
Heat Shock Proteins as the Druggable Targets in
Leishmaniasis: Promises and Perils

Pragya Prasanna,a Arun Upadhyayb

aNational Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
bCentral University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan, India

ABSTRACT Leishmania, the causative agent of leishmaniasis, is an intracellular
pathogen that thrives in the insect gut and mammalian macrophages to complete
its life cycle. Apart from temperature difference (26 to 37°C), it encounters several
harsh conditions, including oxidative stress, inflammatory reactions, and low pH.
Heat shock proteins (HSPs) play essential roles in cell survival by strategically repro-
gramming cellular processes and signaling pathways. HSPs assist cells in multiple
functions, including differentiation, adaptation, virulence, and persistence in the host
cell. Due to cyclical epidemiological patterns, limited chemotherapeutic options,
drug resistance, and the absence of a vaccine, control of leishmaniasis remains a far-
fetched dream. The essential roles of HSPs in parasitic differentiation and virulence
and increased expression in drug-resistant strains highlight their importance in com-
bating the disease. In this review, we highlighted the diverse physiological impor-
tance of HSPs present in Leishmania, emphasizing their significance in disease
pathogenesis. Subsequently, we assessed the potential of HSPs as a chemotherapeu-
tic target and underlined the challenges associated with it. Furthermore, we have
summarized a few ongoing drug discovery initiatives that need to be explored fur-
ther to develop clinically successful chemotherapeutic agents in the future.
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Leishmaniasis is a neglected tropical disease primarily caused by more than 20
species of an obligate, intracellular pathogen Leishmania (1). The clinical manifes-

tations of leishmaniasis vary from nonfatal cutaneous leishmaniasis to life-threatening
visceral leishmaniasis. According to well-curated epidemiological data, up to 0.4 million
visceral leishmaniasis cases and 1.2 million cases of cutaneous leishmaniasis occur every
year (2). Despite decades of research, treatment of the disease is still a challenge before
the clinicians. Limited therapeutic options, the severe side effects of currently used
anti-leishmanial drugs (3, 4), the absence of vaccines (5), drug resistance (6), suboptimal
diagnostics (7), cyclical epidemiological patterns (1), and knowledge gaps in the disease
pathogenesis continue to obstruct global progress in restricting the disease (8).

The pathogen, Leishmania, is transmitted from the midgut of female phlebotomine
sandflies to macrophages of mammalian hosts through a sandfly bite to complete its
digenetic life cycle. The transmission of parasites from sandfly (vector) to mammals
(host) exposes them to a variety of environmental changes (9, 10). The cell copes with
it by undergoing several morphological changes to adapt to diverse environments (11).
There are two primary morphological forms in which the parasite exists: one in the
sandfly midgut as promastigotes and the other in mammalian macrophages as amas-
tigotes (12, 13). Promastigote form is spindle-shaped, noninfective flagellated, and
motile, whereas amastigote appears in the round, nonflagellated, and immobile form
(14). Also, in sandfly midgut, promastigote matures from noninfectious procyclic form
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to highly infectious metacyclic ones (15). During blood meal or sandfly bite, these
metacyclic promastigotes enter the mammalian body through the host dermis and are
engulfed by the macrophages (10). Soon after their entry, the virulent parasites start
differentiating into nonmotile amastigote form, which multiplies and persists in the
macrophages’ phagolysosomal compartment, ultimately causing the disease (10, 12).

Several studies suggest that the induction of heat shock proteins (HSPs) in several
Leishmania species is essential for their differentiation during distinct life cycle stages
and adaptation to high temperatures (16). Expression of HSPs is essential for the cell
survival and proliferation of leishmanial cells in both the stages of life. It imparts
thermotolerance, increased virulence, and better adaptability to the adverse host
environment (17–19). These proteins enable the parasite to perceive sudden changes
in the environment and respond at least partially by transcriptional regulation of HSPs
(16, 20). Additional mechanisms of gene regulation in the heat shock responses also
exist in the parasite, including regulation of gene expression at the level of mRNA
processing, mRNA stability, translation rate, posttranslation modification, and protein
metabolism (21). Leishmania has a highly flexible genome with genes organized into
long polycistronic gene clusters (22, 23). Environmental stresses can impact the expres-
sion level of different genes in diverse ways. It has been frequently observed that the
onset of stress does not necessarily influence the mRNA transcription; instead, it
increases the mRNA half-life resulting in upregulated protein synthesis (24). Therefore,
instead of the transcriptional upregulation, cells choose to increase the protein content
by enhancing the mRNA’s stability in the cell.

Transfer of Leishmania from sandfly midgut at �26°C to mammalian macrophages
at �37°C induces a heat shock response in the cells characterized by the upregulation
of a variety of HSPs to rescue cells from environmental stresses like high temperature
(25). In Leishmania, HSPs like HSP70, HSP83, and HSP100 are expressed constitutively
during both stages of the life cycle. However, as soon as the parasite enters host
macrophages and starts differentiating into amastigotes, the transcriptional levels of
these HSPs elevate (24, 26, 27). This transcriptional control in Leishmania is often
modulated by aneuploidy, gene copy number variations, or gene dosage to adapt to
the diverse environment during their digenetic life cycle (28–30). Nutrient availability
and favorable environmental conditions allow aneuploidy evident at in vitro stage of
the parasite, whereas lower levels of copy number variations are observed in harsh or
stress conditions (30).

Owing to the essential role of HSPs in almost all phases of cell growth, these proteins
have gained considerable attention as an excellent target for chemotherapeutic inter-
ventions of parasitic diseases, including leishmaniasis (31). Multiple studies have un-
derlined the importance of heat shock response for organismal survival by investigating
the lethal complications caused due to their suppression or pharmacological inhibition
(32–35). A recent trend of repurposing HSP inhibitor drugs previously approved to treat
other diseases has been observed (36). Nevertheless, more profound insights into the
mechanisms of heat shock machinery linked with immune evasion, host-pathogen
interaction, and disease progression in the context of leishmaniasis is required to
accelerate these drug discovery initiatives.

This review presents an overview of significant roles of various heat shock proteins
in cell differentiation, infectivity, encountering drug resistance, and the overall survival
of the Leishmania. The article examines the merits and challenges of heat shock
machinery of Leishmania as a potential druggable target, along with summarizing
ongoing drug discovery initiatives exploring the potential of heat shock protein inhi-
bition in leishmaniasis. In addition, the challenges that one can encounter in targeting
these proteins are also discussed.

HSPs AND LEISHMANIA: A NOTORIOUS CONNECTION

Heat shock proteins are a family of proteins secreted ubiquitously in most cell types
to provide the correct three-dimensional shape to all the newly synthesized polypep-
tides and prevent misfolding and aggregation of all the proteins (37, 38). As shown in
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Fig. 1, HSPs, in eukaryotes, are broadly classified into different subgroups: HSP110,
HSP90, HSP70, HSP60, small HSP (sHSP), etc., based on molecular weights, functions,
structural arrangements, and subcellular localization (39). Under physiological condi-
tions, HSPs interact with client proteins with the help of auxiliary proteins, such as Aha1
(activator of HSP90 ATPase 1) and P23, to regulate their maturation, activation, and
functioning (40, 41). In Leishmania, HSP100, HSP83, and HSP70 have been extensively
studied and have been of immense importance in both the cell cycle stages. These
HSPs and the auxiliary proteins (also referred to as cochaperones) play an essential role
in the parasite survival and differentiation at the mammalian body temperature (42).

Survival under diverse physiological conditions requires parasites to modulate their
metabolic pathways and maintain the proteome’s functional capabilities, which is
widely achieved by molecular chaperones (43). The correlation between the HSPs of
various parasitic organisms and their virulence potential is also widely acknowledged
(20, 44, 45). A basic representation of the diverse roles of HSPs at different cell cycle
stages is shown in Fig. 2. Emerging pieces of evidence highlight the role of posttrans-
lational modifications, such as phosphorylation in the regulation of HSPs at different
stages of the life of the parasite (46). It has been determined that when the promas-
tigotes infect mammalian cells, an increase in the level of proteins, including the HSPs,
occurs at both mRNA and protein levels. Subsequently, the increased protein synthesis
rate is lowered by increasing the phosphorylation of eIF2� in amastigotes and atten-
uating the translation machinery at the mRNA level (21). A summary of all the
characterized HSPs in Leishmania and their diverse physiological roles in various aspects
of parasite survival is provided in Table 1.

ROLES OF HSPs IN CELL GROWTH, DIFFERENTIATION, AND VIRULENCE OF
LEISHMANIA

Leishmania’s infection is mediated by several virulence factors that undergo folding,
processing, and trafficking before being secreted from the cells. Many chaperones
(HSP100, HSP90, and calreticulin) play crucial roles in the maturation process (47–51).
Correct intracellular processing of virulence proteins followed by their secretion is
critical for the survival of the parasites in the hosts; therefore, it can be well utilized as

FIG 1 Overview of heat shock proteins. In a eukaryotic cell, the role of HSPs starts soon as the newly synthesized
polypeptides exit through the ribosomal exit site into the cytosol. Several specific chaperones start acting on the
linear chains and fold them into a specific three-dimensional shape needed for most cellular proteins to localize
and perform their duties. Under several stress-like conditions, proteins may deviate from their folding paths and
may end up in semifolded or misfolded species, which may generate toxicity inside the cells. To eliminate such
proteins, chaperones may further attempt to refold the misfolded proteins or disaggregate, if they start polym-
erizing under disease or environmental distress conditions. If all attempts fail, the chaperones may also direct
specific proteins toward degradation pathways in association with cellular proteolytic systems, including the
ubiquitin-proteasome system and autophagy (152, 153). (B) The lower subsection shows a representative structure
and significant functions attributed to five prominent chaperone families (154).
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a therapeutic target (52). Similarly, inhibition of protein kinases, which mediate stage-
specific phosphorylation of HSPs to regulate their expression, could also be a promising
strategy for chemotherapeutic intervention (46). To provide an in-depth understanding
of the roles of HSPs in different facets of the parasite life, we summarize essential
aspects of a few prominent families of HSPs.

HSP100 Family. HSP100 is an essential class of molecular chaperones expressed in
eukaryotic organisms, including Leishmania. These proteins are well recognized for
their roles in stress tolerance. Unlike other HSPs, such as HSP70 and HSP83, which have
multiple gene copies, HSP100 is encoded by a single copy of clpB genes in Leishmania
(53). Interestingly, induction of HSP100 in Leishmania occurs only in the presence of
thermal stress, not by stresses caused due to acidic conditions or other chemical stimuli,

FIG 2 Diagram of the digenetic life cycle of Leishmania sp. Transient overexpression of HSPs is observed during the transformation of promastigote-to-
amastigote differentiation and helps in the survival and proliferation of amastigotes inside host macrophages. Macrophage infection is facilitated by the release
of virulence factors by promastigotes well packaged into exosomes. HSPs are crucial for exosomal packaging as well. In addition, HSPs are essential in
maintaining the proteostasis and regulation of signaling pathways in the parasite.
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such as hypoxia, oxidative or nitrosative stress, etc. (49, 54). HSP100 does not affect
the cell viability of the parasite at the promastigote stage. It plays an essential role
in proliferation and survival inside macrophages and prevents amastigote-to-pro-
mastigote differentiation, thereby strictly maintaining the parasite’s amastigote form
(55). This is partially achieved by controlling the expression of the amastigote-specific
A2 protein family (56, 57). Although HSP100 is essential for maintaining the amastigote
stage, the protein’s absence does not entirely block its differentiation. In contrast to
Saccharomyces cerevisiae, compensation for the loss of HSP100 by overexpression of
HSP70 has not been reported in Leishmania (53, 58). However, loss of HSP100 in
Leishmania is compensated partially by the overexpression of a nonessential virulence
factor P46 (59, 60). Interestingly, P46 restores the parasite virulence caused due to
absence of HSP100 as a form of phenotypic compensation.

In Leishmania, HSP100 is vital for the parasite virulence, although the precise
mechanism is not well known. Silverman et al. demonstrated that HSP100 mediates the
packaging of specialized proteins (including virulence factors) in the exosomes (61).
These exosomes deliver virulence proteins to the host macrophages (62). Exposure of
host cells with exosomes causes immunomodulation in the host cells by inhibiting the
production of proinflammatory cytokines, like gamma interferon (IFN-�), interleukin-8
(IL-8), tumor necrosis factor alpha (TNF-�), and activation of IL-10, an anti-inflammatory
cytokine. It is a widely accepted notion that macrophages use the T-cell-mediated
immune response to counter intracellular infections wherein greater levels of T-helper
1 (Th1) cytokines, such as IFN-� and IL-12, and suppressed levels of a regulatory
cytokine, e.g., IL-10, are strategically used by the host cells to eliminate the parasite
burden (63, 64). Exosome-mediated inhibition of IFN-� and TNF-� and the enhanced
levels of IL-10 in null mutants of HSP100 promote Th2 polarization of macrophages,
favoring disease pathogenesis (61).

HSP90 Family. HSP90 is one of the highly abundant classes of intracellular HSPs in
eukaryotes. These 90-kDa proteins have a central role in processing several client
proteins that are hubs of signaling networks in the cell and appear to participate in

TABLE 1 Role of heat shock proteins in Leishmaniaa

HSP Location(s) Function(s) Physiological role(s) Reference(s)

Aha1 Cytoplasm Mediates HSP90 functions Intracellular survival; cell uptake by
macrophages

97

Calreticulin ER Protein folding Intracellular survival; pathogenicity 87
CPN10 Mitochondria Protein folding Parasite internalization; intracellular

survival
111

CPN60 Mitochondria Protein folding; solubilization of aggregates Differentiation 110
Grp94 ER Phosphoglycan synthesis Virulence 155
Grp78 ER Unfolded protein response; translocation of secretory

proteins
Virulence 79

HSP90 Cytoplasm Protein maturation and activation Survival; virulence 114
HSP83 Cytoplasm Protein maturation cell signaling Cell cycle; differentiation 20, 66
HSP83 Cytoplasm Protein maturation cell signaling Resistance 124
HSP83 Cytoplasm Protein maturation cell signaling Virulence 156
HSP83 Cytoplasm Protein maturation cell signaling Immunogenicity 157
HSP70 Cytoplasm Protein folding; translocation Resistance 119, 127
HSP70 Cytoplasm Protein folding; translocation Oxidative stress tolerance 79
HSP70 Cytoplasm Protein folding; translocation Immunogenicity 157
HSP100 Cytoplasm Unfolding; proteolysis; solubilization of aggregates Infection 49, 55
HSP100 Cytoplasm Unfolding; proteolysis; solubilization of aggregates Stabilizing the amastigote stage 49, 55
HSP23 Cytoplasm Thermoprotection; membrane homeostasis Virulence; survival 17
HSP20 - - Immunogenicity 158
HSP78 - - Infection persistence 35
p23 Cytoplasm Mediates HSP90 functions Protection against HSP90-mediated

growth arrest
100, 102, 105

STI1 Nucleus; cytoplasm Mediates HSP90 functions Proliferation 18
SGT Cytoplasm Client protein recognition; assist large chaperones Intracellular survival 19
aAbbreviations used in table: Aha1, activator of HSP90 ATPase 1; ER, endoplasmic reticulum; CPN, chaperonins; Grp94, glucose-regulated protein 94; HSP, heat shock
proteins (large); SGT, small glutamine-rich tetratricopeptide repeat; STI1, stress-inducible protein 1.
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almost all kinds of cellular functions (40). In other words, HSP90 acts as a connecting
link between regulatory circuits of the cell and environmental stresses (65). HSP90
accomplishes its functions by forming large protein complexes with different sets of
cochaperones (47). In Leishmania, the HSP90 homolog is also referred to as HSP83 (66,
67). There are up to 18 gene copies of HSP83 in Leishmania, comprising 2.8 to 3% of the
total protein content in the promastigote stage (18, 24, 68). The protein content rises
further with an increase in temperature (24, 69). The parasite-stage differentiation
accompanies changes in the expression of HSPs at the transcriptional level (27).

HSP90 interacts with various cyclin-dependent proteins and plays a significant role
in cell cycle progression (70). The inhibition of HSP90 implies growth arrest at the G2

phase (20). It is essential to maintain both promastigote and amastigote stages, even
under normal stress-free conditions (71). These proteins are constitutively expressed in
general and are upregulated on the arrival of stress conditions (24). Inhibition of HSP90
could be compensated by enhanced expression of HSP100, which induces the synthesis
of amastigote-specific proteins and directs differentiation of the parasite toward the
amastigote stage (20). Glucose-regulated protein 94 (Grp94), the endoplasmic reticu-
lum (ER) variant, influences parasitic virulence by affecting the synthesis of lipophos-
phoglycan (LPG), a known virulence protein (11, 26, 72, 73). Inactivation of GRP94
results in reduced LPG synthesis, culminating in decreased virulence of the parasite
(26).

HSP70 Family. HSP70 is a family of highly conserved 70-kDa proteins that play an
essential role in protein folding and trafficking of client proteins (74). It carries out its
chaperoning function in an ATP-dependent manner with the help of a nucleotide
exchange factor and HSP40, a J protein (DnaJ) (75). HSP70 loci in Leishmania are well
conserved and contain two genes (HSP70I and HSP70II), except in L. braziliensis, which
lacks HSP70-II (67). Several isoforms of HSP70 are known to exist in Leishmania; for
instance, the ER-resident isoform Grp78, the mitochondrial isoform Grp75, and three
unique HSP70 variants (HSP70.4, HSP70.b, and HSP70.c), which are absent in human
beings (76, 77). All of these isoforms are constitutively expressed (24). HSP70 is
upregulated in promastigotes upon infection into the host macrophages, indicating an
essential role of the protein in host-pathogen interaction and parasite differentiation
(78).

Overexpression of HSP70 helps the promastigotes to neutralize the highly oxidative
environment of host cells and renders tolerance to the pathogen against temperature
changes and environmental stresses, including free radicals (79). The ER variant of
HSP70 (Grp78) has also been found to have an indirect role in parasitic virulence (80).
The single-copy gene of HSP70 from L. braziliensis is a probable candidate for serodi-
agnosis since it presents itself as an antigen, well recognized in the sera of patients (81).
Parasite HSP70 is also being used in species determination, exploiting its polymorphic
sequence through PCR amplification, followed by restriction fragment length polymor-
phisms (RFLP) analysis, a sensitive and rapid tool that can be directly applied on the
clinical samples (82–84). Further examination of the chaperone complexes in Leishma-
nia revealed that several proteins belonging to RNA metabolism (27%) and the trans-
lation process (7%), e.g., elongation factor-1� (EF-1�), EF-2, eukaryotic initiation
factors-4A (eIF4A), initiation factor-4A (IF-4A), etc., interact with HSP70, which in turn
affects a plethora of pathways inside the cell (85).

Calreticulin. Calreticulin, a conserved calcium-binding protein with an inherent
RNA-binding activity, is predominantly found in the ERs of eukaryotic cells, except
erythrocytes (86). This multifunctional protein is involved in multiple cellular processes,
such as chaperoning, signaling, enhancement of phagocytosis, gene expression regu-
lation, etc. (86, 87). The chaperoning function of this protein is necessary to ensure the
correct folding of glycoproteins in the cell (87). Calreticulin also helps the parasite in
responding to the changing environment during promastigote-to-amastigote differen-
tiation (48). Calreticulin is known to undergo several posttranslational modifications
(PTMs), such as glycosylation and phosphorylation, that may have implications in the
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organism’s heat shock response (88). However, the characterization of calreticulin in
Leishmania demonstrated that the protein mostly gets glycosylated for its activity, a
feature distinct from human calreticulin, where phosphorylation is mainly involved (48).

There are several secretory proteins in Leishmania that act as virulence factors and
are essential for host immune response evasion and pathogenesis (51, 62, 89). Calre-
ticulin mediates the proper folding of secretory proteins, including acid phosphatases,
a virulence factor essential for cell survival and adaptation to the host environment (62,
89–91). It has been anticipated that calreticulin modulates macrophage defense mech-
anisms in favor of the parasite, and its overexpression leads to reduced parasite survival
in the host cells (91). The exact mechanism remains elusive; however, any change
and/or impairment in the calreticulin-mediated functions may adversely impact para-
site virulence and survival in macrophages, thus proving lethal for the parasite (87, 91).

Cochaperones. Apart from the chaperones (both large and small), cells contain a
cohort of cochaperone proteins that participate in the formation of large chaperone
complexes, regulate ATPase activity of HSPs, and mediate processing of client proteins
(92). Leishmanial genome also encodes many cochaperones that help the organism
cope with environmental stress and allow cell proliferation inside the macrophages
(77, 93). Major cochaperones known to be found in Leishmania are activator of HSP90
ATPase 1 (Aha1), p23, stress-inducible protein 1 (STI1), and small glutamine-rich tet-
ratricopeptide repeat protein (SGT) (94–97). Aha1 is an �38-kDa protein known for
stimulating the ATPase activity of HSP90 (97). This protein has been characterized in
Leishmania and found to interact with leishmanial HSP90 stimulating its ATPase activity
by �10-fold (98). Aha1 is a nonessential protein that does not affect cell viability, but
changes in its expression level negatively impact the parasite infectivity (99).

Another cochaperone SGT binds both HSP70 and HSP90 to form large and stable
chaperoning complexes (96). The peculiar orthologues of SGT characterized in Leish-
mania are constitutively expressed in both the life cycle stages and are known to have
an essential role in the growth and survival of promastigotes (19). STI1 is a conserved
protein commonly induced under stress conditions (94). Interaction of STI1 and HSP90
in Leishmania is crucial for cell proliferation, multiplication, and heat shock response in
both promastigote and amastigote stages (18). Studies regarding its subcellular local-
ization suggest that it continuously shuttles back and forth across the nucleus (70). The
protein p23 is the smallest cochaperone to participate in the chaperoning pathway of
HSP90 (95). It binds with the HSP90 ATPase domain and mediates the release of client
proteins (100). The protein p23 is expressed constitutively and facilitates the maturation
of client proteins (65). It primarily arrests HSP90 ATPase activity, thus preventing
aggregation of denatured proteins (101, 102). In Leishmania, two isoforms have been
identified with a 30% similarity with the human orthologues (103). Although p23 itself
is not essential for the survival or virulence of the parasite, it plays a vital role in
protecting parasites from HSP90 inhibitor-mediated cell cycle arrest by binding to the
ATP-bound form of HSP90 dimer and preventing the ATP hydrolysis (104, 105).

sHSPs are small (�12 to 43 kDa), ubiquitous, and conserved ATP-dependent molec-
ular chaperones (106). They form complexes with misfolded/unfolded proteins and
prevent their aggregation, thus relieving cells from proteotoxic stress (107). In the
context of leishmanial viability in both the stages of the life cycle, two sHSPs, namely,
HSP23 and HSP40, are of utmost importance. HSP23 in Leishmania is essential for the
survival of parasite inside macrophages. It confers tolerance against heat and chemical
stress and is an important virulence factor required in the infection process (17). Under
stress conditions, cells exhibit rapid expression of HSP23, and any loss of expression or
function could be lethal due to the enhanced susceptibility of the amastigotes to the
extracellular stress at 37°C (17).

Although the Leishmania genome contains multiple genes of HSP40, the protein is
not well characterized (77, 93). Proteomic investigations have revealed that HSP40 gets
phosphorylated during differentiation from promastigotes to amastigotes (77, 108).
Furthermore, the upregulation of HSP40 has been observed in artemisinin-resistant
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cells (109). The presence of both phosphosites and the methyltransferase domain in the
protein highlights that the protein undergoes a range of posttranslational modifica-
tions. More studies are required to unravel the regulatory role and functional relevance
of HSP40 in the life cycle of the parasite.

Another important class of cochaperones is Cpn60, a 60-kDa GroEL homologs in
Leishmania. It has two Cpn60 gene family members (Cpn60.1 and Cpn60.2), considered
HSP60 orthologues in trypanosomatids. During heat stress, Cpn60.2 of Leishmania has
been found to upregulate by 2.5-fold (110). Similarly, CPN10, a GroES homolog in
Leishmania, is required for the survival of intracellular form and negatively controls the
internalization of the parasite by the human macrophages (111). This observation is
supported by the increased expression of the parasite in the amastigote stage (112).

PHOSPHORYLATION OF HSPs: A THERAPEUTIC CONTEXT

Recent shreds of evidence suggest that differentiation of parasite from promastigote
to amastigote is regulated by stage-specific differential phosphorylation of a few
chaperone proteins residing inside the parasitic cells, e.g., HSP70, STI1, and HSP90 (46).
Signals that can activate the differentiation process in the parasite primarily include
high temperature and reduced pH, leading to the phosphorylation of many cellular
proteins, including protein kinases (108). In Leishmania, the chaperones and cochap-
erones have also been subjected to increased phosphorylation during differentiation to
amastigote stages (113–115). Recently, HSP90 and HSP70 have been discovered as
essential substrates of mitogen-activated protein kinase 1 of L. donovani in addition to
other proteins of the HSP90-foldosome complex, namely, STI and SGT. It influences the
expression of crucial HSPs by regulating the stability and activity of HSP90-foldosome
proteins employing phosphorylation (116).

Leishmania also possesses phosphatases, such as PP5, which influences parasite
pathogenicity (117). Even though PP5 is nonessential, it impacts metacyclogenesis
(differentiation of noninfectious promastigotes to the infectious metacyclic form) and
adaptation upon stress conditions most probably through dephosphorylating HSP83
since loss of PP5 in the parasite attenuates its virulence potential. Phosphorylation of
HSP90 is required for fine-tuning the chaperone cycle of various client proteins (115).
Any alteration in these posttranslational modifications may hamper HSP90 function,
thereby affecting an organism’s adaptability to the diverse environments at distinct life
cycle stages (47, 118). It is presumed that HSPs coordinate with specific protein kinases
to cope with changing environments during differentiation and phosphorylation of
cochaperones, such as STI1, that are essential for parasitic viability, especially during the
pathogenic stage (18, 46). Based on these observations, it could be assumed that HSPs
and their respective protein kinases may provide promising drug targets against these
parasitic diseases; however, more studies needed to elucidate their mechanistic role
(114).

ROLE OF HSPs IN THE DEVELOPMENT OF DRUG RESISTANCE IN LEISHMANIA

Previous studies have presented several evidences that suggests a strong correlation
between the expression of HSPs and drug resistance in Leishmania. An elevated level
of HSPs has often been observed in different drug-resistant strains (119–121). Overex-
pression of HSPs, such as HSP70 in the case of L. tarentolae and both HSP70 and HSP83
in the case of clinical isolates of L. donovani (122), confers increased resistance to
pentavalent antimony (the first-line drug for treating leishmaniasis) (121), antifolate
methotrexate resistance (123), and nelfinavir resistance (120). Clinical isolates from
drug-resistant leishmaniasis patients have shown HSP90 accumulation (124). Similarly,
amphotericin B resistance is characterized by high expression levels of HSP90, HSP60,
and HSP70 (125).

Similarly, a comparison of proteomes of antimony-resistant and -susceptible strains
of three Leishmania species (L. braziliensis, L. infantum, and L. chagasi lines) has
demonstrated the accumulation of HSPs in the antimony-resistant cells (126). Surpris-
ingly, miltefosine resistance is correlated with the downregulation of HSP70 (HSPA9B)
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(127). Since several evidences highlight the upregulation of HSPs in case of drug
resistance, it is presumed that inhibition of HSPs may reverse the resistance to their
respective drugs. Although the underlying mechanism is not well understood, the
fundamental role of HSPs in the physiology of Leishmania cannot be undermined. The
upregulation of HSPs in response to drug resistance indicates that HSP accumulation
somehow assists the cell in tolerating drug-induced shock in a better manner (119).
Diverse opinions regarding the underlying mechanism exist throughout the literature.
Some of them advocate that HSP70 and HSP83 may inactivate the apoptotic pathway
that is usually activated by drugs like antimony in the parasite (119). Since the induction
of apoptosis is a common death mechanism affected by most antileishmanial drugs
(128, 129), the induction of HSPs may lead to either suppressing apoptosis or interfering
with the activities of proapoptotic proteins (124). In-depth examination of the overex-
pression of these stress proteins under drug resistance conditions may help in the
development of future antileishmanial chemotherapeutic strategies.

EXPLORING HSP INHIBITORS AS POTENT ANTILEISHMANIAL AGENTS: CURRENT
STATUS

The heat shock response is a highly coordinated event wherein multiple chaperones
participate together in the form of complexes to accomplish their specified functions
(40, 47, 128). Inhibiting chaperone machinery not only perturbs the proteostasis inside
the cells but also impairs several activities essential for pathogenesis and virulence. In
Leishmania, inhibition of HSPs may hinder with the transitioning between different
stages of the life cycle (105, 129). In addition, human HSP90 differs from the parasite
homolog in the domain region from amino acids 50 to 75 in terms of hydrophobicity,
allowing the design of specific inhibitors (130). The critical role of HSPs in cell growth,
differentiation, drug resistance, and phenotypic variation from their human ortho-
logues have made them a popular drug target (131, 132). Figure 3 depicts a few
possible consequences of HSP inhibition on the survival of both the stages of the
parasite as well as disease progression. Therefore, targeting the parasitic organisms’
chaperone system to combat the diseases they cause holds promising future perspec-
tives.

HSPs are already an attractive target in diseases like cancer and neurodegeneration,
where the stress response pathways have achieved encouraging milestones; however,
its relevance for parasitic infections has been realized lately and is still under investi-
gation (133–135). A number of ongoing studies have paved the way toward designing

FIG 3 Summary of possible consequences of HSP inhibition in both intracellular and extracellular stages of the
parasite. Inhibition of parasite HSP90 in promastigotes results in the induction of apoptosis and cell growth arrest,
whereas in amastigotes HSP90 inhibition causes autophagic alterations and downregulation of proinflammatory
cytokine molecules, such as TNF-� and IL-6, which in turn prevents the activation of macrophages (34, 145).
Subsequently, the hypoactive macrophage suppresses the formation of cutaneous lesions, thereby limiting the
progression of cutaneous leishmaniasis. HSP inhibition may also adversely impact the packaging of exosomes
essential for pathogenicity and result in a dramatic reduction in the parasite burden (61).
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and examining the therapeutic potential of HSP inhibitors as an antileishmanial agent
(32, 43). A list of inhibitors tested against HSPs in Leishmania is given in Table 2.
However, we still fall short when it comes to efficacy and translation of these inhibitors
to clinical levels, especially in leishmaniasis. Geldanamycin (GA), radicicol, 17-
aminoallyl-geldanamycin (17-AAG), and reblastatin are prominent HSP inhibitors that
have already been tested in treating diseases such as cancer (136). Repurposing them
in the treatment of neglected tropical diseases has been widely considered these days.
GA, an ansamycin-benzoquinone antibiotic, is one of the most recognized HSP90
inhibitors. It acts by competing with ATP for binding to the ATP pocket of HSP90. It
causes cell cycle arrest and apoptosis induction in the cells (129).

Treatment of L. donovani cells with high GA concentrations arrests cell growth in the
G2 phase and prevents stage differentiation by causing apoptosis (137). It has also been
known to inhibit HSP90 phosphorylation (115). Since HSP90 phosphorylation is highly
significant in terms of regulation of the heat shock response in the parasite, its
inhibition by GA imparts a detrimental effect on the growth and differentiation of the
parasite. Radicicol, a macrocyclic fungal antibiotic, is another classical HSP90 inhibitor
that binds to ATP-binding domain of the protein with greater affinity than geldana-
mycin and interferes with the binding of p23 with HSP90 and the formation of
chaperone complex (138). The compound is unstable and ineffective in vivo (139), but
its derivatives, such as oxime derivatives (e.g., KF58333) and resorcinol-containing
derivatives (e.g., NVP-AUY922 and STA-1474), have been effective in cancer cell lines
both in vitro and in vivo (59, 140, 141). Radicicol has also been shown to possess strong
antitrypanosomal activity at nanomolar concentrations both in vitro and in vivo (142).
The effects of GA and radicicol exposure on Leishmania resulted in the induction of
HSP100 and amastigote-specific proteins (the A2 family), along with arresting the cell
cycle in the G2 phase (20).

17-AAG is another well-known HSP90 inhibitor that has already been successfully
tested in cancer (143, 144). The molecule is also found to be active against Leishmania
both in vitro and in vivo (34, 145). Even at a low dosage, the inhibitor reduces parasite
load in the macrophages by severely compromising the production of proinflammatory
cytokines and oxidative moieties (34). The antileishmanial effects of 17-AAG are com-
parable to the most accepted second-line leishmaniasis drug, amphotericin B (145).
17-AAG induces cell cycle arrest in promastigotes at the G0/G1 stage. A combination of

TABLE 2 HSP inhibitors of Leishmaniaa

Inhibitor Target HSP Organism IC50 Reference(s)

Ap5A HSP78 L. donovani 15 �M 35
CKI-7 CK L. donovani �100 �M 159
D4476 CK L. donovani 30 �M 159
EGCG HSP70 L. braziliensis 278.8 �M 160
Geldanamycin HSP83 L. amazonensis 0.2 �M 33
IC261 CK L. donovani 78 �M 159

Liposomal 17-AAG HSP83 L. amazonensis 0.006 nM 148
HSP83 L. braziliensis 65 nM 145

Novobiocin HSP83 L. donovani 242 �g/ml 142, 161
PBCANP-polymyxin B HSP70 L. amazonensis 4.6 �M 162

Polymyxin B HSP70 L. infantum 169 nM 162
HSP70 L. amazonensis 59.2 �M 162

17-AAG HSP83 L. braziliensis 65 nM 34
HSP83 L. amazonensis 65 nM 34
HSP83 L. major 79 nM 34

17-DMAG HSP83 L. amazonensis 0.0861 �M 33
aAbbreviations used in table: Ap5A, P1, P5-di(adenosine-5=)-penta-phosphate ammonium; CK, casein kinase; EGCG,
epigallocatechin-3-gallate; PBCANP, poly(n-butylcyanoacrylate) nanoparticles; 17-AAG,
17-allylamino-17-demethoxygeldanamycin.
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17-AAG with edelfosine (a phospholipid) has been proposed to kill the parasite via an
apoptosis-like cell death pathway (146, 147). Despite its efficacy, 17-AAG failed to
progress through clinical trials because of hepatotoxicity and low solubility (134).
Therefore, to address these pharmacokinetic challenges, a liposomal formulation en-
capsulating hydroxypropyl-�-cyclodextrin complexed with 17-AAG has been prepared
that presents a higher therapeutic index with improved solubility (148).

Recently, an in vivo study has shown that P1,P5-di(adenosine-5=)-penta-phosphate
ammonium salt (Ap5A), an inhibitor of HSP78 in L. donovani, could be an excellent
antileishmanial drug candidate at least at the preclinical level (35). However, the use of
HSP inhibitors to treat intracellular parasitic infections is appealing only if it is exclu-
sively directed against parasitic protein targets without affecting the human counter-
parts. This can be achieved by exploiting the differences in the active site of the
orthologues. In this regard, a recent docking analysis has shown that HSP90 inhibitors,
such as GA and its derivatives, such as 17-AAG and 17-dimethylaminoethylamino-17-
demethoxy-geldanamycin (17-DMAG), have a greater affinity to HSP83/90 of L. ama-
zonensis than to human HSP90 (33).

Alkynyl derivatives of reblastatin, prepared by a chemobiosynthetic approach, have
also been found to exhibit remarkable efficacy against HSP90 in L. braziliensis, with
moderate differences in binding to their human counterparts (130). Another prelimi-
nary investigation has identified and screened several small molecules capable of
inhibiting ATPase activity of HSP90 from L. braziliensis through a coupled molecular
modeling and in vitro assay approach (32). The encouraging outcomes of this study
could lay a firm foundation for future drug development initiatives. However, a few
challenges make targeting this protein family complicated, such as the ability to
functionally compensate for the inhibition of one heat shock protein by modulating the
expression level of another (20, 149) and safeguarding parasitic cells from inhibitor-
mediated growth arrest through altering expression levels of cochaperones such as p23
and Aha1 (105).

Moreover, responding to environmental stresses by copy number, variations, or
aneuploidy for antagonizing the external stress in favor of the parasite poses difficulties
in therapeutic intervention (22). The flexibility of the genome and changes in the copy
numbers are not always correlated with changes at the transcript level but are
regulated through additional mechanisms that remain to be deciphered (29, 150). A
more in-depth insight into the structural and functional aspects of chaperones in
Leishmania and a firm understanding of the prevalent compensatory mechanisms in
the cell are required to overcome the existing challenges and to develop HSPs as useful
pharmaceutical targets.

CONCLUSIONS

Kinetoplastids encode the whole range of HSPs responsible for a wide range of
functions, from protein folding to preventing deposition of protein aggregates and
maintaining protein homeostasis under both normal and stress conditions in the cell
(77). Decades of understanding of these proteins and their mechanism of actions have
revealed the significance of heat shock response machinery in the digenetic life cycle
of Leishmania. Some components are essential, while others are required for parasitic
virulence, thereby presenting an excellent drug target (45, 55, 71). Inhibition of such
versatile cellular machinery is promising, and targeted inhibition of parasite HSPs could
provide novel solutions and cure this neglected tropical disease, leishmaniasis. How-
ever, there is still a long road ahead before we can reliably use HSP inhibition for clinical
purposes.

In order to target HSPs, the existing compensatory mechanisms should be studied
in detail for significant inhibition. For instance, GA and radicicol, the inhibitors of Hsp90,
may have opposing effects on the expression of a cochaperone, Aha1, that protects the
parasite under stressed conditions by regulating the activities of HSP90 in cooperation
with p23 (99). In a different study, the overexpression of p23 confers the protective
effect by interfering with the inhibitor’s binding with the HSP90 protein (105). A similar
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mechanism may occur in the case of other cochaperones. Such observations need to be
substantiated with future studies for better therapeutic intervention. A proteomic study
of L. braziliensis has identified several hypothetical proteins interacting with HSP70 (85).
Their functions and possible impact on physiology and pathogenicity of Leishmania are
yet to be studied. Moreover, HSPs are also linked with antileishmanial drug resistance
and tolerance (124, 127). Combination therapies should be encouraged to target
multiple HSPs or foldosome complexes at the same time to counter HSP compensation
mechanisms and drug resistance.

The importance of PTMs such as phosphorylation in chaperoning function should
also be studied more to understand the regulatory checkpoints for effective chemo-
therapeutic interventions (114, 151). A number of inhibitors effective in other proto-
zoan parasites remain to be tested in Leishmania. The development of compounds for
selective inhibition of HSPs in both parasite stages is ideal for antileishmanial therapies.
However, the biggest problem in targeting HSPs is posed by the structural similarity of
parasite HSPs to human orthologues. Future studies should focus on evaluating selec-
tivity and binding studies of currently tested inhibitors on both human and parasite
proteins. Studying conformational changes caused by the binding of inhibitors to the
domains, such as the N-terminal domains in HSP90, might help to achieve the selec-
tivity of inhibitors (130). Another knowledge gap is evident regarding HSP inhibition
downstream events or, in other words, underlying mechanisms of cell death due to HSP
inhibition are not clear.

Based on studies of the toxicity of HSP inhibition in humans, it can be antici-
pated that, most probably, dysregulation of signaling pathways due to HSP inhi-
bition is responsible. Nonetheless, more studies are required to substantiate the
anticipated notions (142). Phosphorylation enzyme (e.g., casein kinase and phos-
phatases such as PP5)-mediated parasitic intervention requires an in-depth under-
standing of the mechanism by which enzyme-HSP interactions influence client
proteins’ fate, thus determining parasite pathogenicity. Finally, the majority of HSP
inhibitors have only been tested at in vitro levels. Translation of these in vitro-tested
inhibitors to clinical levels is a big challenge, especially in the case of neglected
tropical diseases. Furthermore, the therapeutic index of the drug is a crucial
parameter that seeks attention as a low therapeutic index, leading to adverse drug
reactions that may compromise drug usage despite remarkable efficacy. Recently,
liposomal approaches have been applied to 17-AAG that increased its therapeutic
index along with improving pharmacokinetic parameters (148). These efforts should
be encouraged further.
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