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Summary.

Traditionally, asymptotic tests are studied and applied under local alternative (Aivazian, et al., 

1985). There exists a widespread opinion that the Wald, likelihood ratio, and score tests are 

asymptotically equivalent. We dispel this myth by showing that These tests have different 

statistical power in the presence of nuisance parameters. The local properties of the tests are 

described in terms of the first and second derivative evaluated at the null hypothesis. The 

comparison of the tests are illustrated with two popular regression models: linear regression with 

random predictor and logistic regression with binary covariate. We study the aberrant behavior of 

the tests when the distance between the null and alternative does not vanish with the sample size. 

We demonstrate that these tests have different asymptotic power. In particular, the score test is 

generally asymptotically biased but slightly superior for linear regression in a close neighborhood 

of the null. The power approximations are confirmed through simulations.
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1. Introduction

Uniformly most powerful tests exist only in rare statistical models - usually they exist for 

linear model with fixed/nonrandom predictors and normal distribution (Aivazian et al. 1985; 

Lehmann and Romano, 2005). On the other hand, asymptotic tests, such as the Wald, 

likelihood ratio, and score tests can be applied to a much wider variety of statistical 

distributions and models when the sample size, n, increases to infinity. For a short review of 

these test we refer the reader to a recent book by the author [9].There exists a widespread 

opinion that the three tests are asymptotically optimal and equivalent for large n, as stated by 

Rayner (1997), Young and Smith (2005), among many others. Because of this opinion, not 

much preference is given to what test to use to determine the desired sample size.

Usually, the treatment of asymptotic tests is reduced to the analysis with local alternatives, 

or in the terminology of Cox and Hinkley (1974), contiguous alternatives, based on the 
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concept of contiguity (Lehmann and Romano, 2005). It is a textbook result that the Wald 

and likelihood ratio tests are equivalent for alternatives at the distance of O(n−1/2) from the 

null value. The following warning on page 156 from a book by Robert Serfling (1980) is the 

impetus to the present work: “Therefore, under appropriate regularity conditions, the 

statistics λn, Wn and Vn are asymptotically equivalent in distribution, both under the null 

hypothesis and under local alternatives converging sufficiently fast. However, at fixed 

alternatives these equivalences are not anticipated to hold.” (Here, λn, Wn and Vn are 

likelihood ratio, Wald and score statistics, respectively.) Moreover, we argue that the study 

with contiguous alternatives is not appealing from the practical point of view. For example, 

it’s not applicable to the sample size determination where the alternative is fixed.

The goal of the present work is to analyze the two-sided tests in the presence of nuisance 

parameters using the power function with the emphasis on the global (or fixed) alternatives. 

Respectively, the local properties are expressed in terms of the first and second derivative 

evaluated at the null value of the parameter. The tests are then illustrated with linear 

regression and normally distributed predictor when the variance is unknown and logistic 

regression with Bernoulli covariate for which the asymptotic power function is derived in 

closed form.

It is natural to expect that the rate of rejecting the null hypothesis increases as the alternative 

gets farther from the null. However, Hauck and Donner (1977) and Væth (1985) showed that 

the Wald test may be aberrant in this respect - we investigate the aberrant behavior of the 

likelihood ratio and score tests as well.

Much of the effort, with some controversy, has been made on the comparison of the tests 

using the method of contiguous alternatives. In particular, several claims have been made 

that the Rao’s score test is superior to Wald and likelihood ratio test (Chandra and Joshi, 

1983; Chandra and Mukerjee, 1984). We confirm this claim for a linear model with random 

predictors in a close proximity to the null. Otherwise, these tests are different and it is 

impossible to claim an overall champion. Moreover, the score test is usually biased.

The organization of the paper is as follows. After introducing notation and definitions, we 

derive the power function for the Wald, likelihood ratio, and score tests in each of the 

following sections and illustrate it with linear and logistic regression models. The three tests 

are compared in terms of power.

2. Notation and definitions

Throuthout the paper, we deal with iid observations {zi, i = 1, …, n} having common density 

f = f(z; θ) dependent on a vector parameter θ =(β, γ); formally, θ1 = β. The first component, 

β, is treated as the parameter of interest and γ is treated as a p-dimensional vector of 

nuisance parameters (Pawitan, 2001). The null hypothesis is composite, H0 : β = β0 with the 

two-sided alternative, HA : β ≠ β0. For expository purposes, we shall assume that β0 = 0, so 

that the null hypothesis takes the form

H0:β = 0. (1)
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If T = T(z1, …, zn) is a test statistic such that the null is rejected when T > c, the power 

function for (1) can be expressed as a function of the alternative,

P (β; γ) = Pr(T > c ∣ θ) . (2)

Here, P(0; γ) = α is the the significance level or the size of the test (typically, α = 0.05) and |

θ means that the probability (2) is computed under the assumption that the true parameter is 

θ. We vary β but fix γ, so we treat (2) as a function of β. In this paper, the power function 

(2) is computed, or more precisely, approximated, for large n. This, fortunately, implies that 

P(0) does not depend on nuisance parameters. We assume that the necessary regularity 

conditions for asymptotic maximum likelihood estimation and hypothesis testing are 

fulfilled, such as the support of f does not depend on the parameter, differentiation under the 

expectation is valid and the power function is twice differentiable (Casella and Berger, 1990; 

Schervish, 1995; Bickel and Doksum, 2001).

The log-likelihood function is

l(β, γ) = ∑
i = 1

n
ln f zi; β, γ . (3)

The maximum likelihood estimator (MLE), (βML, γML), is the solution of 1 + p score 

equations

∂l(β, γ)
∂β = 0, ∂l(β, γ)

∂γ = 0 . (4)

The Fisher expected information matrix is defined as

I11 I12′
I12 I22

= − E

∂2 lnf
∂β2

∂2lnf
∂β ∂γ

∂2 lnf
∂γ ∂β

∂2 lnf
∂γ2

. (5)

(As a part of regularity conditions we assume that the information matrix is nonsingular.) 

Asymptotically, the variance of βML can be derived from the (1, 1)th element of the inverse 

matrix,

var βML = 1
nV (β), (6)

where

V (β) = 1
I11 − I12′ I22

−1I12
(7)

is the variance function evaluated at the alternative, β. In this formula, V is evaluated at the 

true value of the nuisance parameter, γ. When studying the likelihood ratio and score tests, 
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we shall evaluate V at other values which will be indicated as V (β|γ0). Sometimes, it is 

more convenient (especially for the Wald test) to deal with the standard deviation (SD) 
function, σβ = V (β).

Now we describe the local properties of the tests in terms of the first and second derivatives 

of the power function evaluated at the null, β = 0; see Rao (1973, p. 454). First, since we 

require the tests to have size α we assume

P(β)|β = 0 = α . (8)

Second, we want the test to be asymptotically (locally) unbiased, which means that the first 

derivative at the null is zero,

P′(0) = dP
dβ β = 0

= 0. (9)

Third, the local power for an unbiased test is determined by the second derivative,

P′′(0) = d2P
dβ2 β = 0

. (10)

The higher the value of the second derivative, the more powerful the test is for local 

alternatives. In fact, we can approximate the power as P(β) = α + 1
2P′′(0)β2 in the 

neighborhood of the null. Finally, the test is consistent if limn→∞ P (β) = 1 for all β ≠ 0.

Now we derive the power functions for the three tests and illustrate them with popular 

statistical models: linear and logistic regressions.

3. Wald test

The Wald test is based on the fact that under the null and large n, the ratio of the MLE to its 

standard error, sometimes called the Z-score, is normally distributed,

βML
SE βML

N(0, 1)

for large n. The test statistic is the absolute value of the Z-score with c = Z1−α/2, the (1 − 

α/2) quantile of the standard normal distribution, namely, Z1−α/2 = Φ(1 − α/2). The power 

function of the Wald test in large sample can be approximated as follows

PW (β) ≃ Φ −Z1 − α/2 + β
σβ

n + Φ −Z1 − α/2 − β
σβ

n , (11)

where sign ≃ means the approximation for large n. The validity of the approximations 

follows from Slutsky’s theorem and uniform convergence follows from continuity of 

derivatives (see details in Bickel and Doksum, 2001; Demidenko, 2004, p. 644). Apparently, 

the larger the n the better approximation.
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Property (8) holds for the Wald power. It is easy to see that Wald power is symmetric about 

the null, β = 0. Consequently, the Wald power is asymptotically unbiased, which can be 

verified directly by evaluating the derivative at zero,

dPW
dβ β = 0

= ϕ −Z1 − α/2
n

σ0
− ϕ −Z1 − α/2

n
σ0

× dV
dβ β = 0 = 0,

where ϕ = Φ′, the standard normal density. The test is consistent (or better to say 

asymptotically consistent) because limn→∞ PW(β) = 1 if β ≠ 0.

The second derivative of the power function (11) at the null takes the form

d2P
dβ2 β = 0

= 2n
V (0)ϕ Z1 − α/2 Z1 − α/2, (12)

so approximately in the neighbourhood of zero PW(β) ≃ α + nϕ + (Z1−α/2) Z1−α/2β2/V (0).

As follows from (11), the Wald power simplifies under z-parametrization,

PW (z) = Φ −Z1 − α/2 + z n + Φ −Z1 − α/2 − z n , (13)

where

z = β
σβ

(14)

can be treated as a theoretical counterpart of the Z-score statistic. We refer to (14) as the z-
ratio at the alternative, β. In applications, the z-ratio is called the effect size (Cohen, 1994). 

It is easy to show that the Wald power is an increasing function for β > 0 and a decreasing 

function of z for β < 0. In other words, the larger the absolute value of the z-function, the 

greater the power. The z-parametrization reappears in the power functions of the likelihood 

ratio and score tests for a linear model.

3.1. Linear regression

We illustrate the calculation of the Wald power with linear regression under normal 

distribution. Note that typically, the power analysis is conducted for the case when predictor 

x is fixed/nonrandom. We however, develop the power analysis for a more complicated 

model when x is random, or more precisely, normally distributed. Thus, vector z has a 

multivariate normal distribution; the first component is the dependent variable, y; the second 

component is the variable of interest, x; the rest are covariates combined in vector u. We test 

the significance of the coefficient, β, at the variable of interest, x. Without loss of generality, 

we can assume that the means of all regression variables are zero and the marginal variances 

and covariances are known:

x
u N 0

0 ,
σx2 σxu′

σxu Σu
.
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The linear regression is specified through conditional mean as

E(y ∣ x, u) = βx + τ′u, (15)

where var(y|x, u) = σ2. The conditional (error) variance, σ2, is unknown and subject to 

estimation along with the vector of regression coefficients. Linear regression is used as an 

example of hypothesis testing in many texts, but σ2 is assumed known (Cox and Hinkley, 

1974). A more realistic set up with unknown variance brings up several surprises, as we 

shall see later.

Since the distribution is normal and marginal variance-covariance parameters are known, the 

log density of z, up to a constant, is given by

lnf(z; β, γ) = − 1
2σ2 y − βx − τ′u 2 − 1

2 lnσ2, (16)

where γ =(τ, σ2). The information matrix takes the form

1
σ2

σx2 σxu′ 0
σxu Σu 0

0 0 1
2σ−2

,

so that the Wald power is given by (11) with

σβ = σ
σx2 − σxu′ Σu

−1σxu
. (17)

The Wald power function has a familiar V-shape, and it monotonically increases with |β| and 

approaches 1 - no surprises so far.

3.2. Logistic regression with binary covariate

In general regression problems, the distribution of z is defined through conditional 

distribution as f(z; θ) = f(y|x; θ) f(x; θ), where y is treated as the dependent variable and x as 

the vector of covariates. As in the previous example, statistical hypothesis is concerned with 

testing of the slope coefficient, β.

Here, we illustrate the Wald test with logistic regression and binary covariate. This means 

that both y and x are binary. The probability of the dependent variable is defined through 

conditional probability as

pr(y = 1 ∣ x) = eγ + βx
1 + eγ + βx .

The marginal probability of x is specified as Pr(x = 1) = px, which can be assumed known 

without loss of generality. Logistic regression is a member of the family of generalized 
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linear models (GLM, Bickel and Doksum, 2001). After elementary calculations, the 

information matrix takes the form

GBpx
(1 + GB)2

+
G 1 − px
(1 + G)2

GBpx
(1 + GB)2

GBpx
(1 + GB)2

GBpx
(1 + GB)2

,

where to shorten the notation, we let G = eγ and B = eβ. Applying formula (7), we derive the 

variance function:

V (β) = px(1 + G)2B + 1 − px (1 + GB)2

px 1 − px GB . (18)

For a small alternative, the Wald power can be approximated quadratically as

PW (β) ≃ α + px 1 − px G
(1 + G)2 nϕ Z1 − α/2 Z1 − α/2β2 . (19)

As follows from this formula, maximum power for small alternatives occurs for a 

symmetrically distributed covariate, px = 1/2. Using elementary calculus, one can show that 

symmetric distribution of the dependent variable leads to maximum power, G = 1 and P(y = 

1) = 1/2. Combining these facts, we obtain an upper bound for the Wald power, PW(β) ≤ α+

(n/16)ϕ (Z1−α/2) Z1−α/2β2. With a popular choice, α = 0.05, we have PW(β) ≤ 0.05 + 

0.0036nβ2. For example, to detect β = 1 with power 0.8, one needs at least n = 208 

observations.

The trouble with Wald power (11) begins when it is computed for large alternatives, because 

as follows from (18), the z-ratio (14) vanishes at infinity, limβ→±∞ z = 0. The fact that the 

Wald power for logistic regression may fall for large alternative was noticed by Hauck and 

Donner (1977); they termed it aberrant behavior. This negative property of the Wald test was 

later studied in a broader context of a family of exponential distributions by Væth (1985), 

and for a linear model by Fears et al. (1996). For large alternatives the Wald power decreases 

to the size of the test—see Figure 1 for a geometrical illustration. The power function is 

computed for α = 5% and Pr(y = 1|β = 0) = G/(1 + G) = 0.25, and px = Pr(x = 1) = 0.2 with 

n = 100. The quadratic approximation (19) is valid in a close neighborhood of the origin. 

The Wald power falls at β = −2.4 and beyond this point decreases back to α when β → −∞. 

We show four simulation results for alternatives β = −3, −2, 1/2, and 1 (the number of 

experiments equals 5,000). For large negative values of β, the power approximation (11) is 

not valid because n = 100 is too small. To account for change in the variance function at the 

alternative versus the variance at the null, we introduce the effective sample size,

ne = V (0)
V (β)n . (20)
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The effective sample size can be interpreted as the sample size modification for detection of 

a large alternative versus a local alternative due to the change of variance. For example, the 

effective sample size to detect alternative β = −2 with n = 100, as follows from (18), is

ne = B(1 + G)2

px(1 + G)2B + 1 − px (1 + GB)2
n = 32.

The effective sample size, one third the size of the original, explains why simulations at β = 

−2 in Figure 1 do not quite match the power: ne = 32 is simply not large enough for the 

Central Limit Theorem to give a good approximation.

As follows from z-parametrization (13), the value of the alternative where the monotonicity 

of the Wald power falls satisfies the equation

β dlnσβ
dβ = 1, (21)

which will be referred to as the Wald break-down equation. In Figure 2, we show the region 

within which the Wald power behaves well, meaning that it increases for β > 0 and decreases 

for β < 0. The boundary of the shaded region is where its derivative turns zero as defined by 

equation (21). Roughly, one could say that the Wald power for logistic regression is well-

behaved for alternatives in the interval (−2, 2).

4. Likelihood ratio test

The test statistic of the likelihood ratio (LR) test is

T = 2 max
β, γ

l(β, γ) − max
γ

l(0, γ) ,

which under the null has χ2-distribution with one degree of freedom, χ2(1). Hence, 

according to the likelihood ratio test, we reject the null if T > q1−α, where q1−α is the (1 − 

α)th quantile. Under the alternative, the maximizer of l(0, γ), which is referred to as a 
profile nuisance parameter, γ0, yields a biased estimator of γ. To derive the power function, 

we represent the rejection probability in the following way (Self et al., 1992),

pr T > q1 − α

= pr 2 max
β, γ

l(β, γ) − l(β, γ) + l(β, γ) − max
γ

l(0, γ) > q1 − α .

Using the biased estimation equation theory, one can prove that the maximizer of l(0, γ) 

converges to γ0 = γ0(β, γ), which is the solution to the equation

E(β, γ)
∂ lnf z; 0, γ0

∂γ0
= 0, (22)
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which will be referred to the limit profile nuisance parameter. Since

lim
n ∞

1
n l(β, γ) − max

γ
l(0, γ) = E(β, γ) lnf(z; β, γ) − lnf z; 0, γ0

with probability 1, the distribution of T under the alternative is χ2(1) with the noncentrality 

parameter 2nη(β), where

η(β) = E(β, γ) lnf(z; β, γ) − lnf z; 0, γ0 (23)

will be referred to as the η-function. Note that the η-function is nonnegative, specifically, 

η(β) > 0 for all γ ≠ γ0. Notice that for a local alternative (β → 0), we have γ0 → γ and 

η(β) → 0. The noncentrality parameter depends on β and γ, but we fix the latter and 

consider η only as a function of β.

Finally, the power function of the LR test can be expressed via Φ as

PLR(β) = Φ −Z1 − α/2 + 2nη(β) + Φ −Z1 − α/2 − 2nη(β) . (24)

An advantage of expressing the power in terms of Φ, is that one can apply it for a signed LR 

test, which is useful for one-sided hypotheses (Severeni, 2000). Note that the power is 

completely specified by function η.

The local equivalence of the Wald and LR tests has been established using the method of 

local alternatives, β = O(0), Serfling (1980). We prove this by showing that the second 

derivatives of the power functions evaluated at β = 0 are the same.

Theorem 1.—The Wald and LR tests are asymptotically unbiased (the first derivative of 

the power function vanishes at the null) and locally equivalent,

d2PW
dβ2 β = 0

=
d2PLR

dβ2 β = 0
.

The proof is found in the Appendix.

Note that if the η-function (23) is an increasing function of β then the likelihood ratio power 

increases with distance from the null. Now we derive the power function for the two 

regressions, as we did for the Wald power.

4.1. Linear regression

We derive the likelihood ratio power for linear regression from Section 3.1. The regression is 

specified by equation (15) with the log density (16). First, we find the limit profile nuisance 

parameter, γ0 = γ0(β, γ) as the solution to (22), which for linear regression is equivalent to 

the pair of equations, E y − τ*′u u = 0 and σ*
2 = E y − τ*′u 2. In this section, we omit the 

subscript (β, γ) on the expectation for brevity. Using some algebra, we obtain
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E y − τ*′ u u = E y − βx − τ′u + βx − τ* − τ ′u u
= E ε + βx − τ* − τ ′u u = βσxu − Σu τ* − τ ,

which yields the solution

τ* = τ + βΣu
−1σxu, (25)

σ*
2 = σ2 + β2 σx2 − σxu′ Σu

−1σxu . (26)

Now we find the noncentrality parameter. Specifically, we want to express function (23) 

through unknown parameters β, τ, and σ2. From (16) we obtain

η(β) = − 1
2 + 1

2σ*
2E y − τ*′ u 2 + 1

2 ln
σ*

2

σ2 = 1
2 ln 1 + β2

σβ
2 ,

where σβ is given by (17). Finally, the power function of the LR test on the z-scale (14) can 

be approximated as

PLR(z) = Φ −Z1 − α/2 + n ln 1 + z2 + Φ −Z1 − α/2 − n ln 1 + z2 . (27)

Clearly, the Wald and LR power are different for linear regression contrary to the case when 

σ2 is known. Further test comparisons are found in Section 6.

4.2. Logistic regression with binary covariate

Now we apply the LR test to the logistic regression with a binary covariate from Section 3.2. 

For this statistical model, we have

lnf(y, x; β, γ) = yγ + β(xy) − ln 1 + eγ + βx . (28)

To calculate the noncentrality parameter, we need the expectation:

E [lnf(y, x; β, γ)]
= γ pr(y = 1) + β pr(y = 1, x = 1) − px ln(1 + GB) − 1 − px ln(1 + G)
= γ GB

1 + GB px + G
1 + G 1 − px + β GB

1 + GB px − px ln(1 + GB) − 1 − px ln(1 + G) .

To find γ0, we take the derivative of (28) at γ = γ0 and β = 0,

d lnf y, x; 0, γ0
dγ = y − eγ0

1 + eγ0
.

We find the limit profile nuisance parameter, γ0, as the solution to the equation
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E(γ, β)
d lnf y, x; 0, γ0

dγ = E(γ, β)(y) − eγ0

1 + eγ0
= 0

or equivalently

GB
1 + GB px + G

1 + G 1 − px =
G0

1 + G0
,

where following our convention G0 = eγ0. After some simplification, we express G0 as a 

function of true β and γ as

G0 = G0(γ, β) = G 1 + GB + (B − 1)px
1 + GB − (B − 1)Gpx

. (29)

Finally, the η-function takes the form

η(β) = γ − γ0
GB

1 + GB px + G
1 + G 1 − px

+ β GB
1 + GB px − px ln(1 + GB) − 1 − px ln(1 + G) + ln 1 + G0 .

From elementary calculus, it is easy to show that the η-function has finite limits when β 
→∞ or β →−∞, meaning that the power does not approach 1 when the alternative goes to 

infinity. However, for mild values of γ and px, those limits are very close to 1 when n is 

fairly large. More details are found in Section 6.

5. The score test

The score test was originally developed by Rao (1948). This test is especially simple when 

the null hypothesis is simple. However, in the presence of nuisance parameters we need to 

derive the MLE for γ under the restrictive model β = 0 (see Pawitan (2001) for more detail). 

The idea of the score test is easy: if the null hypothesis is true then the derivative of the log-

likelihood function evaluated at null should be close to zero. Specifically, let γ0 return the 

maximum of the log-likelihood function under β = 0. In other words, γ0 is the MLE of the 

profile likelihood. It is proven that the distribution of the normalized derivative,

S = V 0 ∣ γ0
n

∂l 0, γ0
∂β (30)

is asymptotically normal with zero mean and unit variance, where V 0 ∣ γ0  is the asymptotic 

variance (7) evaluated at β = 0 and γ = γ0.

The derivation of the power function of the score test is similar to the derivation of the 

likelihood ratio test, mainly because both use the concept of the profile likelihood. Let γ0 = 

γ0(β, γ) be the solution to (22). Then the power function of the score test is derived from the 

following approximations somewhat similar to what we used for the Wald test:
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PS(β) = pr S > Z1 − α/2

= pr
V 0 ∣ γ0

n
∂l(β, γ)

∂β +
∂l 0, γ0

∂β − ∂l(β, γ)
∂β > Z1 − α/2

≃ pr
V 0 ∣ γ0

V (β) Z + n V 0 ∣ γ0
1
n

∂l 0, γ0
∂β − ∂l(β, γ)

∂β > Z1 − α/2 ,

Where Z N(0, 1). In terms of Φ, the power function can be approximated as

PS(β) = Φ −r(β, γ)Z1 − α/2 − n V (β)δ(β)
+ Φ −r(β, γ)Z1 − α/2 + n V (β)δ(β) , (31)

Where r(β, γ) = V (β)/V 0 ∣ γ0 , and

δ(β) = E(β, γ)
dlnf z; 0, γ0

dβ (32)

will be referred to as the delta-function. When β → 0, we have V (0|γ0) → V(0) and δ(β) 

→ 0, implying that PS(β) → 2Φ(−Z1−α/2) = α, the power of the score test at the null equals 

the size of the test (8). Regarding the unbiasedeness of the score test, it is easy to see that

dPS
dβ β = 0

= − ϕ −Z1 − α/2 Z1 − α/2
V (β)V 0 ∣ γ0

× dV
dβ β = 0

, (33)

so that it is unbiased if and only if the derivative of the variance is zero. For linear regression 

V does not depend on β and therefore the score test is unbiased. However in general the 

score test is asymptotically biased. We shall find out in Section 6 that this test is not 

equivalent to the Wald or likelihood ratio test even in the neighborhood of the null.

5.1. Linear regression

We illustrate the score power with linear regression as we did earlier for the Wald and 

likelihood ratio tests. The needed τ* and σ*
2 are defined by (25) and (26). Now we express 

function (32) through parameters β, τ and σ2. Assuming that the expectation is taken under 

the true parameters (β, τ, σ2), we obtain δ(β) = − β/ σβ
2 + β2  implying that on the z-scale the 

power takes the form

PS(z) = Φ − Z1 − α/2
1 + z2 − z

1 + z2 n + Φ − Z1 − α/2
1 + z2 + z

1 + z2 n . (34)

It is easy to see that PS(0) = α, and condition (8) holds. After some algebra, one may check 

that the score test is asymptotically unbiased—condition (9) holds. We shall compare this 

power approximation to that of the other two tests in Section 6.
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5.2. Logistic regression

As in Section 4.2, the limit profile nuisance parameter G0 is found as the solution to 

equation (22) provided by expression (29). Thus, to find the power, it suffices to find the 

delta-function (32). After some algebra and using (28), we obtain

δ(β) = E(γ, β)
lnf y, x; 0, γ0

∂β = GB
1 + GB − G0

1 + G0
px . (35)

The variance function, V was derived earlier and is given by (18); the variance at null is

V 0 ∣ γ0 =
1 + G0

2

px 1 − px G0
.

Unlike for linear regression, the score test is asymptotically biased for logistic regression. 

Namely, the first derivative at β = 0 given by (33) is not zero. We shall compare this test to 

the other two tests in Section 6.

6. Tests comparison

In this section, we compare the Wald, LR, and score tests using two regression models as 

examples: linear regression with an unknown σ2 under normal distribution and logistic 

regression with binary covariate.

We start our analysis with linear regression. It is convenient to compare the tests on the z-

scale using representations (13), (27) and (34). From (14), it is easy to see that for each test 

the second derivatives on the original β-scale and the z-scale are related through a 

coefficient, which is the reciprocal of the variance at the null,

d2P
dβ2 β = 0

= 1
V (0)

d2P
dz2 z = 0

.

Theorem 2.

All three tests are asymptotically unbiased for linear regression under a normal distribution 

with an unknown σ2 (the first derivative of the power function evaluated at the null 

vanishes). The power function of the Wald test is uniformly greater than that of the LR test 

(β ≠ 0). The second derivatives of the three tests at the null are as follows:

d2PW
dz2

z = 0
= d2PLR

dz2
z = 0

= 2ϕ Z1 − α/2 Z1 − α/2n, (36)

d2PS
dz2

z = 0
= 2ϕ Z1 − α/2 Z1 − α/2(n + 1) . (37)

Thus, the score test is slightly superior in a close neighborhood of the null.
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Proof.

The asymptotic unbiasedeness of the tests (the first derivatives vanish at zero) have been 

noted previously. The superiority of the Wald over the LR test follows from an elementary 

inequality ln 1 + z2 < |z| for all z ≠ 0. The second derivative of the Wald test at β = 0 has 

been derived earlier (12). The second derivative of the LR test follows from (34). The 

evaluation of the second derivative of the score test (37) is somewhat tedious but 

straightforward. A slight superiority of the score test in the neighborhood of the null follows 

from the fact that the difference of the derivatives is 2ϕ(Z1−α/2)Z1−α/2 although this 

difference rapidly diminishes on the relative scale as n →∞.■

We illustrate the power approximation of the three tests in Figure 3 with linear regression y 
= βx + τu + ε where all random variables have normal distributions with zero mean, 

var(x) = σx2, var(u) = σu2, var(ε) = σ2 The power functions of the Wald, LR, and score tests are 

plotted as functions of the z-ratio (14) with n = 100, σx = σ = 1, ρxu = 0.9 and τ = 1, 

assuming that the significance level |z| = 5%. Notice that the power functions are very close 

in the interval |z| < 0.2 with the maximum difference around z = 0.5.

Now we compare the three tests for logistic regression with a binary covariate. See Figure 4 

as an example with α = 0.05, px = Pr(x = 1) = 0.2, Pr(y = 1|x = 0) = 0.1 (G = 1/9), and n = 

500. We intentionally use a rare parameter set up (px = 0.2) because at symmetry (px = 0.5 

and G = 1) the power functions are practically identical. Recall the Wald and LR power 

functions have zero derivatives and the same second derivative at β = 0. However, the first 

derivative of the score test is positive at β = 0 meaning that the power of the score test is 

slightly less in the neighborhood to the left of the null. Recall that the Wald power falls to α 
when β →−∞ or β →∞ which is not true for the LR and score tests. Although the LR 

power does not approach 1 when β →−∞ the limit is very close to 1. In order to test the 

power approximations, we conducted simulations for β = −1 and β = 0.5 (the number of 

experiments is 5,000)–simulations and power approximations are in good agreement.

7. Discussion and summary points

Asymptotic tests are at the heart of statistical inference. Early authors studied which test is 

superior. For example, Madansky (1989) raised this question, and in early edition of Rao’s 

book it was conjectured that the score test is locally more powerful than the other two. 

(There is no such conjecture in the latest, 1973 edition of the book!) Yes, as follows from 

Theorem 2, there exists a slight superiority of the score test for linear regression in a close 

proximity to the null. However, for other statistical models this superiority disappears-

moreover, the score test is generally biased (the first derivative is not zero) which means that 

for a double-sided test the score power will be less on one side of the null.

The main points of the paper are as follows:

• The Wald test may exhibit aberrant behavior for some statistical models, namely, 

the power increases and then drops to the size of the test as the alternative 

approaches negative infinity. For logistic regression with a binary covariate, the 
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Wald test behaves well for alternatives in the interval (−2, 2). The chance that the 

likelihood ratio or score test have aberrant behavior is smaller, but still exists.

• The Wald and LR tests are asymptotically unbiased (the first derivative of their 

power function vanishes at the null), but the score test is generally biased. The 

Wald and LR tests are locally equivalent (the second derivatives are the same at 

the null), but the score test is not.

• It is well known that all three tests are the same for a linear model under the 

normal distribution when the error variance, σ2 is known. However, when σ2 is 

unknown (nuisance parameter) the tests are different. The power of the Wald test 

is higher than that of the LR test for all alternatives, but locally the tests are 

equivalent. The score test for this model is also asymptotically unbiased and has 

slightly higher power in close proximity to the null.

• The behavior of the tests changes from distribution to distribution and from one 

statistical model to another. Even members of the same family of generalized 

linear model (linear and logistic) have quite different test properties. Especially 

drastic are the differences for low probability and/or larger true values of 

nuisance parameters.

• Simulations show a good agreement with power approximations especially for 

moderate parameter values.

• No test is superior over another in the whole range of statistical models and 

distributions. For example, tests are close for moderate parameter values, 

particularly when px is around 1/2. However, tests may be very different with 

extreme parameter values, such as for rare events in logistic regression (px ≃ 0). 

Thus, different tests may be optimal for different statistical models, moreover for 

different ranges of the alternative.

Besides theoretical interest, the power analysis has an important application for study 

design, particularly in epidemiology and clinical trials. Usually, one wants to determine the 

sample size required to achieve a specified power or minimum detectable difference (the 

alternative beta value). Several commercial and noncommercial software packages are 

available on the market. However, there is no consensus on what test to use as the basis for 

the sample size determination–some authors use the Wald test (Whittemore, 1981), some the 

likelihood ratio test (Self et al., 1992 and Shieh, 2000) and some the score test (Self and 

Mautitzen, 1988) mainly because of the popular opinion that asymptotic tests are all the 

same. True, when alternatives are close to null and nuisance parameters do not take extreme 

values, the powers look alike. However, in some cases, we plan studies for large alternatives 

such as in epidemiologic studies with gene—gene or gene—environment interaction or 

observational studies of rare diseases (cancer), see Duchateau (1998) and Gauderman (2002) 

for examples. In such studies, the choice of the test becomes crucial. The test used for the 

sample size determination should be the same as the test in future significance testing 

(Demidenko 2007, 2008).

Much additional work is to be done in the following areas: (1) Extend our power analysis to 

one-sided tests and the multivariate null hypothesis; (2) identify what asymptotic tests are 
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optimal for specific statistical models, such as members of generalized linear model family, 

and (3) improve power approximations for extreme values of alternative and nuisance 

parameters, particularly when the effective sample size is small.

Finally, the study of the tests in this paper, as well as in many others, relies on standard 

conditions on the density function, such as independence of the density support on the 

parameter. In my private conversation with S.A. Aivazian, he told me that one of the 

problems he considered in his doctoral dissertation, was studying superefficient estimation 

and the respective statistical inference when the support of the distribution dependens on the 

unknown parameter, like in the uniform distribution with unknown upper limit.

8.: Appendix.

Proof of Theorem 1

The fact that the first derivative of the Wald power vanishes at β = 0 was proven in Section 

3. For the LR power, we have

dPLR
dβ = n

2 ϕ −Z1 − α/2 + 2nη(β) − ϕ Z1 − α/2 + 2nη(β) dη/dβ
η(β) .

This implies that the LR test is asymptotically unbiased (9) because η(0) = 0 (we show 

below that dη/dβ/ η(β) is a finite number at zero).

Now we evaluate the second derivative of the power function at zero. Using the property that 

dϕ/dx = −xϕ(x), we obtain

d2PLR
dβ2

β = 0
= nϕ Z1 − α/2 Z1 − α/2

(dη/dβ)2

η(β) β = 0
. (38)

Since the numerator and denominator with the η-function are both zero we need to consider 

the limit. From L’Hopital’s rule

lim
β 0

(dη/dβ)2
η(β) = 2 lim

β 0

(dη/dβ) d2η/dβ2

dη/dβ = 2 d2η
dβ2 β = 0

,

so that (38) is rewritten as

d2PLR
dβ2 β = 0

= 2nϕ Z1 − α/2 Z1 − α/2
d2η
dβ2 β = 0

.

Thus, the evaluation of the second derivative of the power reduces to the evaluation of the 

second derivative of the η-function. We aim to find the second derivative of η at zero. 

Interchanging expectation and differentiation from (23), we obtain d
dβ E(β, γ). This implies

Demidenko Page 16

Model Assist Stat Appl. Author manuscript; available in PMC 2021 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dη
dβ = − d

dβ E(β, γ) lnf z; 0, γ0 = − ∂
∂γ0

E(β, γ) lnf z; 0, γ0
′ dγ0

dβ .

From differentiation of an implicit function, we have

dγ0
dβ = − ∂

∂γ E(β, γ)
∂ lnf(z; 0, γ)

∂γ
−1 d

dβ E(β, γ)
∂ lnf(z; 0, γ)

∂γ ,

but

d
dβ E(β, γ)

∂ lnf (z; 0, γ)
∂γ = I12, ∂

∂γ E(β, γ)
∂ lnf(z; 0, γ)

∂γ = I22,

which results in dγ0/dβ = − I22
−1I12. Finally, the second derivative of the η-function at zero is

d2

dβ2E(β, γ)(lnf (z; β, γ)) −
dγ0
dβ

′ ∂2
∂γ0

E(β, γ) lnf z; 0, γ0
dγ0
dβ β = 0

= I11 − I12′ I22
−1I22I22

−1I12 = I11 − I12′ I22
−1I12 .

Combining the results, we arrive at the second derivative at the null

d2PLR
dβ2 β = 0

= 2nϕ Z1 − α/2 Z1 − α/2 I11 − I12′ I22
−1I12 ,

which coincides with the second derivative of the Wald test (12). This means that the Wald 

and LR tests are locally equivalent.
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Figure 1. 
The Wald power and its quadratic approximation for logistic regression with a binary 

covariate, α = 0.05, Pr(y = 1|β = 0) = 0.25, Pr(x = 1) = 0.2, and n = 100. The Wald power 

falls at β = −2.4. Simulations (▲) are good match of the power approximation especially for 

positive alternatives (Nexp=5,000).
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Figure 2. 
The power function is increasing for positive alternative and decreasing for negative 

alternative for (β, px) within the gray region. Approximately, the Wald power is an 

increasing function of the distance from the null if |β| ≤ 2.
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Figure 3. 
Power of three tests for linear regression with unknown σ2 on the z-scale (n = 100, σx = σ = 

1, ρxu = 0.9, τ = 1 with α = 0.05). All three tests have the same size (α) and the first 

derivative vanishes at β = 0. The Wald and likelihood ratio tests have the same second 

derivatives at the null, but the second derivative of the score test is higher (actually 

invisible). However, globally, the Wald test is superior.

Demidenko Page 21

Model Assist Stat Appl. Author manuscript; available in PMC 2021 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Three power functions for logistic regression with a binary covariate, px = 0.2, G = 1/9, n = 

500 with α = 5%. The first derivative of the Wald and likelihood ratio tests vanishes, but the 

derivative of the score test power is positive at β = 0. Simulations for β = −1 and 0.5 are in 

good agreement with the power approximations.
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