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Regional Heritability Mapping Provides Insights  
into Dry Matter Content in African White  
and Yellow Cassava Populations

Uche Godfrey Okeke, Deniz Akdemir, Ismail Rabbi, Peter Kulakow, and Jean-Luc Jannink*

ABSTRACT

The HarvestPlus program for cassava (Manihot esculenta Crantz) 
fortifies cassava with β-carotene by breeding for carotene-rich 
tubers (yellow cassava). However, a negative correlation between 
yellowness and dry matter (DM) content has been identified. We 
investigated the genetic control of DM in white and yellow cassava. 
We used regional heritability mapping (RHM) to associate DM with 
genomic segments in both subpopulations. Significant segments 
were subjected to candidate gene analysis and candidates were 
validated with prediction accuracies. The RHM procedure was 
validated via a simulation approach and revealed significant 
hits for white cassava on chromosomes 1, 4, 5, 10, 17, and 18, 
whereas hits for the yellow were on chromosome 1. Candidate gene 
analysis revealed genes in the carbohydrate biosynthesis pathway 
including plant serine–threonine protein kinases (SnRKs), UDP 
(uridine diphosphate)-glycosyltransferases, UDP-sugar transporters, 
invertases, pectinases, and regulons. Validation using 1252 unique 
identifiers from the SnRK gene family genome-wide recovered 50% 
of the predictive accuracy of whole-genome single nucleotide 
polymorphisms for DM, whereas validation using 53 likely genes 
(extracted from the literature) from significant segments recovered 
32%. Genes including an acid invertase, a neutral or alkaline 
invertase, and a glucose-6-phosphate isomerase were validated on 
the basis of an a priori list for the cassava starch pathway, and also 
a fructose-biphosphate aldolase from the Calvin cycle pathway. 
The power of the RHM procedure was estimated as 47% when 
the causal quantitative trait loci generated 10% of the phenotypic 
variance (sample size = 451). Cassava DM genetics are complex 
and RHM may be useful for complex traits. 

Cassava currently ranks as the sixth world staple 
crop consumed by more than 500 million people in 

Africa, Asia, and South America (El-Sharkawy, 2003). 
It was originally a perennial shrub but is cultivated now 
as an annual for its starchy root (El-Sharkawy, 2003). 
It is an outbreeding species and considered to be an 
amphidiploid or sequential allopolyploid (El-Sharkawy, 
2003). The crop is clonally propagated by mature woody 
stem cuttings called stakes, which are 15 to 30 cm long 
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Core Ideas

•	 Regional heritability mapping (RHM) is effective for 
understanding the genetic architecture of complex 
traits in cassava.

•	 Prediction accuracies can reflect the impact of genomic 
segments on cassava dry matter (DM) content.

•	 Serine–threonine protein kinases (SnRKs) are 
candidates positionally associated with cassava DM.

•	 The prediction accuracy of SnRKs for cassava DM 
was 50% of the total accuracy from genome-wide 
single nucleotide polymorphisms.
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and planted mostly inclined on ridged soils (Keating 
et al., 1988). Botanical seeds are used mainly in breed-
ing programs with up to three seeds produced per pod 
(Iglesias et al., 1994, Iglesias and Hershey, 1991). Storage 
roots are generally harvested 7 to 24 mo after planting 
(El-Sharkawy, 2003). Dry matter is the major product 
from cassava roots apart from moisture and traces of 
water-soluble vitamins and pigments (Holleman and 
Aten, 1956; Barrios and Bressani, 1967; Lim, 1968). On 
average, cassava DM is made up of about 90% carbohy-
drates (mainly starch), 2% protein, 1% fat, 3% minerals 
and ash, and 4% fiber (Holleman and Aten, 1956; Barrios 
and Bressani, 1967; Lim, 1968). This starch deposit makes 
cassava attractive for the food industry and other indus-
tries that rely heavily on starch as their primary raw 
material (Lim, 1968). The value of cassava derives from 
a combination of fresh root yield and the percentage of 
DM that can be extracted from fresh roots, referred to 
as dry yield. Fresh cassava roots with a high DM con-
tent are also preferred by local farmers and processors 
(Kawano et al., 1987; Safo-Kantanka and Owusu-Nipah, 
1992; Enidiok et al., 2008), who transform cassava roots 
into valuable staples consumed by many in developing 
countries. With 263 million metric tons produced in 
2012 (Food and Agriculture Organization of the United 
Nations, 2013), cassava has become an indispensable sta-
ple in the world and improvement of cassava for high dry 
yield is needed. This improvement should also endeavor 
to increase micronutrient content, as it is much needed 
in the cassava-consuming regions of the world. Biofor-
tification is a successful genetic improvement technique 
for increasing micronutrient content in staple crops 
(Meenakshi et al., 2010; Bouis et al., 2011) and represents 
a promising approach for solving the problem of micro-
nutrient malnutrition around the world (Meenakshi et 
al., 2007, 2010; Pfeiffer and McClafferty, 2007).

The target of biofortification is to increase the con-
tent of essential micronutrients such as iron, zinc, and 
Vitamin A (Meenakshi et al., 2007, 2010; Pfeiffer and 
McClafferty, 2007), hence improving the health of mil-
lions of people who depend on these staples for daily 
nutrition. The biofortification process is facilitated by 
plant breeding (Meenakshi et al., 2010; Bouis et al., 
2011). Since the early 2000s, the HarvestPlus initia-
tive (Meenakshi et al., 2007; Pfeiffer and McClafferty, 
2007) has been tasked with biofortification of staple 
crops including cassava, sweet potato [Ipomoea batatas 
(L.) Lam.], maize (Zea mays L.), rice (Oryza sativa L.), 
and wheat (Triticum aestivum L.). Biofortification of 
cassava is geared toward breeding varieties contain-
ing increased levels of Provitamin A, or β-carotene, 
a precursor for Vitamin A. The so-called ‘yellow cas-
sava’ (Liu et al., 2010; HarvestPlus, 2009; Aniedu and 
Omodamiro, 2012; La Frano et al., 2013) is designed to 
address public health issues including child mortality, 
impaired vision and night blindness, reduced immunity 
to diseases, and other consequences of vitamin A defi-
ciency (Liu et al., 2010; HarvestPlus, 2009).

Breeding for the required levels of Provitamin A 
necessitates the accumulation of β-carotene in cas-
sava roots (Aniedu and Omodamiro, 2012; La Frano 
et al., 2013). Many breeding programs use yellow flesh 
color as a proxy for measuring the β-carotene levels 
in cassava despite the fact that yellowness is more of an 
indication of total carotenoids in the root (Chávez et 
al., 2005; Ssemakula et al., 2007; Akinwale et al., 2010). 
This protocol is used to visually preselect lines contain-
ing β-carotenoids prior to quantification of different 
carotenoid levels with high-performance liquid chroma-
tography protocols (Kimura et al., 2007; Adewusi and 
Bradbury, 1993). Breeding for farmer-preferred bioforti-
fied cassava involves the development of high yielding 
clones with high DM and high β-carotene accumulation 
in a single clone or variety (Ceballos et al., 2004; Raji 
et al., 2007). Incorporating all these characteristics in a 
single variety of cassava makes for a challenging breed-
ing task. Some studies have shown that there is a negative 
genetic correlation between DM and yellow root flesh 
color in cassava, making this breeding task even more 
challenging, since the target is toward full adoption of 
Provitamin A varieties by local farmers and processors 
(Akinwale et al., 2010; Vimala et al., 2009). It is therefore 
useful to understand the genetic control of DM content 
and β-carotene accumulation in cassava to facilitate the 
breeding of farmer-preferred varieties.

Regional heritability mapping is a relatively new 
procedure for identifying loci affecting quantitative traits 
(Nagamine et al., 2012; Riggio and Pong-Wong, 2014; 
Riggio et al., 2013; Shirali et al., 2015). Unlike single-
marker genome-wide association analysis (GWAS) meth-
ods, which the lack power to detect rare genetic variants 
(Bodmer and Tomlinson, 2010; Gibson, 2012; Wood 
et al., 2014), RHM can capture both rare and common 
genetic variants, giving it more power to identify loci 
that cannot be detected by standard GWAS (Nagamine 
et al., 2012; Riggio and Pong-Wong, 2014; Riggio et al., 
2013). Regional heritability mapping has been shown to 
detect both common and rare genetic variants implicated 
in disease traits in human genomics (Shirali et al., 2015; 
Uemoto et al., 2013; Zeng et al., 2016) and recently in 
tree genomics (Resende et al., 2017). Regional heritability 
mapping is a suitable method for capturing the effect of a 
genomic block or segment, since it can identify genomic 
segment–trait associations for regions spanning multiple 
loci (Nagamine et al., 2012; Riggio and Pong-Wong, 2014; 
Riggio et al., 2013; Caballero et al., 2015). A multimarker 
mapping approach like RHM may identify both common 
and rare variants involved in the expression of DM in 
white and yellow subpopulations of African cassava. To 
the best of our knowledge, this is the first attempt to use 
the RHM procedure in an annual crop.

The objectives of this study were:
1. To understand the genetic basis of DM in white- and 

yellow-rooted African cassava populations; and
2. To determine the power of the RHM procedure to 
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detect genomic segments carrying quantitative 
trait loci via the “hide a causal single nucleotide 
polymorphism (SNP)” procedure.

MATERIALS AND METHODS

Cassava Phenotypic Data for Discovery
We used phenotypic data collected from the Genetic Gain 
(GG) population trials conducted by the cassava breeding 
program at the IITA, Ibadan, Nigeria for our analysis. The 
GG population (713 clones) is an elite population bred from 
the 1970s to 2007 by the cassava breeding program at the 
IITA (Maziya-Dixon et al., 2007; Okechukwu and Dixon, 
2008; Ly et al., 2013). Most GG clones are of African origin 
with such good performance that they were advanced to 
multienvironment uniform yield trials. For this study, we 
used clonal evaluation trials of the GG population planted 
in an augmented design. The clonal evaluation trials use 
an unreplicated incomplete block design consisting of a 
layout of between 18 and 30 blocks with 22 accessions and 
two checks in each block. Accession plots were a single 
row (1 by 1m spacing) of five-plant stands without borders. 
All checks were included in the analysis. A few trials were 
replicated twice. These trials were conducted in three loca-
tions in Nigeria: Ibadan (7.40°N, 3.90°E), Mokwa (9.3°N, 
5.0°E), and Ubiaja (6.66°N, 6.38°E) between 2013 and 2015. 
Three core agronomic traits were measured for these trials, 
including the fresh weight of harvested roots expressed in 
tons per ha (t ha–1) (fresh root yield, FYLD); the percentage 
of DM of storage roots, which measures root dry weight 
as the percentage of the root fresh weight; and pulp color 
a binary trait rated on a scale from 1 (white to light cream 
root flesh) to 2 (deep cream to yellow root flesh). The DM 
trait was measured via the oven method: 100 g of grated 
root sample (with thorough mixing of 10–15 randomly 
selected roots from a plot) were collected per accession 
and oven-dried. Dry matter content was then measured 
as residual weight after oven drying. We further divided 
the GG population (713 clones) into two subpopulations of 
white (451 clones) and yellow (262 clones) cassava with the 
pulp color trait where clones with a score of 1 for this trait 
were grouped into the white population and those with 
score 2 into the yellow population.

Cassava Phenotypic Data Used for Validation
To validate the results from the RHM analysis, we used 
data from a population called the GS-C1, which consisted 
of the progeny of clones from the GG population described 
above. Phenotypes from the GS-C1 were obtained from 
clonal evaluation trials of 1651 clones split into trials at 
three locations: Ibadan, Mokwa, and Ikenne (6°52ʹN, 
3°43ʹE). These trials were planted with an augmented 
design consisting of 20 to 30 blocks with 22 to 24 clones 
and two checks in each block. Plots were a single row of 
five-plant stands (1 by 1m spacing) without borders and 
without replication, and trials were planted during 2014 
and 2015. Cassava trait measurements for this population 
were as described earlier, except that no strict distinction 

between yellow and white flesh color was used because the 
GS-C1 plants were mostly white and cream clones; thus we 
performed validation analysis with all clones.

Cassava Genotype Data
DNA was extracted with the DNeasy Plant Mini Kits 
(Qiagen, Germantown, MD) from 713 clones from the 
2013 Genetic Gain trial at IITA and was quantified with 
PicoGreen (Thermo Fisher Scientific, Waltham, MA). 
Genotyping-by-sequencing was used for genotyping 
(Elshire et al., 2011) these clones. Six 95-plex and one 
75-plex ApeKI libraries were constructed and sequenced 
on an Illumina HiSeq (Illumina, San Diego, CA) , with 
one lane per library. Single nucleotide polymorphisms 
were called from the sequence data using the TASSEL 
pipeline Version 4.0 (Glaubitz et al., 2012) with an align-
ment to the M. esculenta Version 6 reference genome 
(Goodstein et al., 2012). The marker data were converted 
to a dosage format (0, 1, 2) and missing genotypic data 
were imputed with Beagle software (Ayres et al., 2011). 
The final dataset consisted of 177,201 SNPs scored in 713 
clones. Members of the GS-C1 population used in the 
validation analysis were genotyped in 2014 as described 
above. Single nucleotide polymorphisms from both 
populations were called together with the TASSEL pipe-
line (Glaubitz et al., 2012) and missing genotypes also 
imputed with Beagle (Ayres et al., 2011), yielding the 
same number of SNPs as above.

Data Analysis
Genome-wide RHM
Regional heritability mapping was performed using the 
following procedure (Nagamine et al., 2012; Riggio and 
Pong-Wong, 2014; Riggio et al., 2013):

a. Chromosomes were divided into 100 SNP segments in 
sliding windows with 50 SNPs overlapping between 
adjacent windows.

b. A multikernel univariate mixed model (Model 1; Eq. 
[1]–Eq. [7]) was used to partition the genomic additive 
variation caused by trait of interest into components 
of the target genomic segment and the whole-genome 
SNP markers as follows:

1 2y X Zu Zu e= b+ + + ; 	 [1]

( )2
1 1 10,u N u Kus

; 	 [2]

( )
2

2
2 20, uu N Kus

; 	 [3]

( )20, e n ne N I ´s

; 	 [4]

( ) ( ) ( )2 2 2
1 1 2 2var T T

ey V Z u Ku Z Z u Ku Z I= = s + s +s ; [5]

( ) ( )1 1

2 1
1   ˆˆ  T

u uu K Z V y X-= s - b ; 	 [6]

( ) ( )2 2

2 1
2   ˆˆ  T

u uu K Z V y X-= s - b , 	 [7]
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where y is a response variable (DM), X is a known inci-
dence matrix for fixed effects β (including grand mean 
and a nested effect of trial within year within location), 
Z is a known incidence matrix for the clonal additive 
genomic effects u1 for the target genomic segment and u2 
for the whole-genome SNPs. Ku1 and Ku2 are the genomic 
relationship matrices calculated from the SNPs with the 
procedure of VanRaden (2008) as:

( )
  

2 1

TMMG
p p

=
S -

, 			               [8]

where G is the genomic relationship matrix; M is a cen-
tered marker matrix coded as -1,0,1; and p is the major 
allele frequency vector. Other components of the model 
include the genomic variance for the target genomic seg-
ment (

1

2
us ) and the total genomic variance for the whole 

genome (
2

2
us ); 2

es  is the genomic error variance and e 
indicates the residuals from the model. Model 1 was fitted 
using the R EMMREML package (Akdemir and Okeke, 
2014). Note that the Ku2 genomic relationship matrix 
serves to control statistically for population structure 
effects, like the kinship matrix does in standard GWAS.

c. Following model fitting in Step (b) above, the genomic 
heritability for each target genomic segment was 
computed as follows:

( )
1

1 2

2
2

2 2 2
=

+ +

u

u u e

ó
h   

ó   ó   ó  
,  	  	             [9]

where h2 is genomic heritability for a target genomic seg-
ment and the variance components are as described above.

d. A likelihood ratio test was used to test the significance 
of target genomic segments with the alternative 
model as Model 1 and the null model as Model 1 
without the target genomic kernel component i.e., 

2     y X Zu e= b+ + . This model was also fitted with the 
EMMREML package (Akdemir and Okeke, 2014). 
P-values were obtained with the pchisq function in R 
(R Development Core Team, 2016).

e. Local false discovery rate (LFDR) was estimated with 
the R qvalue package (Storey and Tibshirani, 2003; 
Storey et al., 2015).

f. Genomic segment LFDRs were then plotted across the 
genome in a Manhattan plot with a cutoff of 0.05 
being used to assess significance.

We performed the RHM procedure separately for the 
white and yellow cassava subpopulations of GG. No defined 
population structure was found on in the GG population in 
a previous GWAS study (Wolfe et al., 2016). Therefore, the 
genomic relationship matrix from the whole-genome SNPs 
in the RHM was sufficient to account for structure in this 
analysis (in fact, we refer to this more as background effect).

Candidate Gene Analysis
We identified candidate genes from the significant hits of 
the RHM analysis based on annotations for the Version 
6 M. esculenta genome on phytozome (Goodstein et al., 
2012). We used plant physiology information to narrow 
down the list of genes associated with carbohydrate bio-
synthesis, including genes that are functional in starch 
and sugar biosynthesis, cell wall loosening and degra-
dation, and root sink and plant growth pathways. We 
performed validation tests on candidates selected on the 
basis of their prediction accuracies in the GS-C1 popula-
tion as described below.

Validation Models and Procedures
We conducted validation analyses for the significant hits 
from the RHM analysis and for the RHM procedure 
itself. Validation here was geared toward understanding 
the prediction accuracies obtained from genes and gene 
families on significant RHM segments. Validation pro-
ceeded as described below.

Validation with SnRK Genes (a Candidate Gene Family)
To obtain genotypic data for this analysis, we searched 
the Phytozome M. esculenta Version 6.1 web por-
tal (Goodstein et al., 2012) using the keyword ‘serine 
threonine kinases’ to recover all instances of this in the 
cassava genome, resulting in 2408 hits. We filtered the 
resulting list to remove all hits not containing gene ontol-
ogy or eukaryotic orthologous group function definitions 
for the keyword ‘serine threonine kinase’. We then man-
ually added genes containing known serine threonine 
kinases that did not contain a function definition, such 
as the sucrose nonfermenting 1 gene (a list of these genes 
is provided in the Supplemental Table S1). We extracted 
all markers within 2.5 kb of the start and end of each 
gene model with the Bedtools intersect function (Quin-
lan and Hall, 2010), resulting in 7203 unique SNPs. We 
refer to these SNPs as candidate SNPs below. For valida-
tion of these candidate SNPs on the GS-C1 data, we fitted 
the following model (Model 2, Eq. [10]–Eq. [16]):

y X Zs Zg e= b+ + + ; 			             [10]

( )20, s ss N Ks

;			             [11]

( )20, g gg N Ks

; 	 [12]

( )20, e n ne N I ´s

; 	 [13]

( ) ( ) ( )= = s + s +s2 2 2var T T
s s g g ey V Z K Z Z K Z I ;       [14]

( ) ( )2 1  ˆˆ T
s ss K Z V y X-= s - b ; 	 [15]

( ) ( )2 1  ˆˆ T
g gg K Z V y X-= s - b ,  	 [16]
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where y is a vector of the raw phenotypic values for DM, X 
is the known incidence matrix for fixed effects β (includ-
ing grand mean and a nested effect of trial within year 
within location), Z is known incidence matrix for clonal 
additive candidate genomic effects s and whole-genomic 
effects g. For Ks and Kg, we used the candidate SNPs and 
the remaining SNPs from the whole genome excluding the 
candidate SNPs, respectively, to generate genomic relation-
ship matrices for the 1651 clones of the GS-C1 population 
as above. A third kinship matrix, Krand, was generated as 
a control from 7203 SNPs anchored to 2000 randomly 
selected genes from the cassava genome and used in Model 
2 in place of Ks, whereas we calculated Kg by using SNPs 
from the whole genome excluding those in Krand. Other 
components of the model include the SnRK candidates’ 
genetic variance ( 2

ss ) and the genetic variance from other 
parts of the genome ( 2

gs ), 2
es  is the error variance, and e 

represents the residuals from the model. Model 2 was fit-
ted with the EMMREML package. To assess prediction 
accuracies, we fitted another model as follows (Model 3, 
Eq. [17]–Eq. [21]):

y X Zu e= b+ + ; 	  [17]

( )20, uu N Is

;  	 [18]

( )20, e n ne N I ´s

; 	  [19]

( ) ( )2 2var T
u ey V Z K Z I= = s +s ;  	 [20]

( ) ( )2 1  ˆˆ T
uu K Z V y X-= s - b , 	  [21]

where most components of Model 3 remain same as those 
in Model 2, apart from the genetic effect u having an iden-
tity matrix I as its covariance matrix, signifying that the 
1651 GS-C1 validation clones were unrelated. Model 3 was 
also fitted with the R EMMREML package. Model 2 was 
fitted using a fivefold a cross-validation scheme with 10 
repeats, and prediction accuracies were obtained for this 
cross-validation scheme by a correlation of ŝ  of each clone 
from Model 2 to its û  value from Model 3.

Validation with 53 Candidate Genes Extracted from 
Plant Physiology Literature and 53 Randomly  
Selected Genes from the Significant RHM Regions
We performed a second procedure to validate the 53 
candidate genes identified in significant hit regions in the 
RHM analysis based on plant physiology literature (Table 
1). Using the cassava genome’s unique gene identifiers 
from Phytozome (Goodstein et al., 2012), we extracted 
all markers within 2.5 kb flanking the start and end of 
each gene as before, resulting in 400 unique SNPs. We 
refer to these SNPs as ‘likely candidate SNPs’. We also 
picked 53 single-copy genes at random from within the 
significant RHM regions and anchored them to 395 SNPs 
as controls for the likely candidate SNPs. We term these 
the ‘unlikely candidate SNPs’. To validate these, we also 

fitted the Genomic Best Linear Unbiased Prediction 
Model 2 with the following modifications: (i) for Ks, we 
used K53, which was a genomic relationship matrix cal-
culated from the 400 likely candidate SNPs for the 1651 
clones of the GS-C1 population (as above); (ii) we cal-
culated Kg with SNPs from the whole genome excluding 
the likely candidate SNPs; (iii) Krand was also calculated 
as above (as a control) from 402 SNPs anchored to 53 
randomly selected genes from the cassava genome (with 
7.5 kb flanking the start and end of these genes); (iv) 
Kunlikely was calculated from the 395 unlikely candidate 
SNPs. These were also used in place of Ks in Model 2 with 
their appropriate Kg being calculated as other SNPs in 
the genome excluding those in Krand and Kunlikely. Other 
components of the model were as described for Model 2 
and prediction accuracies were obtained in the same way. 
To assess the prediction accuracy of the whole-genome 
SNPs, we also fitted a model analogous to Model 3 with 
the covariance of u coming from a genomic relationship 
matrix with whole-genome SNPs. We term this the pre-
dictive accuracy of the whole-genome SNPs.

Validation With All Genes within 1 Mb of  
the Significant RHM List and an a priori  
List of Starch Genes in Cassava
We performed another validation procedure to provide 
a validation for all the genes identified in the significant 
hit regions in the RHM analysis, including those shown 
in Table 1 and those not shown because they were not 
selected on the basis of the information from the lit-
erature. By using the cassava genome’s unique gene 
identifiers from Phytozome (Goodstein et al., 2012), 
we extracted all SNPs within a 1-Mb region centered 
on each of these candidates with Bedtools (http://bed-
tools.readthedocs.io/en/latest/, accessed 20 Nov. 2017), 
resulting in 2297 SNPs from 650 unique genes. We refer 
to these SNPs as the RHM-region SNPs. In addition, 
we extracted the SNPs anchored to 123 unique genes 
in the cassava starch pathway compiled by Saithong 
et al. (2013), resulting in 419 SNPs. We refer to these 
SNPs as cassava starch SNPs. To validate these SNPs, 
we fitted Model 2 with genomic relationship matrices 
calculated as above from the RHM-region and cassava 
starch SNPs, in place of Ks, with their appropriate Kg 
calculated from remaining SNPs. We also picked 650 
single-copy genes at random, excluding the significant 
RHM regions, and anchored them to approximately 
2300 SNPs as controls for the RHM-region and cassava 
starch SNPs. We refer to these as Random-650 SNPs. 
We calculated Krandom-650 from these SNPs and an appro-
priate Kg. These kernels were also fitted in Model 2 as 
Ks and Kg, respectively. In addition to the prediction 
accuracies from these candidates, we validated genes 
in the RHM-region set by searching for them in two a 
priori lists compiled by Saithong et al. (2013), including 
one for the cassava starch pathway and another for the 
Calvin cycle pathway. The RHM-region genes that made 
this list were considered to be validated.
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(continued)

Table 1. Candidate cassava genes and gene families associated with significant regional heritability mapping 
(RHM) regions.

RHM candidates for white DM

Chr.†
Segment tag 

SNP_ID
Segment tag 

SNP 
Segment 

span LFDR

Target 
segment 
variance

Genomic 
segment 
variance Candidate genes Phytozome ID Start End Homologs

bp ——bp——

1 S1_3416180 3416180 3,064,700–
3,416,180

0.047227533 0.66 0.84 BAK1-interacting receptor-like 
kinase 1

Manes.01G018900 3,095,915 3,098,209 AT5G48380.1

BAK1-interacting receptor-like 
kinase 1

Manes.01G019000 3,132,412 3,134,588 AT5G48380.1

1 S1_19936380 19936380 1,964,6964–
19936380

0.030168971 0.58 0.82 UDP-D-glucuronate 
4-epimerase 2

Manes.01G074000 19,949,560 19,951,824 AT1G02000.1

DHHC-type zinc finger family 
protein

Manes.01G073100 19,818,085 19,825,785 AT3G60800.1

Bifunctional inhibitor trypsin-
alpha amylase inhibitor

Manes.01G074600 20,036,878 20,037,858 AT1G62790.2

Plant invertase/pectin 
methylesterase inhibitor 

superfamily protein

Manes.01G074800 20,042,476 20,043,982 AT4G25260.1

Pectinesterase Manes.01G075600 20,158,111 20,159,120 AT5G07420.1

beta vacuolar processing 
enzyme

Manes.01G075700 20,173,648 20,176,768 AT1G62710.1

Mini zinc finger 2 Manes.01G090800 21,547,715 21,548,005 AT3G28917.1

Galactosyltransferase1 Manes.01G091600 21,599,298 21,603,804 AT1G26810.1

Starch synthase 2 (ADP-
glucose type)

Manes.01G091700 21,623,316 21,629,007 AT3G01180.1

Cycling DOF factor 2 Manes.01G092100 21,647,142 21,650,438 AT5G39660.1

4 S4_537966 537966 510,971–
732,069

0.003820074 0.67 0.84 SnRK1 RIO Manes.04G004800 535,401 538,252 AT1G08290.1

Glycosyltransferase family 29 Manes.04G004900 542,055 543,236 AT1G08280.1

4 S4_859155 859155 623,461–
859,155

0.00113334 0.62 0.82 Alkaline/neutral invertase Manes.04G006900 778,931 784,740 AT5G22510.1

Cellulose synthase-like A02 Manes.04G009400 1,064,431 1,069,211 AT5G22740.1

C2H2-like zinc finger protein Manes.04G008800 962,985 963,932 AT4G35280.1

 (SnRK1) Manes.04G006600 757,312 760,778 AT3G44610.1

5 S5_7279374 7279374 7,061,162–
7,279,374

0.03310678 0.69 0.85 Trehalose-phosphatase/
synthase 9

Manes.05G087900 6,905,372 6,911,159 AT1G23870.1

SnRK1 With No Lysine-related Manes.05G089000 7,284,514 7,286,444 AT1G60060.1

SnRK1 Manes.05G090100 7,365,593 7,370,118 AT1G24030.2

NAD(P)-linked oxidoreductase 
superfamily protein

Manes.05G092400 7,630,814 7,632,642 AT1G59960.1

Galactosyltransferase family 
protein

Manes.05G095000 7,849,628 7,853,700 AT5G62620.1

bHLH transcription factor Manes.05G094700 7,824,312 7,824,497 LOC_Os07g09590.1

Galactose oxidase Manes.05G096300 7,992,476 7,993,801 Cre06.g306000.t1.1

Alpha-amylase-like 3 Manes.05G097100 8,094,930 8,103,684 AT1G69830.1

sucrose transport protein (SUC3) Manes.05G099000 8,344,933 8,345,349 LOC_Os02g36700.1

UDP-galactose/UDP-glucose 
transporter

Manes.05G101600 8,633,269 8,636,565 Potri.016G139100.1

Zinc finger, C3HC4 type 
domain containing protein

Manes.05G102000 8,696,530 8,696,856 LOC_Os03g20870.1
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Table 1. Continued. 

RHM candidates for white DM

Chr.†
Segment tag 

SNP_ID
Segment tag 

SNP 
Segment 

span LFDR

Target 
segment 
variance

Genomic 
segment 
variance Candidate genes Phytozome ID Start End Homologs

10 S10_15606779 15606779 1,502,4128–
15,606,779

0.041702151 0.15 0.64 SnRK1 Manes.10G079500 14,844,954 14,851,620 AT1G49730.1

bHLH DNA-binding 
superfamily protein

Manes.10G080300 15,279,304 15,281,955 AT1G49770.1

Salt tolerance zinc finger Manes.10G080000 15,071,612 15,072,680 AT1G27730.1

Protein with RNI-like/FBD-like 
domains

Manes.10G080200 15,240,978 15,241,397 AT5G56410.1

Regulator of Vps4 activity in 
the MVB pathway protein

Manes.10G080400 15,346,375 15,347,741 AT2G14830.2

17 S17_5368263 5368263 5,152,794–
5,368,263

0.005975712 0.17 0.64 Xyloglucan 
endotransglucosylase/

hydrolase 30

Manes.17G015100 5,198,786 5,201,174 AT1G32170.1

17 S17_5532660 5,285,956–
5,532,660

0.005529599 0.27 0.67 Pectin lyase-like superfamily 
protein

Manes.17G015200 5,264,305 5,276,255 AT3G07840.1

bHLH DNA-binding family 
protein

Manes.17G016000 5,657,214 5,660,207 AT1G32640.1

17 S17_16084946 16084946 15,509,115–
16,084,946

0.046144077 0.14 0.62 CBL-interacting protein kinase 
23 (SnRK3)

Manes.17G073900 21,282,260 21,287,846 AT1G30270.1

Inositol transporter 2 Manes.17G073000 21,211,865 21,215,459 AT1G30220.1

Transducin/WD40 repeat-like 
superfamily protein

Manes.17G073300 21,251,484 21,254,389 AT1G65030.1

18 S18_4988720 4988720 4,586,953–
4,988,720

0.037726745 0.69 0.85 Sucrose transporter 4 Manes.18G054200 4,548,075 4,559,586 AT1G09960.1

Nucleotide-diphospho-sugar 
transferases superfamily protein

Manes.18G054400 4,572,586 4,576,353 AT1G27600.1

beta HLH protein 93 Manes.18G055000 4,655,203 4,657,015 AT5G65640.1

CBL-interacting protein kinase 
8 (SnRK3)

Manes.18G055300 4,677,895, 4,683,026 AT4G24400.1

UDP-glycosyltransferase 
superfamily protein

Manes.18G056200 4,793,379 4,795,015 AT5G49690.1

GATA-type zinc finger protein 
with TIFY domain

Manes.18G056300 4,820,431 4,826,234 AT4G24470.3

RHM candidates for yellow DM

1 S1_22566390 22566390 21,910,139–
22,566,390

0.04682523 0.72 0.87 Galacturonosyltransferase 13 Manes.01G098400 22,245,408 22,256,933 AT3G01040.1

Plant calmodulin-binding 
protein-related

Manes.01G099000 22,282,570 22,286,073 AT5G39380.1

UDP-glucosyl transferase 76E11 Manes.01G100300 22,370,079 22,371,643 AT3G46670.1

SNF1 kinase (SnRK1) Manes.01G100900 22,409,977 22,417,397 AT3G01090.2

Vesicle transport v-SNARE 
family protein

Manes.01G101200 22,421,446 22,425,558 AT5G39510.1

Brassinosteroid-6-oxidase 2 Manes.01G102800 22,514,594 22,518,856 AT3G30180.1

9† S9_13325846 13325846 12,810,619–
13,747,638

0.26 0.66 Phosphofructokinase 2 Manes.09G077800 13,223,145 13,226,580 AT5G47810.1

† Strong but nonsignificant signal.

‡ Chr., chromosome, FDR, false discovery rate; DM, dry matter; SNP, single nucleotide polymorphism; SnRK, serine–threonine protein kinase; bHLH, basic helix-loop-helix; DoF, DNA-binding one zinc finger; LFDR, 
local false discovery rate; UDP, uridine diphosphate; ADP, adenosine diphosphate; RIO, right open reading frame; NAD(P), nicotinamide adenine dinucleotide phosphate; MVB, multivesicular body; CBL, calcineurin 
B-like proteins; GATA, erythroid transcription factor; HLH, helix–loop–helix; SNARE, soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor.
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Assessing the RHM’s Power via the  
“Hide a Causal SNP” Procedure
To validate the RHM procedure, we performed an analy-
sis similar to the classical “hide a causal SNP” approach 
as follows:

a. Chromosomes were divided into 100 SNP segments in 
sliding windows with 50 SNPs overlapping between 
adjacent segments.

b. Five adjacent segments were randomly selected on each 
chromosome.

c. On the third segment, effects were added to a random SNP 
to inflate the phenotypic variance of the DM trait by 10%.

d. Genomic relationship matrices were made for 
these segments but for Segment 3, the random 
pseudocausal SNP was excluded during calculation of 
the genomic relationship matrix.

e. Subsequently, Steps (b) to (d) of the RHM procedure 
above were performed, resulting in P-values for these 
five adjacent segments. Steps (a) to (e) were repeated 
twelve times, resulting in 216 tests.

f. We then calculated the P-value from the RHM analysis 
on our data that corresponded to the LFDR threshold 
of 0.05 and used this as the significance threshold.

g. The power of the RHM analysis was then calculated as 
the number of times any of the five segment P-values 
were significant, given the significance threshold from 
Step (f) above.

h. To make a decision on the bounds set for extracting 
adjacent candidate genes from the M. esculenta 
genome for a significant segment in the RHM 
analysis, the number of times either the first or fifth 
segment’s P-values were significant, conditional 
on the third segment having a higher P-value, was 
also calculated. This reflected how far away adjacent 
segments captured causal variants.

RESULTS
Regional Heritability Mapping for DM in White 
and Yellow Cassava Populations
The genomic heritabilities for DM in white and yellow cas-
sava, based on whole-genome SNPs, were 0.57 and 0.48, 
respectively. These heritabilities are somewhat higher than 
those found by Ly et al. (2013), presumably because they 
worked with more locations and years, and thus experi-
enced higher genotype × environment interactions. We 
observed different genetic control patterns for DM in 
the white and yellow cassava subpopulations, as shown 
by the Manhattan plots from the RHM analysis (Fig. 1). 

Fig. 1. Manhattan plots showing dry matter content and genomic segment associations in cassava. The upper and lower figures show 
regional heritability mapping (RHM) discovery associations for white and yellow cassava populations, respectively.
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Significant genomic segments for the white cassava DM 
were observed on chromosomes 1, 4, 5, 10, 17, and 18; 
for the yellow cassava, a significant segment was only 
observed on chromosome 1 (Fig. 1). Because of the dif-
ference between the sample sizes of both subpopulations, 
it is unclear if the DM genetic control patterns between 
these subpopulations were different. A nonsignificant 

but strong signal was also observed on chromosome 9 of 
both cassava subpopulations.

Candidate Gene Analysis
By using information from the estimates of the mean link-
age disequilibrium between genomic segments per chromo-
some (Fig. 2A), the distribution of the length of genomic 

Fig. 2. (A) Genome-wide linkage disequilibrium between segments in the regional heritability mapping (RHM) analysis of cassava. Link-
age disequilibrium is measured as the mean correlation between all pairs of single nucleotide polymorphisms (SNPs) where one SNP is 
on one segment and the other is on the adjacent segment. (B) Histogram of the size of genomic segments in the RHM analysis. The size 
of the window is the physical distance in bp between the first and the last of the 100 SNPs in the window.
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segments in our analysis (Fig. 2B), and information on the 
number of times adjacent segments captured causal varia-
tions in the simulation analysis, we set the bound for the 
region where candidate genes were sought to 1.0 Mb (500 kb 
flanking each hit), representing from two to three genomic 
segments adjacent to the top hit genomic segment.

Candidates for the White and Yellow  
Cassava Subpopulations
For the top RHM hits in both cassava gene pools, we iden-
tified possible candidate genes and transcriptional regula-
tors adjacent to these hits based on their involvement in the 
carbohydrate biosynthesis pathway, including members of 
the SnRKs family, members of the UDP-glycosyltransferase 
family (including starch and sucrose synthases), and UDP-
sugar transporters; specific plant transcriptional factors 
including members of the β helix-loop-helix (bHLH) fam-
ily and mini-zinc fingers; and other genes involved in cell 
wall processes, root storage, and development including 
pectinases and β-vacuolar processing enzymes. We show a 
list of these genes in Table 1. An additional candidate gene, 
phosphofructokinase, was associated with the nonsignifi-
cant peak on chromosome 9, which was more pronounced 
in the yellow cassava germplasm.

Validation Results for SnRKs
The predictive accuracy of the whole-genome SNPs was 
0.54 (SD of the cross-validation repeat cycle = 0.03). With 
the set of candidate SnRK SNPs, the prediction accuracies 
from the cross-validation with Model 2 were 0.26 (SD of 
the cross-validation repeat cycle = 0.04) and 0.12 (SD of 
the cross-validation repeat cycle = 0.06) for the candidate 
and random SNPs, respectively. The predictive ability of 
the genome-wide SnRK candidates (7203 SNPs) had ~50% 
of the total prediction accuracy from our set of genome-
wide SNPs (177,201) for the GS-C1 population.

Validation With 53 Likely Candidate Genes 
Extracted from Plant Physiology Literature  
and 53 Unlikely Candidate Genes from  
the Significant RHM Regions
With the likely candidate SNPs from the genes identified for 
all the top hitting genomic segments genome-wide (shown 
in Table 1), prediction accuracies from the cross-validation 
with a modified Model 2 were 0.17 (SD of the cross-vali-
dation repeat cycle = 0.03), those for the 53 unlikely genes 
randomly selected from the top hitting genomic segments 
genome-wide were 0.14 (SD of the cross-validation repeat 
cycle = 0.02) and those for the SNPs from 53 random genes 
from the cassava genome were 0.06 (SD of the cross-valida-
tion repeat cycle = 0.08).

Validation With all Genes within 1 Mb of  
the Significant RHM List and an a priori  
List of Starch Genes in Cassava
Using the RHM-region, cassava starch, and Ran-
dom-650 SNPs, the prediction accuracies from the 

cross-validation with a modified Model 2 were 0.17 (SD 
= 0.04), 0.18 (SD = 0.03), and 0.03 (SD = 0.01), respec-
tively. Based on two a priori lists compiled by Saithong 
et al. (2013), including one for the cassava starch path-
way and another for the Calvin cycle pathway, we found 
three RHM-region genes on the cassava starch pathway 
list, including an acid invertase (Manes.01G076500), a 
glucose-6-phosphate isomerase (Manes.18G060600), 
and a neutral or alkaline invertase (Manes.04G006900). 
However, in the Calvin cycle pathway list, we found one 
RHM-region gene, namely fructose-biphosphate aldolase 
(Manes.04G007900). These genes are known to play key 
roles in starch biosynthesis and storage (Junker, 2004; 
Ap Rees, 1992; Appeldoorn et al., 1997; Renz et al., 1993). 
To assess if these genes were significantly enriched in 
the RHM regions, we performed a simple calculation 
by multiplying the 650 genes in the RHM region by the 
123 genes in the cassava starch pathway (Saithong et al., 
2013) and divided them by the total number of genes in 
the cassava genome (33,030). The result was 2.4, which 
is the expectation of a Poisson process of obtaining the 
genes in the cassava starch pathway. However, we cal-
culated the probability of drawing three cassava starch 
pathway genes from the genome at random, resulting in 
P = 0.22, indicating no significant enrichment.

Assessing the RHM’s Power via the  
“Hide a Causal SNP” procedure
We calculated the statistical power of the RHM procedure 
to detect simulated causal effects from 216 analyses as the 
number of times any of the five segments’ P-values were 
significant. The P-value from the RHM analysis on our 
data that corresponded to the LFDR threshold of 0.05 was 
0.00024, which became our significance threshold for this 
analysis. We found that 102 tests were significant out of a 
total of 216, representing 47% statistical power to detect the 
simulated causal region. To set the bounds for how far in the 
genome to cover when extracting candidate genes from a 
significant RHM segment, we also calculated the number of 
times the P-values from the first or fifth genomic segments 
were significant, conditional on the third segment’s P-value 
being higher. With a total of 216 analyses, 27 cases had sig-
nificant P-values on Segment 3 and 15 cases had significant 
P-values from Segments 1 or 5 when the P-values from Seg-
ment 3 were higher. This represents 15% coverage further 
away from the causal segment. With this information, we 
chose an adjacent span of 500,000 kb pairs flanking a signif-
icant RHM segment as the bounds for extracting adjacent 
candidate genes. A summary of the prediction accuracies 
from validated candidates are shown in Table 2

DISCUSSION
The RHM results in the high DM and white cassava popu-
lations clearly demonstrate the polygenic nature of the DM 
trait. Dry matter is composed of carbohydrates (mostly 
starch), cell wall components, and fiber, as well as other 
nonstarchy polysaccharides. Thus it is not surprising that 
this trait is complex and controlled by many genes. In 
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addition, the RHM procedure in this study showed a 47% 
power for detecting association with a sample size of less 
than 500, given the polygenic nature of this trait.

Serine–Threonine Protein Kinases may be  
Involved in the Regulation of Cassava 
Carbohydrate Biosynthesis
The SnRK gene family in plants is homologous to the 
sucrose nonfermenting 1 protein kinase family in yeast 
and the adenosine monophosphate-activated protein 
kinase gene family in mammals. Its members have gained 
recognition as critical elements in transcriptional, meta-
bolic, and developmental regulation in plants (Halford et 
al., 2003; Halford and Hardie, 1998; Polge and Thomas, 
2007; Xue-Fei et al., 2012; Crozet et al., 2014; Jossier et al., 
2009). The most studied member of this family is SnRK1 
(Halford and Hardie, 1998; Polge and Thomas, 2007). 
Serine–threonine protein kinases play a vital role as 
global regulators of C metabolism and mediate cross-talk 
between metabolic and other plant signaling pathways 
(Halford and Hardie, 1998; Polge and Thomas, 2007; Xue-
Fei et al., 2012). SnRK1 was shown to play a key role in 
seed filling and maturation and in embryo development 
in pea (Pisum sativum L.) (Radchuk et al., 2006, 2010). In 
potato (Solanum tuberosum L.) and wheat, SnRK1 phos-
phorylates and inactivates key enzymes in the sugar and 
starch biosynthesis pathway, affecting sucrose synthase, 
trehalose phosphate synthase, and α-amylase (Purcell 
et al., 1998; Laurie et al., 2003). In potato, it stimulates 
the redox activation of adenosine 5’-diphosphate (ADP)-
glucose pyrophosphorylase in response to high sucrose 
levels (Geigenberger, 2003; Tiessen et al., 2003). Antisense 
expression of SnRK1 resulted in a reduction in the expres-
sion of sucrose synthase in potato tubers (Purcell et al., 
1998) and α-amylase in cultured wheat embryos (Laurie 
et al., 2003). However, the overexpression of SnRK1 in 

potatoes resulted in a significant increase in starch accu-
mulation in tubers and a decrease in glucose levels result-
ing from a dramatic increase in the activity and expression 
levels of sucrose synthase and ADP-glucose pyrophospho-
rylase (McKibbin et al., 2006). SnRK1 is activated by high 
cellular sucrose or low glucose, or a dark period (Rolland 
et al., 2002). The model of sugar and starch biosynthesis 
in potato from McKibbin et al. (2006) showed SnRK1 to 
be at the heart of these processes. By using RHM analysis 
in the white cassava population, we identified significant 
genomic segments containing some of the proteins or 
enzymes in the model given in this illustration (McKibbin 
et al., 2006) including SnRKs, UDP-glycosyltransferases 
and UDP-sugar transporters, an ADP-type starch syn-
thase 2, and a neutral invertase. Glycosyltransferases are 
a family of enzymes involved in carbohydrate biosynthe-
sis of which sucrose and starch synthases are members 
(Momma and Fujimoto, 2012). With the RHM procedure 
and candidate gene analysis, several of these known car-
bohydrate biosynthesis enzymes (Table 1, Fig. 3) were 
putatively associated with the cassava DM trait.

Other Possible Candidates that are Involved  
in Sugar and Starch Biosynthesis in Cassava
Other proteins located within significant genomic segments 
that are also involved in the carbohydrate biosynthesis 
pathway include invertase inhibitors, which have been 
shown to form complexes with SnRKs and lead to reduced 
accumulation of reducing sugars and increased accumula-
tion of starch in potatoes (Lin et al., 2015), and BAK1, a 
brassinosteroid insensitive 1-associated receptor-like kinase 
and a member of the somatic embryogenesis receptor-like 
kinase (SERK) subfamily involved in regulation of root 
development (Du et al., 2012). BAK1/SERK1 positively con-
trols starch granule accumulation in Arabidopsis thaliana 
(L.) Heynh. root tips (Du et al., 2012). With a transgenic 
sweet potato overexpressing a DNA-binding one zinc finger  
protein encoded by a SRF1 gene [a member of the mini-zinc 
finger family of plant-specific transcription factors (Takat-
suji, 1998, 1999)], Tanaka et al. (2009) showed that trans-
genic roots had significantly higher DM content in storage 
roots, increased starch content per unit of storage root fresh 
weight, and a drastic decrease in glucose and fructose levels. 
SRF1 was shown to modulate carbohydrate metabolism in 
sweet potato storage roots via negative regulation of vacu-
olar invertase (Tanaka et al., 2009). Several enzymes, includ-
ing pectinases, pectin esterases, cellulase synthase, and 
galacturonosyltransferases, found in the significant RHM 
regions in white and yellow cassava may be involved in plant 
cell wall loosening and degradation which may be linked to 
C partitioning in cassava. In fact galacturonosyltransferase, 
a member of the CAZy (Cantarel et al., 2009) GT8 family 
of glycosyltransferases, is involved in pectin and hemicellu-
lose biosynthesis (Cantarel et al., 2009; Atmodjo et al., 2011; 
de Godoy et al., 2013). Galacturonosyltransferase-silenced 
tomato (Solanum lycopersicum L.) fruits showed altered 
pectin composition and decreased starch accumulation (de 
Godoy et al., 2013). Cassava galacturonosyltransferases may 

Table 2. Summary of validation results for regional 
heritability mapping (RHM) significant candidates. 
Prediction accuracies from selected candidate genes 
or genomic segments were used to validate the 
significance of the RHM hits are given with the SD  
of cross-validation repeat cycles in parentheses.

Candidate† Genomic segment Prediction accuracy

SnRKs 7203 0.26 (0.04)

Random control for SnRKs 7203 0.12 (0.06)

53 Likely candidates 400 0.17 (0.03)

53 Unlikely candidates 395 0.14 (0.02)

Random control for 53 candidates 402 0.06 (0.08)

RHM-region genes 2297 0.17 (0.04)

Cassava starch genes 419 0.18 (0.03)

Random-650 2300 0.03 (0.01)

Whole genome SNPs 177,201 0.54 (0.03)

† SnRK, serine–threonine protein kinase; SNP, single nucleotide polymorphism.
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interfere with C metabolism, partitioning, and allocation, 
as seen in tomato (de Godoy et al., 2013). In their expression 
profile study using samples from different stages of cassava 
root development, Yang et al. (2011) found a significant 
upregulation of the enzymes involved in plant cell wall loos-
ening and degradation. The bHLH family of transcription 
factors is a large family in plants involved in flavonoids, the 
carotenoid pathway, and anthocyanin pigmentation of tuber 
skin and flesh (from yellow to white and purple) in potato 
(De Jong et al., 2004; Zhang et al., 2009; Tai et al., 2013) and 
may interact with sucrose transporter to perform this func-
tion (Krügel et al., 2012). Phytochrome-interacting factors 
form a subfamily of bHLH transcription factors and PIF1 (a 
member of this subfamily) has been shown to directly regu-
late the expression of phytoene synthase (Toledo-Ortiz et al., 
2010), a major driver of carotenoid production in plants and 
the first and main rate-determining enzyme of the carot-
enoid pathway (Toledo-Ortiz et al., 2010; Maass et al., 2009). 
It is not clear how bHLH may link with sugar biosynthesis 
and transport or play a role in starch accumulation in yel-
low cassava clones, but this may translate to the frequently 
observed negative correlation between DM and yellow root 
flesh color in African cassava (Esuma et al., 2016; Akinwale 
et al., 2010). Interestingly, cassava breeders in Colombia have 
not found any negative correlation between carotenoids 
and DM in their germplasm, and, in fact, have made gains 
in both traits by using a rapid cycling recurrent selection 
scheme (Ceballos et al., 2013).

Some Experimental Studies that Reflect Possible 
Roles of Candidate Genes in the Cassava Tuber
By using the RHM analysis, we identified (Fig. 3) a number 
of cassava genes in the heterotrophic plant cell starch or 
sucrose metabolism pathway (Junker, 2004). We describe 

a few steps in this pathway, concentrating mostly on where 
we have identified candidate genes (candidate genes are in 
parentheses henceforth with phytozome gene identifiers). 
After sucrose is imported into the cytosol by a sucrose 
transporter (Manes.05G099000, Manes.18G054200), it 
is converted into hexose sugars via two paths involv-
ing the enzymes sucrose synthase (shown in the cen-
ter of Fig. 3) and invertase (shown to the left in Fig. 3) 
(Manes.04G006900, Manes.01G076500) (Junker, 2004; Ap 
Rees, 1992; Appeldoorn et al., 1997; Renz et al., 1993).

Sucrose transport is much more pronounced in the 
sink tissues that switch to storage mode (Weschke et al., 
2000, 2003). A transgenic study using sucrose transporter 
4-RNAi mutant potato plants showed an increase in 
tuber yield and starch accumulation, and also induced 
early tuberization (Chincinska et al., 2008). It is worth 
noting that the cytosolic neutral invertase tends to play 
a larger role in sink organs than does the vacuolar acid 
invertase. Studies on maize null mutants of the cytosolic 
invertase (Mn1) had miniature seeds caused by arrested 
endosperm development (Miller and Chourey, 1992), 
whereas overexpression of Mn1 increased grain yield 
and starch content (Li et al., 2013). Similar studies in 
rice, tomato, and cotton (Gossypium hirsutum L.) have 
also found consistent phenotypes with cytosolic neutral 
invertase (Wang et al., 2008; Zanor et al., 2009; Wang 
and Ruan, 2012). Other studies on vacuolar invertase 
inhibitors showed a significant reduction of cold-induced 
sweetening in potato tubers (via a reduction in sucrose 
accumulation in tubers) by restricting the activities of 
vacuolar acid invertase (McKenzie et al., 2013; Brum-
mell et al., 2011). These studies suggest the importance 
of sucrose unloading to sink organs; hence vacuolar acid 
and cytosolic invertases are targets for post-translational 

Fig. 3. Sucrose and starch metabolism in a heterotrophic plant cell of the cassava tuber. Key enzymes including sucrose transporter, invertase, 
phospho-glucose isomerase, and phosphofructokinase were within 500 kb of significant regional heritability mapping (RHM) segments.
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regulation toward starch storage and DM accumulation 
(Tang et al., 2016).

The hexoses cleaved from sucrose are rapidly phos-
phorylated into hexose monophosphates by hexokinase 
and fructokinase (Junker, 2004; Ap Rees, 1992; Appel-
doorn et al., 1997; Renz et al., 1993) and they proceed to 
the starch biosynthesis or glycolytic pathways. As shown 
in the central pathway in Fig. 3, the resulting hexose 
monophosphates (including glucose-1-phosphate, glucose-
6-phosphate and fructose-6-phosphate) are interconverted 
by the enzymes phosphoglucose mutase and phosphoglu-
cose isomerase (Manes.18G060600) (Junker, 2004). Phos-
phoglucose isomerase connects the Calvin cycle pathway 
with the starch biosynthetic pathway in illuminated plant 
leaves (Bahaji et al., 2015). It also plays a key role in the gly-
colytic pathway and in the regeneration of glucose-6-phos-
phate in the oxidative pentose pathway in heterotrophic 
organs and nonilluminated plant leaves (Bahaji et al., 
2015). It is strongly inhibited by light (Heuer et al., 1982) 
and by an intermediate Calvin cycle molecule, 3-phos-
phoglycerate (Dietz, 1985), which accumulates in the 
chloroplast during illumination and allosterically activates 
AGPase (Kleczkowski, 1999, 2000). The second phosphor-
ylation step in the glycolytic pathway is the phosphoryla-
tion of fructose-6-phosphate to fructose-1,6-bisphosphate 
by phosphofructokinase (Manes.09G077800). Interest-
ingly, transgenic studies overexpressing 6-phosphofruc-
tokinase in potato found no changes in the transgenic 
tuber phenotype compared with the controls but had an 
increased flux of cytosolic 3-phosphoglycerate that did not 
affect the amount of starch that accumulated in the tubers 
(Sweetlove et al., 2001; Burrell et al., 1994). It is noteworthy 
that our RHM results identified a signal on chromosome 
9 in both yellow and white cassava that corresponds to the 
position of a phosphofructokinase in cassava.

Fructose-bisphosphate aldolase (FDA), a candidate 
from the Calvin cycle pathway (Manes.04G007900), is 
known to play a key role in carbohydrate biosynthesis. 
Changes in FDA activity have marked consequences 
for photosynthesis, C partitioning, growth, yield, and 
improved uniformity of solids in potato and other plants 
(Haake et al., 1998; Barry et al., 2002). Transgenic plants 
[including potato, maize, rice, canola (Brassica napus L.), 
and other crops] that expressed the Escherichia coli FDA 
gene in their chloroplasts had significantly higher root 
mass, leaf phenotypes with significantly higher starch 
accumulation, and lower leaf sucrose than control plants 
expressing the null vector (Barry et al., 2002).

Implications for the Breeding of High DM White 
Cassava Varieties or High-DM, High-β Carotene 
Yellow Cassava Varieties
The RHM results presented in this study suggest that DM 
content is under complex genetic control, particularly in 
the white cassava population. A network of genes and tran-
scriptional regulons that are at the heart of sugar and starch 
biosynthesis were positionally associated with significant 

RHM regions in white and yellow cassava populations. The 
‘hide a SNP’ analysis performed to validate the RHM results 
indicated that spurious associations caused by linkage may 
have been avoided in the RHM analysis even when large 
segments were involved (Fig. 2B). Given the genetic com-
plexity of the cassava DM trait, we suggest that candidate 
genes, including invertases (neutral and acid) and FDA, 
may be targeted for gene editing or transgenic techniques to 
substantiate the role of these genes in DM and starch accu-
mulation in cassava and to provide a clear path for their use 
in cassava breeding programs.

Dry matter content must work together with FYLD to 
make cassava production profitable and provide value for 
farmers and processors. To investigate whether some of 
the genes and gene families identified in the RHM analysis 
are also involved in the biological processes that lead to 
cassava FYLD, we validated their effects on FYLD using 
the same validation procedures and populations as above. 
The results showed prediction accuracies of 0.03 (SD = 
0.02) for SnRKs on FYLD, 0.02 (SD = 0.02) for 53 likely 
candidates, 0.006 (SD = 0.03) for 53 unlikely candidates, 
0.03 (SD = 0.02) for RHM-region genes, and -0.009 (SD = 
0.02)for cassava starch pathway genes. These results sug-
gest no single biological pathway that controls DM and 
FYLD. This is not surprising, since there is little genetic 
correlation between DM and FYLD (Kawano et al., 1987). 
It appears from the negative correlation between carot-
enoid content in roots and DM content in African cassava 
germplasm (Esuma et al., 2016; Akinwale et al., 2010) 
and from the link between bHLH and sugar biosynthesis 
(Krügel et al., 2012) that yellow flesh color is associated 
with the accumulation of reducing sugars in edible roots 
(Eleazu and Eleazu, 2012). This poses a more complex 
challenge for improving DM in African yellow cassava and 
shifts attention toward finding recombinant yellow cassava 
progenies that have high DM. Ceballos et al. (2015) states 
that the search for the appropriate recombinant is difficult 
in cassava breeding and advocates for the use of inbred 
progenitors when breeding for hybrid cassava.

In this paper, we have used candidate gene analysis 
in an attempt to understand the function of the genes 
or gene families positionally associated with the RHM 
hits. We do not make the claim that these candidates 
are causal genes detected by the RHM hits but rather we 
have shown, by using prediction accuracies, that these 
RHM hit loci were positionally associated with the DM 
trait in cassava (Fig. 1 and Fig.4A,B) thus resulting in 
better predictability than if random genes were used as 
controls. To validate the hypotheses presented in this 
paper regarding the candidate genes underlying DM 
accumulation in cassava, and to elucidate the physiologi-
cal mechanisms involved in the expression of the DM 
trait in both yellow and white cassava, we recommend 
the use of genome editing or transgenic technology, and 
in-depth analysis of sugars and carbohydrates in cassava 
roots, stems, and leaves. Similar studies in potato have 
benefited and informed potato breeding, and the same 
will be true of cassava as new insights become available.
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Fig. 4. (A) Selected candidate genes of cassava and positions of significant regional heritability mapping (RHM) segments. Circos 
plots of carbohydrate biosynthesis candidate genes or gene families and significant RHM segments shown by paired dotted lines. 
Points are randomly scattered along the y-axis to avoid overlaps and visualize gene families better. (B) Zoom-in plot of candidate 
genes and significant RHM segments in a 21 Mb region of chromosome 1. The same genes or gene families as in (A) are shown 
along with two significant RHM segments. The double line separates candidate genes with random y-axis positions from–log10 (local 
false discovery rate) plotting of the significance of RHM segments.
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CONCLUSION
By using RHM analysis, we demonstrate the complex 
genetic architecture of DM content in high-DM white 
African cassava. Candidate gene analysis revealed the 
possible roles of SnRKs, vacuolar and neutral invertases, 
phosphoglucose isomerase, and FDA in the regulation of 
sugar and starch biosynthesis in cassava. The RHM analy-
sis indicated that inheritance of DM content in the high-
DM white cassava population is more polygenic than that 
in the low-DM yellow cassava population. We examined 
the utility of models based on the genome-wide candidate 
genes found in this study with prediction accuracies in 
a different but related population and found appreciable 
predictive ability compared with what is obtained when 
whole-genome markers were used. Transcriptional regula-
tors such as bHLH may be involved in flesh root color and 
sugar biosynthesis in cassava, as shown in potato. We rec-
ommend further studies using genome editing or trans-
genic technology to better understand these mechanisms 
and to inform and accelerate breeding efforts for cassava.
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