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Abstract
Corona virus disease-19 (covid-19) is caused by a coronavirus that is also known as severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), and is generally characterized by fever, respiratory inflammation, and multi-organ failure in 
susceptible hosts. One of the first things during inflammation is the response by acute phase proteins coupled with coagula-
tion. The angiotensinogen (a substrate for hypertension) is one such acute phase protein and goes on to explain an associa-
tion of covid-19 with that of angiotensin-converting enzyme-2 (ACE2, a metallopeptidase). Therefore, it is advisable to 
administer, and test the efficacy of specific blocker(s) of angiotensinogen such as siRNAs or antibodies to covid-19 subjects. 
Covid-19 activates neutrophils, macrophages, but decreases T-helper cells activity. The metalloproteinases promote the 
activation of these inflammatory immune cells, therefore; we surmise that doxycycline (a metalloproteinase inhibitor, and a 
safer antibiotic) would benefit the covid-19 subjects. Along these lines, an anti-acid has also been suggested for mitigation 
of the covid-19 complications. Interestingly, there are three primary vegetables (celery, carrot, and long-squash) which are 
alkaline in their pH-range as compared to many others. Hence, treatment with fresh juice (without any preservative) from 
these vegies or the antioxidants derived from purple carrot and cabbage together with appropriate anti-coagulants may also 
help prevent or lessen the detrimental effects of the covid-19 pathological outcomes. These suggested remedies might be 
included in the list of putative interventions that are currently being investigated towards mitigating the multi-organ damage 
by Covid-19 during the ongoing pandemic.
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Introduction

Unfortunately, covid-19 related deaths in the Western hemi-
sphere have already reached many thousands as compared 
to hundreds in the developing countries. This may, in part, 
be due to that hydroxychloroquine (HCQ) is being heavily 
prescribed to covid-19 patients as one of the treatments for 
covid-19 sickness. This review addresses that a low non-
toxic dose of chloroquine (CQ) can benefit the patients 
against covid-19 (https​://www.world​omete​rs.info/coron​aviru​
s/) [1, 2]. It is important to test the concept that complica-
tions by covid-19 or viral myocarditis such as congestive 
heart failure (CHF) can be mitigated by HCQ (a more potent 
derivative of CQ) (Fig. 1).

Several drugs have recently been either suggested or 
being clinically administered to relive the symptoms of 
covid-19. These include dapagliflozin (sodium glucose co-
transporter 2; SGLT2 inhibitor; an antidiabetic), Lopinavir/
Ritonavir, Darunavir/Umifenovir (anti-HIV), Remdesivir 
(anti-Ebola), Favipiravir, and Dipyridamole (anti-hyperten-
sive) [2–13]. Also, an anti-acid (Famotidine) is also being 
promoted [14]. Drugs like Famotidine (tradename; Pepcid) 
are histamine receptor antagonists that are routinely used to 
treat, and prevent certain types ulcers, and to treat condi-
tions that cause the stomach to produce too much acid, and 
also to treat gastroesophageal reflux disease condition. Clini-
cal evidence of the role of histamine in heart has been well 
documented, and histamine receptor antagonist in hyper-
tension are cardioprotective [15–17]. Interestingly, HCQ is 
unique in the sense that, at low doses, it mitigates or blunts 
both the virus’s direct effects, as well as the immune reac-
tion/response. It is, therefore; important to employ a low 
dose HCQ to mitigate CHF, and viral myocarditis-induced 
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illness. In fact, a clinical study compared the suppressive 
effects of dipyridamole, and chloroquine on SARS-COV-2 
replication, and suggested a similar titer at a concentration 
of just 100 nM [3]. All this may suggest that this lower dose 
may be more effective clinically.

Proteinase and covid‑19

An association of covid-19, and angiotensin-converting 
enzyme-2; ACE2 (a metallo-endopeptidase) has been put 
forward. Hence, covid-19 effects can possibly be mitigated 
by an inhibitor of metallo-enzymes. Because cardiac matrix 
is highly unique, and in that very context a cardio-specific 
matrix metalloproteinase (MMP) inhibitor may well suit-
ably mitigate the blood-heart-barrier (BHB) leakage, and the 
subsequent dilated cardiomyopathy (DCM) phenotypes. We 
along this very line propose a cardiac-specific MMP inhibi-
tor regulator (i.e. tissue inhibitor of metalloproteinase;TIMP) 
to reduce the chances of mortality that is related to covid-19 
(Fig. 1).

HCQ intervention will be like the treatment with doxy-
cycline; a suggested MMP inhibitor as reported in the pres-
tigious journal; Nature Reviews for the purpose of tissue 
remodeling that reverses the endocardial endothelial (EE) 
dysfunction. Previously, we also demonstrated that an anti-
biotic mitigated matrix metalloproteinases (MMPs) acti-
vation during heart failure [18, 19]. However, it is worth 

mentioning here that other common antibiotics such as 
azithromycin, clarithromycin, and erythromycin belonging 
to the ‘macrolide’ class have been shown to increase the risk 
of cardiac arrhythmias or even cardiac death [20]. Although, 
the use of broad-spectrum antibiotics as an antimicrobial 
therapy is a lifesaving strategy for patients in the intensive 
care but antibiotics also dramatically increase the risk for 
nosocomial infections, for example, the hospital-acquired 
pneumonia [21]. In a different context, it is unclear whether 
a salubrious effect arising from the use of a probiotic could 
also mitigate the MMPs’ activation by covid-19. We showed 
by a 2-D zymography (that is MMPs’ function and the pro-
teome), the constitutive expression of MMP-2 in the control 
autopsy human heart sample; however, in the end-stage of 
the heart failure, the MMP-2, as well as, MMP-9 activities 
were found to be robust [22, 23]. More recently, we went on 
to provide an evidence that a long-term probiotic treatment 
could help decrease the MMPs’ activities [24] (Fig. 1). Fur-
ther, nicotinamide, and mitochondria via SIRT mechanism 
regulate bioenergetics as demonstrated by us way back in 
2002, showing that nicotinamide did alleviate chronic heart 
failure syndrome [25]. A little later in 2004, our laboratory 
revealed that doxycycline could mitigate the deleterious 
implications between the endothelial- myocyte interaction(s) 
during the heart failure condition [19].

By now we are aware that the thromboembolic complica-
tions are responsible for morbidity and mortality among the 
susceptible covid-19 patients; however, the data also suggest 
a possible multifactorial basis of these complications. While 
every effort is being made by the medical experts to treat 
patients by taking suitable preventive measures employing 
anticoagulation therapeutics to deal with the coagulation 
issues. Despite superb benefits with the use of systemic 
anticoagulation therapies, the data seem to be retrospective 
in nature thus raising some questions on the possible inter-
play of other confounders, as well as, long-term benefits 
and safety of the systemic anticoagulation approach [26–34].

Blood‑heart‑barrier (BHB) leakage

The endothelium, whether it is in the endocardium or 
in coronary or capillaries, is the primary barrier against 
BHB dysfunction. The tight-junction proteins, viz., con-
nexin-37 between endothelium and endothelium, con-
nexin-43 between endothelium and myocyte, myocyte 
and myocyte, and mitochondria (mito) and myocyte are 
the primary connexins; however, it is important to deter-
mine the details of the events and mechanism(s) of BHB 
leakage during covid-19 infection, though. The juxtacrine 
endothelial-myocyte (E-M), myocyte-myocyte (M-M), and 
mitochondria (mito)-myocyte uncoupling(s) [23, 35–40] 
are the hallmarks of cardiac failure (Fig. 1). The role 
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Fig. 1   HCQ, doxycycline, and the anti-acid mitigate CHF, and 
DCM, such as in aging, and viral myocarditis, caused by the chronic 
volume overload/preload. CHF instigates EE leakage and disrupts 
endothelial-endothelial, endothelial-myocyte, myocyte-myocyte and 
mitochondrial (Mito)-myocyte junctions. Activation of MMP-9 is 
the hallmark of CHF that disrupts connexin-37, and 43 leading to EE 
leakage, and DCM. HCQ, doxycycline, and anti-acid could help miti-
gate both CHF, and DCM. Abbreviations: HCQ; hydroxychloroquine, 
MMP-9; matrix metalloproteinase, EMMPRIN; extracellular matrix 
metalloproteinase inducer, CD-47; cluster of Differentiation 47
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of connexin-43 which connects myocyte-myocyte, and 
mitochondria (mito)-myocyte should also be studied in 
the productive covid-19 infection scenario [41–43]. It is 
already known that the connexin-37 connects the endothe-
lial and myocyte (E-M). In E-M, M-M, and mito-myocyte 
uncoupling(s), the role of MMP in degrading the con-
nexins that are responsible for causing BHB dysfunction 
is unclear, as of today. Basement membrane between the 
endothelium, and muscle contains an extracellular matrix 
(ECM), latent MMPs/TIMPs/nitric oxide; NO (the ternary 
complex) (Fig. 1). However, oxidative stress during CHF 
activates MMPs, and inactivates the TIMPs via the per-
oxinitrite, and tyrosine/arginine nitosylation process [22].

The usage of antioxidants has been widely mentioned 
in the literature for their beneficial effects in chronic con-
ditions because anthocyanins, phenolic acids, and carot-
enoids are the predominant phytochemicals that are pre-
sent in purple carrots, and cabbage. Accordingly, they have 
been promoted in treatment of the metabolic syndromes 
because anthocyanins improve dyslipidemia, glucose toler-
ance, hypertension, and insulin resistance. Moreover, these 
phenolic acids may also protect against the cardiovascular 
diseases and, in fact. the β-carotene was shown to protect 
against the oxidative processes, as well [44, 45].

Conclusion and perspective

The role of HCQ in cardiac, and skeletal muscle remod-
eling is novel. The mitigation of systemic remodeling 
during CHF by HCQ is an innovative approach. The car-
diac-specific MMP-9 can be inhibited by HCQ, and going 
by the foregoing discussion, it is therapeutically novel, 
including its potential clinical applications in the covid-19 
patients (Fig. 1).
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