predictable	across	generation	(e.g.,	
MCMDS,	HI,	and	DM).	Predictions	of	total	genetic	value	
for	yield	traits	for	selection	of	clones	that	will	be	tested	as	
potential	varieties	could	then	be	done	after	clonal	evalua-
tion	data	become	available	on	at	least	a	subset	of	contem-
porary	genotypes.	Further	trials	will	be	necessary	to	deter-
mine	whether	there	is	an	advantage	to	this	type	of	strategy.

The	primary	promise	GS	offers	to	cassava	breeding	
is	the	ability	to	select	and	recombine	germplasm	more	
frequently	and	thus	hopefully	speed	the	rate	of	popula-
tion	improvement	while	combining	a	myriad	of	quality,	
disease,	and	yield-related	traits	into	a	single	genotype	
that	can	be	released	as	a	variety.	The	applicability	of	the	
results	from	the	different	prediction	models	in	cassava	is	
then	dependent	on	whether	the	goal	is	the	prediction	of	
breeding	values	of	progeny	or	the	selection	of	advanced	
lines	for	testing	as	varieties.

We	are	still	in	the	early	stages	of	GS	in	this	crop,	but	
the	results	are	promising,	at	least	for	some	traits.	The	
TPs	need	to	continue	to	grow	and	quality	phenotyping	is	
more	critical	than	ever.	However,	general	guidelines	for	
successful	GS	are	emerging.	Phenotyping	can	be	done	on	
fewer	individuals,	cleverly	selected,	making	for	trials	that	
are	more	focused	on	the	quality	of	the	data	collected.

Supplemental Information
Supplemental	File	S1:	Supplementary	methods	describing	

the	details	of	the	field	trial	design.
Supplemental	Table	S1:	Details	of	the	prediction	scenarios	

tested	using	different	sized	subsets	of	the	IITA	Cycle	1.
Supplemental	Table	S2:	Cross-population	prediction	results.	

(A)	Cross-population	results	of	seven	prediction	models	
for	the	combined	datasets	(full	set	model).	CVGBLUP,	
cross-validation	GBLUP	results	within	training	
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populations.	Bold	italic	typeface	indicates	the	highest	
predictive	accuracy	across	prediction	models.(B)	Cross-
population	results	for	STPGA-optimized	and	at	random	
with	the	GBLUP	model.	GG,	IITA	genetic	gain;	NR,	
National	Root	Crops	Research	Institute;	UG,	National	
Crops	Resources	Research	Institute;	DM,	dry	matter	
content;	HI,	harvest	index;	RTWT,	root	weight;	RTNO,	
root	number;	SHTWT,	shoot	weight;	MCMDS,	mean	
cassava	mosaic	disease	severity;	VIGOR,	early	plant	vigor.

Supplemental	Table	S3:	Raw	accuracies	from	cross-generation	
predictions.	Accuracy	levels	from	each	combination	of	
training	set	and	validation	set	tested.	Data	from	each	trait	
are	given	in	the	rows	and	those	for	each	model	are	shown	
in	the	columns.

Supplemental	Table	S4:	Mean	and	standard	error	accuracies	
and	PEV	means	for	seven	traits	are	shown.	There	were	
four	combinations	of	training	and	test	sets	and	two	
different	subset	selection	methods	(random	vs.	STPGA)	
considered.	DM,	dry	matter	content;	HI,	harvest	index;	
RTWT,	root	weight;	RTNO,	root	number;	SHTWT,	
shoot	weight;	MCMDS,	mean	cassava	mosaic	disease	
severity;	VIGOR,	early	plant	vigor;	C1,	Cycle	1;	C2,	Cycle	
2;	PofC2,	parents	of	C2.

Supplemental	Table	S5:	The	results	from	two	regressions	are	
shown.	The	top	table	shows	the	results	from	a	multiple	
regression	in	which	the	mean	PEV	and	the	training	set	
size	were	used	as	competing	predictors	of	the	accuracy	
achieved	by	different	sized	subsets	for	each	trait	
respectively.	The	bottom	table	is	a	similar	regression	with	
only	a	single	predictor,	the	mean	PEV.	In	the	multiple	
regression,	predictors	were	mean-centered	and	scaled	to	
unit	variance.

Supplemental	Fig.	S1:	Population	genetic	structure	of	the	
datasets	analyzed	in	this	study,	illustrated	by	plotting	
the	first	two	components	(PCs),	following	a	principal	
component	analysis	(PCA)	of	the	genetic	relationship	
matrix.	The	training	populations	for	each	breeding	
institute’s	genomic	selection	program	are	compared	on	
the	left	(A).	The	breeding	cycles	(genetic	gain,	Cycle	1	
and	Cycle	2)	from	the	IITA	genomic	selection	program	
are	contrasted	on	the	right	(B).

Supplemental	Fig.	S2:	Histogram	of	the	kinship	coefficients	
[off-diagonals	of	the	genomic	relationship	matrix	(GRM)]	
on	left	and	inbreeding	values	(diagonals	of	the	GRM)	
on	the	right	for	all	five	datasets	analyzed	in	this	study.	
The	GRM	was	constructed	for	each	dataset	separately	
with	markers	with	>1%	minor	allele	frequency.	IITA,	
International	Institute	of	Tropical	Agriculture;	GG,	IITA	
genetic	gain;	C1,	IITA	Cycle	1;	C2,	IITA	Cycle	2;	NR,	
National	Root	Crops	Research	Institute;	UG,	National	
Crops	Research	Resources	Institute.

Supplemental	Fig.	S3:	GS	cross-validation	accuracies	in	the	
NaCRRI	dataset. Fivefold	cross-validation	results	are	
shown	for	seven	traits	measured	with	GBLUP,	RKHS	
(GAUSS_K0.01,	single	RKHS	kernel;	MultiKernelGauss,	
and	multikernel	RKHS),	BayesA,	BayesB,	BayesC,	
Bayesian	Lasso	(BL),	and	Random	Forest.	DM,	dry	matter	
content;	HI,	harvest	index;	RTWT,	root	weight;	RTNO,	

root	number;	SHTWT,	shoot	weight;	MCMDS,	mean	
cassava	mosaic	disease	severity;	VIGOR,	early	plant	vigor.

Supplemental	Fig.	S4:	GS	cross-validation	accuracies	
in	the	NRCRI	dataset. Fivefold	cross-validation	
results	are	shown	for	seven	traits	with	GBLUP,	RKHS	
(GAUSS_K0.01,	single	RKHS	kernel;	MultiKernelGauss,	
multikernel	RKHS),	BayesA,	BayesB,	BayesC,	Bayesian	
Lasso	(BL),	and	Random	Forest.	DM,	dry	matter	content;	
HI,	harvest	index;	RTWT,	root	weight;	RTNO,	root	
number;	SHTWT,	shoot	weight;	MCMDS,	mean	cassava	
mosaic	disease	severity;	VIGOR,	early	plant	vigor.

Supplemental	Fig.	S5:	GS	cross-validation	accuracies	in	
the	Genetic	Gain	dataset.	Fivefold	cross-validation	
results	are	shown	for	seven	traits	with	GBLUP,	RKHS	
(GAUSS_K0.01,	single	RKHS	kernel;	MultiKernelGauss,	
multikernel	RKHS),	BayesA,	BayesB,	BayesC,	Bayesian	
Lasso	(BL),	and	Random	Forest.	DM,		dry	matter	content;	
HI,	harvest	index;	RTWT,	root	weight;	RTNO,	root	
number;	SHTWT,	shoot	weight;	MCMDS,	mean	cassava	
mosaic	disease	severity;	VIGOR,	early	plant	vigor.

Supplemental	Fig.	S6:	Hierarchical	clustering	of	genomic	
prediction	models	based	on	the	cross-validated	genomic	
estimated	breeding	values	(GEBVs).	Height	on	the	
y-axis	refers	to	the	value	of	the	dissimilarity	criterion.	
Clustering	of	the	prediction	models	in	the	combined	
results	for	all	populations	is	shown.	GBLUP,	genomic	
best	linear	unbiased	predictor;	BL,	Bayesian	Lasso;	RF,	
Random	Forest;	RKHS,	reproducing	kernel	Hilbert	
space	(multikernel	model).

Supplemental	Fig.	S7:	Cross-population	prediction	of	UG,	
showing	the	accuracy	of	the	predictions	for	seven	traits	
with	the	combined	NR	+	GG	population	training	data.	
Subset	sizes	(x-axis)	were	selected	either	at	random	or	by	
using	the	genetic	algorithm	implemented	in	the	R	package	
STPGA.	Ten	random	and	10	STPGA-selected	subsets	were	
made	at	each	training	set	size.	Error	bars	are	the	SE	around	
the	mean	for	the	10	samples.	Horizontal	lines	show	the	
mean	cross-validation	accuracy	for	the	UG	population	
(validation	set,	orange	line)	and	the	accuracy	of	the	full	NR	
+	GG	set	predicting	the	UG	population	(red	line).

Supplemental	Fig.	S8:	Cross-population	prediction	of	NR,	
showing	the	accuracy	of	the	predictions	for	seven	traits	
with	the	combined	UG	+	GG	population	training	data.	
Subsets	sizes	(x-axis)	were	selected	either	at	random	or	by	
using	the	genetic	algorithm	implemented	in	the	R	package	
STPGA.	Ten	random	and	10	STPGA-selected	subsets	were	
made	at	each	training	set	size.	Error	bars	are	the	SE	around	
the	mean	for	the	10	samples.	Horizontal	lines	show	the	
mean	cross-validation	accuracy	for	the	NRCRI	population	
(validation	set,	orange	line)	and	the	accuracy	of	the	full	UG	
+	GG	set	predicting	the	NR	population	(red	line).

Supplemental	Fig.	S9:	Cross-population	prediction	of	GG,	
showing	the	accuracy	of	prediction	for	seven	traits	with	
the	combined	NR	+	UG	population	training	data.	Subset	
sizes	(x-axis)	were	selected	either	at	random	or	by	using	the	
genetic	algorithm	implemented	in	the	R	package	STPGA.	
Ten	random	and	10	STPGA-selected	subsets	were	made	
at	each	training	set	size.	Error	bars	are	the	SE	around	the	
mean	for	the	10	samples.	Horizontal	lines	show	the	mean	
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cross-validation	accuracy	for	the	GG	population	(validation	
set,	orange	line)	and	the	accuracy	of	the	full	NR	+	UG	set	
predicting	the	GG	population	(red	line).

Supplemental	Fig.	S10:	Cross-generation	prediction	accuracies. 
In	the	IITA	genomic	selection	dataset,	there	are	three	
generations	of	clones:	the	genetic	gain	(GG),	their	progeny	
in	Cycle	1	(C1),	and	C1’s	progeny,	Cycle	2	(C2).		For	each	
of	seven	traits	(rows)	and	seven	prediction	models	(x-axis,	
colors),	we	made	four	cross-generation	predictions	
(columns):	GG	predicting	C1,	GG	predicting	C2,	C1	
predicting	C2,	and	GG	+	C1	predicting	C2.	DM,	dry	matter	
content;	HI,	harvest	index;	RTWT,	root	weight;	RTNO,	root	
number;	SHTWT,	shoot	weight;	MCMDS,	mean	cassava	
mosaic	disease	severity;	VIGOR,	early	plant	vigor.

Supplemental	Fig.	S11:	Convergence	of	the	genetic	
algorithm	implemented	in	the	R	package	STPGA.		Plot	
of	the	optimization	criterion	(mean	PEV,	y-axis)	versus	
the	iteration	of	the	genetic	algorithm	(x-axis)	across	
training	sample	sizes	(panels).	Samples	were	drawn	from	
the	IITA	Cycle	1	(C1),	excluding	the	parents	of	Cycle	2	
(PofC2).	The	algorithm	was	set	to	find	the	smallest	mean	
PEV	with	the	PofC2	as	the	test	(validation)	set	and	a	
sample	of	C1	as	the	training	set.	Ten	runs	of	the	genetic	
algorithm	are	shown	in	different	colored	lines.

Supplemental	Fig.	S12:	Does	STPGA	find	lower	mean	PEV	
across	sample	sizes	than	random	selection?	The	size	of	
training	samples	used	in	four	prediction	scenarios	(rows)	
is	plotted	against	the	mean	PEV	of	the	subset	for	every	
trait	and	each	of	10	samples	elected	either	by	the	genetic	
algorithm	implemented	in	the	R	package	STPGA	(red)	
or	randomly	(blue).	The	actual	mean	PEV	and	number	of	
training	samples	are	plotted	here,	with	variations	from	
planned	sample	sizes	and	PEV	means	initially	expected	
because	of	missing	data	for	some	traits	or	individuals.	
The	genetic	algorithm	implemented	by	STPGA	was	run	
10	times.	The	validation	set	target	for	the	optimization	
algorithm	were	the	parents	of	IITA’s	Cycle	2	(PofC2)	and	
the	training	sets	were	samples	of	differing	size	of	the	IITA	
Cycle	1	(C1).	Predictions	were	made	either	with	samples	
of	C1	only	(Rows	1	and	2)	or	with	samples	of	C1	plus	the	
entire	GG	(Rows	3	and	4).	Validation	sets	were	either	the	
PofC2	(Rows	1	and	3)	or	the	C2	(Rows	2	and	4).	

Supplemental	Fig.	S13:	The	relationship	between	training	
set	size	and	accuracy	predicting	IITA	Cycle	2	(across	
generations).	The	accuracy	of	prediction	for	seven	
traits	(panels)	with	different	sized	subsets	(x-axis)	of	
IITA	Cycle	1	(C1)	is	shown.	Subsets	of	a	given	size	were	
selected	either	at	random	or	with	the	genetic	algorithm	
implemented	in	the	R	package	STPGA.	Ten	random	and	
10	STPGA-selected	subsets	were	made	at	each	training	
set	size.	Error	bars	are	the	SE	around	the	mean	for	
the	10	samples.	Horizontal	black	lines	show	the	mean	
cross-validation	accuracy	for	Cycle	2	(C2,	validation	
set;	solid	line)	and	the	accuracy	of	the	full	set	of	GG	+	
C1	predicting	C2	(dashed	line).	GBLUP	was	used	for	all	
predictions.	DM,		dry	matter	content;	HI,	harvest	index;	
RTWT,	root	weight;	RTNO,	root	number;	SHTWT,	
shoot	weight;	MCMDS,	mean	cassava	mosaic	disease	
severity;	VIGOR,	early	plant	vigor.

Supplemental	Fig.	S14:	The	relationship	between	training	
set	size	and	the	accuracy	of	predicting	the	parents	
of	Cycle	2	(C2)	from	Cycle	1	(C1)	(within-generation	
prediction).	The	accuracy	of	prediction	for	seven	traits	
(panels)	with	different	sized	subsets	(x-axis)	of	the	IITA	
C1	is	shown.	Subsets	of	a	given	size	were	selected	either	
at	random	or	with	the	genetic	algorithm	implemented	
in	the	R	package	STPGA.	Ten	random	and	10	STPGA-
selected	subsets	were	made	at	each	training	set	size.	
Error	bars	are	the	SE	around	the	mean	for	the	10	
samples.	Horizontal	black	lines	show	the	mean	cross-
validation	accuracy	for	the	C1	(validation	set;	solid	line)	
and	the	accuracy	of	the	full	set	of	GG	+	C1	predicting	
the	parents	of	C2	(dashed	line).	GBLUP	was	used	for	all	
predictions.	DM,	dry	matter	content;	HI,	harvest	index;	
RTWT,	root	weight;	RTNO,	root	number;	SHTWT,	
shoot	weight;	MCMDS,	mean	cassava	mosaic	disease	
severity;	VIGOR,	early	plant	vigor.
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