
© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com

Cerebral Cortex, November 2020;30: 5686–5701

doi: 10.1093/cercor/bhaa138
Advance Access Publication Date: 9 June 2020
Original Article

O R I G I N A L A R T I C L E

Evaluating the Sensitivity of Resting-State BOLD
Variability to Age and Cognition after Controlling
for Motion and Cardiovascular Influences:
A Network-Based Approach
Peter R. Millar 1, Steven E. Petersen1,2,3, Beau M. Ances2,3,
Brian A. Gordon 1,3, Tammie L. S. Benzinger3, John C. Morris2 and
David A. Balota1,2

1Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130,
USA, 2Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA and
3Department of Radiology, Washington University in St. Louis, St. Louis, MO 63130, USA

Address correspondence to Peter R. Millar, One Brookings Drive, Campus Box 1125, St. Louis, MO 63130, USA. Email: pmillar@wustl.edu

Abstract
Recent functional magnetic resonance imaging (fMRI) studies report that moment-to-moment variability in the BOLD signal
is related to differences in age and cognition and, thus, may be sensitive to age-dependent decline. However, head motion
and/or cardiovascular health (CVH) may contaminate these relationships. We evaluated relationships between resting-state
BOLD variability, age, and cognition, after characterizing and controlling for motion-related and cardiovascular influences,
including pulse, blood pressure, BMI, and white matter hyperintensities (WMH), in a large (N = 422) resting-state fMRI
sample of cognitively normal individuals (age 43–89). We found that resting-state BOLD variability was negatively related to
age and positively related to cognition after maximally controlling for head motion. Age relationships also survived
correction for CVH, but were greatly reduced when correcting for WMH alone. Our results suggest that network-based
machine learning analyses of resting-state BOLD variability might yield reliable, sensitive measures to characterize
age-related decline across a broad range of networks. Age-related differences in resting-state BOLD variability may be
largely sensitive to processes related to WMH burden.
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Introduction
Cognitive neuroscientists most often apply functional magnetic
resonance imaging (fMRI) to analyze region-specific mean lev-
els of task-related change or spontaneous correlation in the
blood oxygen-level-dependent (BOLD) signal. These methods
have provided valuable insight into in vivo human brain func-
tion and the intrinsic organization of brain networks (for review,
see Fox and Raichle 2007). More recently, a growing body of

research has begun to consider moment-to-moment variabil-
ity in the BOLD signal over a given time-course as another
potentially important measure of interest in cognitive neuro-
science (for review, see Garrett, Samanez-Larkin, et al. 2013;
Grady and Garrett 2014).

Specifically, BOLD variability appears to be sensitive to differ-
ences across the lifespan. Extreme groups comparisons between
healthy younger and older adults have revealed widespread
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patterns of age-related reduction in BOLD standard deviation
(SD) during brief fixation blocks (Garrett et al. 2010), task perfor-
mance (Garrett et al. 2011; Grady and Garrett 2018), and extended
resting-state scans (Kielar et al. 2016; Grady and Garrett 2018).
This general finding has been replicated in larger, continuous
lifespan samples using other measures of BOLD signal variabil-
ity, including fractional amplitude of low-frequency fluctuation
(Hu et al. 2014) and mean square successive difference (Nomi
et al. 2017). Although these studies often report negative rela-
tionships between age and BOLD variability broadly distributed
throughout gray matter, likely spanning several networks, some
sparser regional positive relationships are also observed within
the same studies (e.g., Garrett et al. 2010; Nomi et al. 2017).

In addition to age, BOLD variability may also be related to
cognition. This proposal is supported by task-driven fMRI stud-
ies demonstrating that greater BOLD variability is associated
with faster, more accurate, and more consistent performance
in a wide range of behavioral tasks, including simple motor
responses, perceptual decision-making, spatial working mem-
ory, and trait judgments (Garrett et al. 2011; Guitart-Masip et al.
2016; Grady and Garrett 2018). Furthermore, potentially trait-
like relationships have also been demonstrated between resting-
state BOLD variability and cognitive measures acquired out-
side the scanner, including flanker task performance (Mennes
et al. 2011) and factor scores of fluid intelligence and episodic
memory (Burzynska et al. 2015b). Although, like the age differ-
ence relationships, some region-specific negative relationships
between BOLD variability and behavior have been reported as
well (Garrett et al. 2011; e.g., Burzynska et al. 2015b; Guitart–
Masip et al. 2016).

Together, the negative relationships with age and positive
relationships with behavior suggest that BOLD variability might
reflect a sensitive brain signal that declines in older adults. The
mechanism underlying these relationships, however, remains
unclear. Some authors have proposed that BOLD variability
may reflect a pattern of neural processing optimized for
situations of environmental uncertainty (Grady and Garrett
2018). Under this view, a neural system that allows for ongoing
exploration of potential activation states might afford optimal
processing of unexpected stimuli and/or a more flexible set of
responses (Deco et al. 2011). Others have suggested that greater
dynamic range (observed as BOLD variability), particularly in
network hubs, might afford efficient information processing
within and between networks, thus supporting fluid cognitive
abilities (Burzynska et al. 2015b). Other efforts have suggested
possible links between BOLD variability and dopaminergic
neuromodulation (Garrett et al. 2015; Guitart-Masip et al.
2016), a mechanism implicated more broadly in models of
neurocognitive aging (Backman et al. 2006). Further work
is necessary to disentangle these competing accounts and
interrogate the mechanistic interpretation of BOLD variability.
However, each of these interpretations assumes that BOLD
variability reflects a true signal of neural processing. In the
present report, we are agnostic to the specific mechanism and
instead focus on methodological refinements to address the
limitations of the previous work. These approaches might serve
to test mechanistic accounts and evaluate potential clinical
utility of resting-state BOLD variability measures in future
studies of both health and disease. In this light, the present
project has five distinct goals.

First, the influence of head motion and global signal artifact
has not been well characterized in the previous literature on
BOLD variability. In other areas of functional neuroimaging,

particularly functional connectivity, there has been considerable
interest in head motion (Power et al. 2012; Satterthwaite et al.
2012; Van Dijk et al. 2012). Consequently, the field has advanced
through the development of principled methods to identify and
control for motion-related confounds (Power et al. 2014, 2015).
Indeed, head motion, heart rate variability, and respiratory vari-
ability have been shown to be positively associated with SD of
the global resting-state BOLD signal, even after denoising via
motion parameter, white matter, and cerebral spinal fluid (CSF)
regression (Power et al. 2017). Furthermore, age is also positively
associated with head motion, notably within BOLD variability
datasets (e.g., Nomi et al. 2017). Hence, a priori one might expect
that age-related differences in BOLD variability might actually
increase with stricter motion control. This interpretation was
supported by an early BOLD variability study, which reported
that applying more “extended” preprocessing stages, including
independent component analysis (ICA) denoising and regres-
sion of motion parameters, white matter, and CSF time series,
resulted in both lower estimates of voxel-wise BOLD SD and
stronger relationships between BOLD SD and age, as compared
with “basic”preprocessing (Garrett et al. 2010). However, depend-
ing on the anatomical specificity and direction of these relation-
ships, it is possible that motion and global signal artifacts might
confound or obscure the effect of interest. In either case, careful
parametric investigation of state-of-the art artifact rejection
procedures should more systematically characterize the role of
motion in BOLD variability estimates.

Second, some authors contend that resting-state BOLD
variability may reflect vascular, rather than neuronal, factors.
Indeed, there is evidence that age relationships with resting-
state BOLD variability are reduced or eliminated after controlling
for measures of cardiovascular health (CVH) and/or cerebral
blood flow (Tsvetanov et al. 2015, 2019). However, it is also
worth noting that one other study has observed consistent age
relationships with resting-state BOLD variability after correcting
for estimates of cerebral blood flow and cerebrovascular
reactivity (Garrett et al. 2017). Hence, it is possible that
changes in cardiovascular and neurovascular factors may
contribute to age-related differences in resting-state BOLD
variability. However, it is unclear whether cognitive relationships
with BOLD variability may be similarly sensitive to vascular
mechanisms. Indeed, there is emerging evidence that age-
related disruptions in neuro-vascular coupling may contribute
to reductions in neural efficiency and cognitive decline (for
review, see Abdelkarim et al. 2019), but these influences have not
been examined in the context of BOLD variability during resting-
state or task performance. As previously described, relationships
between resting-state BOLD variability and behavior are well
documented, notably within samples of a limited age range of
younger (Mennes et al. 2011) or older adults (Burzynska et al.
2015b)—samples which presumably should include a relatively
limited range of CVH. Furthermore, in task-driven studies, BOLD
variability has also been shown to modulate as a function of
task difficulty within younger adult samples (Garrett et al.
2014), suggesting a possible link to cognitive demands. Hence,
it is important to consider the extent to which vascular factors
(here including measures of pulse, blood pressure, body mass
index [BMI], and white matter hyperintensities [WMH]) might
contribute to resting-state BOLD variability relationships with
cognition, as well as with age. WMH may reflect progressive
small vessel disease associated with CVH across the lifespan
(Schmidt et al. 1999; Pantoni 2010), whereas other cardiovascular
measures (i.e., pulse, blood pressure, BMI) may be more sensitive
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to current CVH. However, it is also possible that WMH may also
be sensitive to distinct pathological processes, including, for
instance, traumatic brain injury (Marquez De La Plata et al. 2007)
or multiple sclerosis (Filippi et al. 2011).

Third, regional specificity of BOLD variability relationships
has most often been assessed in a voxel-wise manner or using a
data-driven latent variable partial least squares approach (PLS,
Krishnan et al. 2011). Since voxel locations are not constrained
by underlying anatomical structure, these methods do not allow
for the estimation of BOLD variability within anatomically dis-
tinct or functionally coherent regions (Wig et al. 2011). If resting-
state BOLD variability is indeed an important property of the
system, its relationships should be topographically organized
in a meaningful structure, which can be observed in fMRI at
the level of areas or networks. Organization at this level can
be observed in voxel-wise patterns, but statistical thresholding
procedures limit the interpretation of potentially informative
marginal or trend-level network patterns. Furthermore, aver-
aging estimates of BOLD variability within areas or networks
should increase signal-to-noise ratio and mitigate the problem
of multiple statistical comparisons, compared with a voxel-wise
approach. Functional connectivity researchers have recognized
these concerns in the context of defining network nodes (Wig
et al. 2011) and have benefited from the development of ROI
atlases dividing the brain into putative areas (Power et al. 2011;
Yeo et al. 2011; Gordon et al. 2016). Additionally, the multivari-
ate PLS approach can offer limited interpretability and is not
as broadly used as other modeling procedures. Hence, in the
present study, we will use an atlas-based ROI approach to study
the anatomical patterns in resting-state BOLD variability at the
level of areas and networks.

Fourth, evidence of age-related differences in BOLD variabil-
ity comes mostly from studies with relatively small samples and
extreme groups comparisons (but for exceptions, see Hu et al.
2014; Nomi et al. 2017). Hence, it is unclear whether BOLD vari-
ability is sensitive to continuous or more subtle age differences
(e.g., middle age vs. older adulthood). This level of sensitivity
would be useful if the estimates of BOLD variability are to be con-
sidered as potential biomarkers for distinguishing healthy aging
trajectories from pathology, for example, Alzheimer disease. The
present study explores a large sample of well-characterized,
cognitively normal participants.

Fifth, and finally, the evaluation of BOLD variability as a
potential clinically relevant signal might benefit from the appli-
cation of multivariate, supervised machine learning techniques
(for review, see Nielsen et al. in press). Specifically, methods such
as support vector regression (SVR) afford prediction of contin-
uous individual values (e.g., age or disease severity) based on
multivariate inputs (e.g., region-specific patterns of BOLD vari-
ability or functional connectivity) using a model trained on sep-
arate observations. Machine learning methods have an applied
advantage over regression approaches in that they assess and
optimize the ability of a model to predict independent cases
outside the observed training set, whereas regression models
are limited to the fit of the model to the set of observed cases
(Yarkoni and Westfall 2017). Hence, SVR would be useful to
assess whether resting-state BOLD variability might serve as
a generalizable biomarker of age-related or pathological pro-
cesses. These methods have been recently applied to resting-
state functional connectivity data, resulting in sensitive, con-
tinuous prediction of development (Nielsen et al. 2019). In the
area of age-related decline, there is also a growing body of work
using similar machine learning methods to predict age from

functional and structural imaging measures (for review, see Cole
and Franke 2017). Importantly, these studies have demonstrated
that deviations from normative lifespan trajectories of these
measures may be sensitive to neurodegenerative disease and
cognitive decline. If resting-state BOLD variability is indeed a
meaningful signal, it may yield unique clinical utility in this
effort to identify biomarkers of healthy and early pathological
changes.

The present study advances the study of resting-state BOLD
variability by addressing each of the five topics discussed above.
Specifically, we will characterize and maximally control for the
influence of head motion and global signal-related effects on
estimates of resting-state BOLD variability. We will also evaluate
whether cardiovascular factors might contribute to relation-
ships between resting-state BOLD variability, age, and cogni-
tion. Furthermore, we will examine these relationships at the
level of putative brain areas and networks using an indepen-
dently generated, network-based ROI atlas and will test age rela-
tionships with resting-state BOLD variability in a large sample
of cognitively normal participants spanning a continuous age
range from middle age to older adulthood. Finally, we will use a
machine learning approach to evaluate the individual prediction
accuracy of age and cognition from multivariate patterns of
resting-state BOLD variability. This approach may contribute to
the mechanistic understanding of resting-state BOLD variability
by systematically addressing potential contaminating variables
and evaluating network-level organization of these effects. Fur-
thermore, our approach may advance potential clinical applica-
tion by assessing and enhancing the reproducibility of resting-
state BOLD variability analyses, as well as applying sensitive,
multivariate predictive techniques to evaluate its utility as an
age-related biomarker.

Materials and Methods
Participants

A sample of 422 older adult participants was selected from a
larger set of participants enrolled in longitudinal studies at the
Charles and Joanne Knight Alzheimer Disease Research Center
at Washington University in St. Louis. The sample was selected
on the basis of having a minimum value of usable resting-state
fMRI data (see below), cognitive normality, as carefully assessed
by trained clinicians using the Clinical Dementia Rating (Morris
1993), and absence of severe psychiatric conditions. See Table 1
for a summary of demographic and descriptive measures in the
sample. A subset of participants (N = 207) had multiple longitu-
dinal resting-state scan sessions available. Longitudinal scans
occurred approximately once every 3 years. These longitudi-
nal sessions were used only to assess test–retest reliability of
resting-state fMRI measures. All procedures were approved by
the Human Research Protection Office at Washington University
in St. Louis. All participants provided informed consent prior to
clinical assessment, psychometric testing, and neuroimaging.

Psychometric Battery

Participants completed a battery of psychometric tests. In
order to investigate relationships between resting-state BOLD
variability and global cognitive function, we examined perfor-
mance on a subset of tasks across multiple cognitive domains,
including measures of episodic memory (Free and Cued
Selective Reminding Test [FCSR]: free recall score; Grober et al.
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2 1988), semantic fluency (Animal Naming; Goodglass and Kaplan
1983), processing speed (Trail Making A, Armitage 1946), and
executive function (Trail Making B, Armitage 1946). As shown
in Supplementary Table 1, these measures were significantly
correlated in the expected directions (absolute rs = 0.24–0.56,
Ps < 0.001). As described previously (Aschenbrenner et al. 2018),
each measure was standardized to the sample mean and SD.
A global cognitive composite measure was calculated as the
average across the standardized psychometric measures (after
reverse-scoring the standardized Trail Making measures, which
were based on completion time rather than correct responses).

CVH Measures

Following Tsvetanov et al. (2019), we attempted to form a com-
posite of CVH. Measures of CVH included resting pulse, systolic
blood pressure, and BMI. In addition, we included estimates of
white matter hyperintensity (WMH) lesion volume. WMH vol-
umes were assessed with a fluid-attenuated inversion recovery
sequence, after segmentation using the Lesion Segmentation
Tool (Schmidt et al. 2012) for SPM 8. We calculated a composite
measure of CVH as the average of the standardized measures
of pulse, systolic blood pressure, BMI, and WMH. However, as
shown in Supplementary Table 2, correlations among the four
measures were fairly small (rs = −0.06–0.17). Moreover, WMH
volume stood out as having relatively strong relationships with
both age (r = 0.56, P < 0.001) and resting-state BOLD variability
(r = −0.25, P < 0.001), in comparison to the other CVH measures.
Hence, we evaluated a global CVH composite (including WMH)
and also a singular estimate of WMH. Importantly, the low
correlations with other CVH measures suggest that WMH might
capture specific variance within the sample that is not broadly
related to general CVH.

Scanning Protocol and Preprocessing

MRI data were obtained using two separate Siemens Trio 3 T
scanners equipped with a standard 12-channel head coil. A one-
way analysis of variance revealed that there were significant
age differences between the two scanners, F = 6.53, P = 0.011,
raising the possibility that age differences in resting-state BOLD
variability might be confounded by differences in the scanners.
Thus, we replicated the results of our analyses of age effects
after controlling for scanner as a factor of non-interest.

Structural and functional scans were acquired using
methods described previously (Brier et al. 2012). Structural scans
were acquired using a sagittal T1-weighted magnetization-
prepared rapid gradient echo sequence (MPRAGE; TR = 2400 ms,
TE = 3.16 ms, flip angle = 8◦, field of view = 256 mm, 1-mm
isotropic voxels), as well as an oblique T2-weighted fast spin
echo sequence (FSE; TR = 3200 ms, TE = 455 ms, 256 × 256
acquisition matrix, 1-mm isotropic voxels). Resting-state
functional scans were acquired using an interleaved whole-
brain echo planar imaging sequence (EPI; TR = 2200 ms,
TE = 27 ms, flip angle = 90◦, field of view = 256 mm, 4-mm
isotropic voxels). Participants completed two consecutive 6-
min runs (164 volumes each) of functional imaging, during
which they were instructed to stay awake and fixate on a visual
crosshair.

Both resting state runs were processed together. Initial
preprocessing followed conventional methods, as described
previously (Shulman et al. 2010; Brier et al. 2012). Briefly, these
steps included frame alignment correction for asynchronous

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
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slice-time acquisition, debanding correction for interleaved slice
intensities, rigid body transformation for motion correction
within and across runs, bias field correction, and mode 1000
normalization. Transformation to an age-appropriate atlas
template in 711-2B space was performed using composition of
affine transforms connecting the functional volumes with the
T2-weighted and MPRAGE images. Head movement correction
was included in a single resampling that generated a volumetric
timeseries in isotropic 3-mm atlas space.

Additional processing was performed to allow for nuisance
variable regression (Fox et al. 2009). First, masks of whole brain,
gray matter, white matter, and CSF were generated from T1

images in FreeSurfer (Fischl 2012). Second, two indices of frame-
wise motion were calculated across the functional timeseries,
including framewise displacement (FD; Power et al. 2012), which
was based on the summed realignment estimates, and deriva-
tive of RMS variance over voxels (DVARS), which was based
on framewise changes in signal intensity within the whole
brain mask. Third, timeseries data were subjected to a temporal
band-pass filter (0.005 < f < 0.1 Hz). Fourth, timeseries data were
subjected to nuisance variable regression, including six motion
parameters, as well as the timeseries estimates from the whole
brain (global signal), CSF, ventricle, and white matter masks, as
well as the derivatives of these signals. Finally, timeseries data
were spatially blurred (6-mm full width at half maximum).

Preprocessed timeseries data were subjected to framewise
censoring based on the motion estimates. Specifically, volumes
were censored if they exceeded a threshold value of FD (we
compared results from thresholds of 0.2 and 0.3 mm, see Results)
or if DVARS was greater than 2.5 SD from the participant’s mean
value. Motion-related differences in the number of censored
frames might confound the magnitude and/or reliability of BOLD
variability estimates. Thus, we analyzed resting-state BOLD vari-
ability within a subset of 120 randomly selected usable frames
from either run for each participant. Participants with fewer
than 120 usable frames were excluded (N = 21).

Calculation of Resting-State BOLD Variability

Final timeseries data were averaged across voxels within a set
of 298 ROIs from an expanded version of a previously defined
atlas (Power et al. 2011; Seitzman et al. 2020), including 243 10-
mm spheres in cortical areas, 28 8-mm spheres in subcortical
areas, and 27 8-mm spheres in the cerebellum (see Seitzman
et al. 2020, for a figure). Importantly, each of these ROIs has
been assigned to one of 13 networks, including: somatomotor
(SM), lateral somatomotor (SML), cingulo-opercular (CO), audi-
tory (AUD), default mode (DMN), parietal memory (PMN), visual
(VIS), fronto-parietal (FPN), salience (SAL), subcortical (SUB), ven-
tral attention (VAN), dorsal attention (DAN), and cerebellum
(CER). In each ROI, we calculated the SD of the BOLD signal over
the 120 selected usable frames. These BOLD SD values served as
our regional estimates of resting-state BOLD variability and as
features in our machine learning analyses.

Support Vector Regression

SVR analyses were conducted using the e1071 package in R
(Meyer et al. 2017). Briefly, SVR is a supervised machine learning
technique in which a model is trained to identify multivariate
relationships between a set of features (i.e., resting-state BOLD
SDs in the 298 ROIs) and continuous labels (i.e., age, average head
motion, or task performance). We performed epsilon-insensitive

SVR, as described previously (Dosenbach et al. 2010; Nielsen
et al. 2019). Briefly, in each training fold of epsilon-insensitive
SVR, a regression line is fit in multivariate space between the
feature set values and the label values. A tube of width epsilon
is defined around the regression line. Data points outside this
tube are penalized, while points inside the tube are not. The
penalty factor C determines the trade-off between training error
and model complexity. All SVR analyses were performed with
epsilon = 0.00001 and C = infinity, based on previous reports pre-
dicting age from functional connectivity data (Dosenbach et al.
2010; Nielsen et al. 2019).

Importantly, the SVR model is trained on a subset of cases
(the training set), allowing for the assessment of predictive accu-
racy of the model to generate labels based on the feature set in
an unseen set of cases (the testing set). Specifically, we evaluated
predictive accuracy using a 10-fold cross-validation procedure.
For each of the 10 folds, a nonoverlapping set of 10% of the
sample was set aside to serve as the testing set for that fold. The
remaining 90% served as the training set for the multivariate
model. Thus, across the 10 folds, the SVR model predicted a
label value (e.g., model-predicted age) for each participant in
the total sample. We assessed predictive accuracy of the model
by computing the R2 value, as well as the mean absolute error
(MAE), between the model-predicted label values and the true
label values for each participant.

Using these methods, we tested the predictive accuracy of
SVR models trained on the full feature set of resting-state BOLD
SD values from all 298 ROIs. Specifically, we tested the per-
formance of these models to predict age, head motion, and
cognitive function as labels of interest. Head motion labels
were defined as mean FD observed in the resting-state scans,
either before applying framewise censoring (precensored) or
after (postcensored). Additionally, to assess whether resting-
state BOLD SD could predict randomly selected values by capital-
izing on noise, we attempted to predict a control label, defined as
the original age values randomly permuted across participants
in the sample (permuted age). Importantly, in order to charac-
terize the influence of head motion on these relationships, we
tested each SVR model across a parametric range of motion
correction procedures. Specifically, we assessed relationships
with resting-state BOLD SD in the following datasets, which rep-
resent increasingly conservative attempts to control for motion
and global signal artifacts: 1) without nuisance regression or
framewise censoring, 2) with nuisance regression and liberal
framewise censoring (FD < 0.30), 3) with nuisance regression
and conservative framewise censoring (FD < 0.20), 4) with nui-
sance regression and conservative censoring (FD < 0.20) within
a restricted sample of participants with low head motion (mean
FD < 0.25), and 5) with nuisance regression and conservative
censoring (FD < 0.20) within a further restricted sample of par-
ticipants with very low head motion (mean FD < 0.20).

Assessment of Network Specificity of Relationships

Anatomical specificity of relationships with resting-state BOLD
SD at the level of networks was assessed in two ways. First,
univariate regional correlations were calculated between the
measure of interest and resting-state BOLD SD within each
of the 298 ROIs, grouped by the functional network. Signifi-
cance of network-level relationships with resting-state BOLD
SD was tested using a bootstrap approach. Specifically, we ran-
domly generated 10 000 bootstrap samples by resampling the
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Figure 1. (A–D) SVR prediction results for age (A and C) and head motion (B and D). Label values predicted by the model are plotted as a function of the true value. SVR

prediction results are displayed for resting-state BOLD SD values from data without nuisance regression or framewise censoring (A and B) and from the final denoised
data (C and D). (E) SVR model prediction performance for true age labels, randomly permuted age, precensored FD, and postcensored FD across a range of artifact
rejection procedures. Model prediction accuracy is plotted as variance explained, R2, for each model.

full dataset with replacement. In each bootstrap sample, we cal-
culated the correlation coefficient with the measure of interest
in each ROI and then averaged the correlation values across ROIs
within each network. Aggregating across bootstrap samples, we
then calculated the empirical 95% confidence interval around
the average correlation coefficient for each network.

Second, we also assessed the multivariate predictive accu-
racy of networks using modified SVR methods. Specifically, we
used a network-based feature selection approach, in which we
attempted to predict a measure of interest from a limited feature
set of resting-state BOLD SD in regions restricted to a single
network (e.g., only regions from the default mode network).
Since larger networks should be biased to perform better simply
due to a greater number of features, which might capture signal
related to the variable of interest by chance, we compared SVR
performance for network-specific feature sets to a bootstrapped
distribution of 10 000 randomly selected feature sets (i.e., ran-
dom regions from any network), which were matched in the
number of total features. Hence, this bootstrapped distribution
serves as an appropriate null model to test whether signals relat-
ing resting-state BOLD SD to a measure of interest are localized
to specific networks or instead broadly distributed throughout
the brain (Nielsen et al., in press).

Results
Reliability of Resting-State BOLD Variability

Since resting-state BOLD variability is a relatively underexplored
fMRI measure, we first sought to examine the test–retest relia-
bility of these estimates. One previous report has demonstrated
that the estimates of BOLD SD exhibit excellent split-half reli-
ability during resting fixation (r = 0.97) and task performance
blocks (rs = 0.91–0.95; Garrett, Kovacevic, et al. 2013). Yet, we are
unaware of any previous examinations of the reliability of BOLD

variability across different sessions. Here, we assessed test–
retest reliability of resting-state BOLD SD across relatively long
intersession intervals (on average 3 years) among participants
who were cognitively normal at both scans. Importantly, to com-
pare their reliability against other established fMRI measures,
we compared the estimates of resting-state BOLD variability
(defined as average BOLD SD across all ROIs) to functional con-
nectivity estimates from the same resting state fMRI dataset,
including average intranetwork correlation values within each
of the same networks (see Supplementary Fig. 1 for the resting-
state correlation matrix). As shown in Supplementary Table 3
and Supplementary Figure 2, we observed fair test–retest corre-
lation in resting-state BOLD SD over a 3-year interval (r = 0.58).
Importantly, this reliability was better than or comparable to
that observed for the established estimates of intranetwork
functional connectivity (mean r = 0.45, range = 0.30–0.60). Of
course, reliability of resting-state BOLD SD is important to know
because the test–retest correlation sets a limit on how much
variance can be accounted for by other variables of interest.

Influence of Motion Denoising on Sensitivity of
Resting-State BOLD SD to Age and Motion

In order to characterize the influence of head motion on resting-
state BOLD SD and its relationship with age, we evaluated the
accuracy of SVR prediction for age and motion, based on mul-
tivariate feature sets of BOLD SD. Prior to advanced stages of
motion denoising (nuisance regression and framewise censor-
ing), resting-state BOLD SD was sensitive to age. As shown
in Figure 1A, the SVR model was able to significantly predict
participants’ age based on BOLD SD inputs (r = 0.46, P < 0.001,
R2 = 0.21, MAE = 6.00), as expected considering previous demon-
strations of this relationship (e.g., Garrett et al. 2010). However,
in the same dataset, BOLD SD estimates were also highly sensi-
tive to individual differences in mean head motion (see Fig. 1B;

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
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r = 0.56, P < 0.001, R2 = 0.32, MAE = 0.05). The multivariate pat-
tern of resting-state BOLD SD explained a greater proportion of
variance in head motion (R2 = 0.32) than it did in age (R2 = 0.21),
suggesting that age-related variance in resting-state BOLD SD
might be contaminated by differences in head motion in this
sample. Indeed, age was positively associated with head motion,
r = 0.10, P = 0.03.

We then assessed the extent to which head motion influ-
enced the relationship between age and resting-state BOLD
SD by maximally controlling for motion and global signal arti-
facts via nuisance regression (including global signal regres-
sion), framewise censoring, and exclusion of high-motion par-
ticipants, which reduced the sample to 254 usable participants.
After these conservative controls for motion, the sensitivity of
resting-state BOLD SD to age replicated with roughly the same
effect size (see Fig. 1C; r = 0.46, P < 0.001, R2 = 0.21, MAE = 6.40).
In contrast, the variance in head motion explained by resting-
state BOLD SD was drastically reduced (see Fig. 1D; R2 = 0.06,
MAE = 0.03), although prediction of motion was still statistically
significant (r = 0.25, P < 0.001).

To parametrically characterize the effectiveness of denoising
procedures, we examined similar SVR model predictions from
intermediate stages of preprocessed resting-state BOLD SD fea-
ture sets. As shown in Figure 1E, even after nuisance regression
and relatively liberal framewise censoring (FD < 0.30), BOLD SD
was still sensitive to head motion (r = 0.44, P < 0.001, R2 = 0.20,
MAE = 0.06), with a similar effect size to that observed for age
in the same dataset (r = 0.44, P < 0.001, R2 = 0.22, MAE = 6.23).
However, with increasing control for motion, including a stricter
framewise censoring threshold (FD < 0.20) and exclusion of
participants with very high (FD > 0.25) or high (FD > 0.20)
head motion, motion-related variance in resting-state BOLD
SD steadily declined, while the sensitivity to age remained
consistently high (see Fig. 1E). These patterns were similar
for the measures of head motion calculated before or after
framewise censoring. Although these stricter motion controls
necessarily result in smaller sample sizes (i.e., Ns = 422 vs. 254), it
is unlikely that the reduction in sensitivity to motion was driven
by limited statistical power, as the sensitivity to age remained
robust in the same restricted samples. Moreover, SVR prediction
of permuted age was consistently low in all datasets, suggesting
that the other models capture meaningful relationships with
age and motion, rather than simply explaining random variance
by chance. Altogether, these results clearly indicate that resting-
state BOLD SD is influenced by head motion in relatively
noisy data and that conservative methods of motion control
are effective in minimizing this influence. Importantly, the
sensitivity of resting-state BOLD SD to age remains robust across
increasingly conservative motion denoising procedures.

Anatomical Specificity of Age and Motion Relationships
with Resting-State BOLD SD

We then assessed whether age and motion were related to
resting-state BOLD SD in specific networks by examining
regional correlation patterns, grouped by network assignment.
As shown in Figure 2A, we found surprisingly positive relation-
ships between age and resting-state BOLD SD before motion
denoising. These relationships were most prominent in the
subcortical, cerebellum, and default mode networks, as well
as unassigned regions, but marginal positive relationships
were also observed in fronto-parietal and salience networks.
These relationships are surprising considering previous reports

of negative relationships between age and BOLD variability
during resting-state or task performance (e.g., Garrett et al.
2010). As shown in Figure 2A, we only observed marginal
negative relationships with age in the visual network. However,
there were also very strong relationships between resting-state
BOLD SD and head motion in these minimally processed data.
As shown in Figure 2B, positive relationships were observed
between motion and resting-state BOLD SD in all networks.
Considering that age was positively associated with head
motion in this sample, it is likely that motion-related increases
in resting-state BOLD SD might positively bias relationships
with age. Indeed, after applying conservative motion correction
techniques, relationships between age and BOLD SD were more
robustly negative. As shown in Figure 2C, negative relationships
between age and resting-state BOLD SD were observed in all
networks, except ventral attention, cerebellum, and unassigned
regions. Importantly, relationships with head motion were
greatly reduced in this dataset, as compared with the minimally
processed results (see Fig. 2B,D), although positive relationships
with motion were still observed in most networks consistent
with prior work (Power et al. 2017).

Additionally, we assessed whether the multivariate age-
related signal in resting-state BOLD SD might be unique to
specific networks using network-based SVR feature selection.
As shown in Figure 3, SVR predictions of age became more
accurate as the number of randomly selected features increased
(gray dots). This pattern is not surprising, considering that
larger feature sets might capture more age-related signal by
chance, resulting in better prediction, but importantly, it also
establishes an appropriate null model to compare age prediction
in specific networks. We found that SVR accuracy in network-
specific models out-performed matched random feature sets in
the subcortical network (R2 = 0.15, empirical P = 0.009), ventral
attention network (R2 = 0.04, P = 0.019), and marginally in the
parietal memory network (R2 = 0.02, P = 0.045). Hence, there
may be specific multivariate relationships between age and
resting-state BOLD SD in these networks. In contrast, other
networks fell within the range expected by randomly selected
feature sets. Although there may be age-related signal in resting-
state BOLD SD within these networks, this finding suggests
that these networks offer no more sensitivity to age than
can be achieved by randomly selecting regions independent
of network assignment. Hence, the age-related signal is likely
spread diffusely across these networks.

Relationships with Global Cognitive Function

In the denoised BOLD SD dataset, we tested whether resting-
state BOLD SD was also sensitive to cognitive function mea-
sured outside the scanner. As shown in Figure 4A, we observed
marginal positive relationships between cognitive composite
scores and resting-state BOLD SD in parietal memory, visual,
fronto-parietal, and dorsal attention networks (see Supplemen-
tary Material for “Analyses of Individual Neuropsychological
Test Scores” and Supplementary Figure 3). These results are con-
sistent with previous reports of positive relationships between
BOLD variability and cognitive measures acquired both inside
(Garrett et al. 2011; Guitart-Masip et al. 2016; Grady and Garrett
2018) and outside the scanner (Mennes et al. 2011; Burzynska
et al. 2015b). Furthermore, as shown in Figure 4B, multivariate
patterns in resting-state BOLD SD across networks captured
a small, but significant, portion of variance in global cogni-
tive ability (r = 0.22, P < 0.001, R2 = 0.05, MAE = 0.58). However,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
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Figure 2. Network average Pearson correlations (bootstrapped mean and 95% confidence interval) between resting-state BOLD SD and age (A and C) or head motion

(B and D).

these relationships did not replicate after controlling for age.
As shown in Figure 4C, there were no significant relationship
between global cognition and residual resting-state BOLD SD in
any network after controlling for age. Furthermore, SVR models
were unable to predict global cognitive ability from the residual-
ized estimates (r = −0.07, P = 0.272, R2 = 0.01, MAE = 0.62). Thus,
resting-state BOLD SD was not related to global cognition above
and beyond age differences.

Relationships with CVH and WMH

We also tested whether resting-state BOLD SD was sensitive to
cardiovascular measures. As shown in Figure 5A, we observed
negative relationships between CVH composite scores and
resting-state BOLD SD in visual and subcortical networks.
However, as shown in Figure 5C, multivariate patterns in
resting-state BOLD SD across networks only captured a small,
marginally significant portion of variance in CVH (R2 = 0.01,
P = 0.065, MAE = 0.40). In contrast, WMH volume alone was
highly sensitive to resting-state BOLD SD. As shown in Figure 5B,
we observed significant negative relationships between WMH
and resting-state BOLD SD in all networks, except lateral
somatomotor, ventral attention, and cerebellum. Furthermore,
as shown in Figure 5D, multivariate patterns in resting-state
BOLD SD captured a small, but significant, portion of variance

in WMH (R2 = 0.07, P < 0.001, MAE = 9510.16). See Supple-
mentary Material for “Analyses of Individual CVH Measures”
(Supplementary Figs 4 and 5), as well as “Principal Component
Analyses of CVH Composite Measures” (Supplementary Table 4
and Supplementary Figs 6 and 7).

Relationships with Age and Cognition after Controlling
for Cardiovascular Measures

Finally, we explored whether resting-state BOLD variability rela-
tionships with age and global cognition might be sensitive to
cardiovascular factors. To examine this possibility, we attempted
to replicate the previously established relationships with age
and cognitive composite using residual estimates of resting-
state BOLD SD after controlling for either the CVH composite or
WMH volume in linear regression models.

Importantly, age relationships with resting-state BOLD vari-
ability survived the correction for the CVH composite. As shown
in Figure 6A, we replicated the pattern of significant negative
relationships between resting-state BOLD SD and age, observed
in all networks, except for ventral attention, cerebellum, and
unassigned regions. Furthermore, SVR models successfully pre-
dicted age from resting-state BOLD SD, even after controlling
for CVH and maximally controlling for motion and global sig-
nal artifacts (R2 = 0.06, P < 0.001, MAE = 6.65). In contrast, age
relationships with resting-state BOLD SD did not survive the

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
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Figure 3. Performance of SVR models predicting age from denoised resting-
state BOLD SD across a range of feature sets (from 5 to 295). Black diamonds

denote anatomical feature selection schemes, in which features included only
ROIs from a specific network (diamond labels). Each network-specific model was
compared to 10 000 simulated models using randomly selected feature sets from
any network. For simplicity, only 25 of the simulated models are plotted for each

feature set size (gray dots).

correction for WMH volume. As shown in Figure 6B, we observed
trend-level negative relationships between resting-state BOLD
SD and age in most networks; however, none of these individual
relationships reached significance. Moreover, SVR models did
not successfully predict age from resting-state BOLD SD after
controlling for WMH (R2 = 0.00, P = 0.977, MAE = 7.37). Having
said this, it is noteworthy that by a one-tailed binomial test, the
observation of 12 or more negative trends in the 14 networks
reliably differed from chance, P = 0.006.

In contrast to age relationships, cognitive relationship with
resting-state BOLD variability did not survive correction for
either CVH or WMH. As shown in Figure 6C, we observed some
positive, marginal relationships with cognitive composite scores
after controlling for CVH, but SVR models did not successfully
predict cognition in these residualized data (R2 = 0.007,
P = 0.279, MAE = 0.56). After controlling for WMH, we observed
no relationships with cognitive composite scores (see Fig. 6D)
nor did SVR models successfully predict cognition (R2 = 0.004,
P = 0.402, MAE = 0.56).

Discussion
Our results offer several noteworthy findings. To review, we
replicated previous reports that resting-state BOLD variability is
negatively associated with age and positively associated with
cognition. Furthermore, although head motion was shown to
influence the estimates of resting-state BOLD variability, we
observed relationships with age and cognition after applying
maximally conservative artifact rejection procedures. However,
resting-state BOLD variability was also marginally sensitive to
CVH and particularly sensitive to WMH. Importantly, the nega-
tive relationship between age and resting-state BOLD variability
was observed after controlling for a CVH composite, but was

largely attenuated after controlling for WMH volume. We now
discuss each of these findings in turn, focusing on their rele-
vance in the context of previous reports, implications for the
interpretation of resting-state BOLD variability as a signal of
interest, and potential for application as a clinically relevant
biomarker.

Relationships of Resting-State BOLD Variability with
Age and Cognition

As expected from a growing body of reports, we observed that
resting-state BOLD variability was sensitive to age. Although
these effects have previously been demonstrated in extreme
groups age comparisons (e.g., Garrett et al. 2010) or continuous
lifespan samples (e.g., Nomi et al. 2017), here, we demonstrate
that resting-state BOLD variability is sensitive to relatively subtle
age differences, ranging continuously from middle age to older
adulthood (43–89). This degree of age sensitivity might offer
some clinical utility. Specifically, if continuous lifespan trajec-
tories of resting-state BOLD variability can be well characterized
in healthy samples, deviations from these trajectories might be
interpreted as early markers of pathological processes.

In terms of network specificity, we observed negative
relationships with age in a broad range of sensory (audi-
tory, visual), motor (somatomotor), and association (cingulo-
opercular, default mode, parietal memory, fronto-parietal,
salience, dorsal attention) networks. Furthermore, network-
driven feature selection revealed that SVR prediction of
age based on resting-state BOLD variability features within
most networks performed no better than randomly selected
feature sets. These findings suggest that age-related signal in
resting-state BOLD variability is broadly distributed throughout
networks with little anatomical specificity. This pattern is
fairly similar to widespread network differences in functional
connectivity across development (Nielsen et al. 2019).

One noteworthy exception to this widespread pattern was
the subcortical network. Indeed, we observed particularly strong
negative relationships with age in subcortical regions. This pat-
tern is surprising, as there is some inconsistency among previ-
ous reports of age relationships with resting-state BOLD variabil-
ity in subcortical areas—including some reports of positive age
relationships with resting-state and task-driven BOLD variabil-
ity in striatum, thalamus, caudate, and putamen (Garrett et al.
2010; Garrett et al. 2011; Guitart-Masip et al. 2016). In fact, some
researchers have proposed an anatomical-based framework in
which BOLD variability in neocortical regions may decrease
in advanced aging, while subcortical variability may increase
(Garrett, Samanez-Larkin, et al. 2013; Guitart-Masip et al. 2016).
Hence, the inverse subcortical age relationships in the present
study are somewhat unexpected in light of these previous find-
ings. In contrast, the results are more consistent with other
findings that age is negatively associated with resting-state
BOLD variability in thalamus and basal ganglia (Nomi et al. 2017).
Notably, the report of negative subcortical age relationships
from Nomi et al. (2017) tested age effects continuously in two
overlapping, large datasets (Ns = 191, 187), in contrast to the
smaller, extreme groups designs (Garrett et al. 2010; Garrett et al.
2011; Guitart-Masip et al. 2016). One possible account for this
age relationship in subcortical regions may be that these areas
are particularly susceptible to microvascular pathology, due to
their proximity to vascular territories (for review, see Wardlaw
et al. 2013). Indeed, we observed that WMH burden was also
associated with resting-state BOLD SD in subcortical regions. For
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Figure 4. Relationships between resting-state BOLD SD and cognitive composite before (A and B) and after controlling for age differences (C and D). (A and C) Network
average Pearson correlations (bootstrapped mean and 95% confidence interval) between resting-state BOLD SD and cognitive composite score. (B and D) Cognitive

composite scores predicted by SVR model as a function of true score.

further examination of consistency in the topological patterns
of resting-state BOLD SD in relation to age, motion, and WMH,
see the Supplementary Material for “Consistency of SVR Weights
Across Models” (Supplementary Figs 8 and 9)

We also replicate previous findings that resting-state BOLD
variability is sensitive to cognitive measures assessed outside
the scanner, including factor scores of fluid intelligence and
episodic memory (Burzynska et al. 2015b), as well as flanker
task performance (Mennes et al. 2011). Here, we extend upon
these findings using a global cognitive composite of processing
speed, executive function, episodic memory, and semantic
fluency measures. These relationships were observed in
visual, parietal memory, frontoparietal, and dorsal attention
networks. However, compared with age relationships (SVR
R2 = 0.21), relationships between resting-state BOLD variability
and cognition were relatively small (SVR R2 = 0.05). Moreover,
cognitive relationships were not observed after correcting for
individual differences in age. Thus, the current analyses suggest

that resting-state BOLD SD may only be related to cognition
to the extent that it is sensitive to more general age-related
differences. As suggested by our analyses with CVH measures, it
is possible that these relationships may be particularly sensitive
to WMH-related pathology. This finding is in agreement
with demonstrations that cerebral small vessel disease is an
important contributor to cognitive decline (for review, see
Wardlaw et al. 2013).

Influence of Head Motion on Resting-State BOLD
Variability

We observed that, similar to established influences on func-
tional connectivity estimates (Power et al. 2012; Satterthwaite
et al. 2012; Van Dijk et al. 2012), head motion and/or global
signal artifacts were strongly related with resting-state BOLD
variability in all networks. However, these relationships
consistently declined as we applied increasingly conservative

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
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Figure 5. Relationships between resting-state BOLD SD, CVH composite (A and C), and WMH (B and D). (A and B) Network average Pearson correlations (bootstrapped
mean and 95% confidence interval). (C and D) CVH and WMH measures predicted by SVR model as a function of true score.

artifact rejection procedures, including global signal regression,
framewise censoring, and sample restriction. Yet, even in the
most conservative dataset, we observed significant (although
drastically reduced) relationships between resting-state BOLD
SD and motion. These relationships are not particularly
surprising, considering that motion has previously been shown
to increase SD in the global resting-state BOLD signal, even after
applying common motion correction techniques (Power et al.
2017). Thus, head motion may continue to positively bias esti-
mates of resting-state BOLD variability, even in relatively “clean”
samples.

Importantly, the degree to which researchers control for
motion-related influence on resting-state BOLD variability
may influence the size and direction of the relationships
with age. Specifically, before applying nuisance regression and
framewise censoring, we found that age was either unrelated
or positively related with resting-state BOLD SD in most
networks, with the possible exception of the visual network.
These patterns would be expected if age-related increases in

head motion positively bias estimates of resting-state BOLD
variability in older adults. Indeed, older adults did have higher
estimates of motion in our sample. However, after applying
conservative methods to limit the influence of motion, we
observed the expected robust inverse age relationships with
resting-state BOLD variability. This pattern is more consistent
with previous reports, which typically include some extended
preprocessing procedures to correct for motion, including
nuisance regression and ICA denoising (Garrett et al. 2010;
Nomi et al. 2017), although these methods alone have been
shown to be insufficient for removing motion-related and
global signal artifacts in functional connectivity estimates
(Ciric et al. 2017). This pattern aligns with an early report by
Garrett et al. (2010), suggesting that more extended motion
correction results in both lower estimates of resting-state BOLD
variability and stronger relationships with age. Altogether, these
findings suggest that motion correction procedures should be
an important consideration when analyzing and interpreting
age-related differences in resting-state BOLD variability.
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Figure 6. Network average Pearson correlations (bootstrapped mean and 95% confidence interval) between resting-state BOLD SD and age (A and B) or cognitive

composite (C and D). Relationships are shown for residuals of resting-state BOLD SD after controlling for either the CVH composite (A and C) or WMHs (B and D).

Influence of CVH and WMH on Resting-State BOLD
Variability

Turning to the influence of CVH and WMH on estimates of
resting-state BOLD variability, we found that WMH volume
was negatively related to variability throughout a wide range
of networks. This relationship would be expected if reduced
resting-state BOLD variability is indeed a marker of advancing
cardiovascular or neurodegenerative pathology. This result
contrasts with some recent studies, which have reported
positive relationships between WMH volume and resting-state
BOLD SD in parahippocampal gyrus, as well as temporal, fronto-
parietal, and orbitofrontal regions (Scarapicchia et al. 2018,
2019). However, it is worth noting that these relationships
were observed in much smaller samples (Ns = 19 controls)
than the current study (N = 192 participants with WMH in the
final sample). Moreover, in one report, positive relationships
with WMH only reached marginal trend-level significance
(P < 0.10; Scarapicchia et al. 2018).

Importantly, after controlling for WMH, age relationships
with resting-state BOLD variability were largely attenuated. This
finding is partially consistent with a recent proposal that age-
related differences in resting-state BOLD variability might be
mediated by a combination of cardiovascular and neurovascu-
lar factors (Tsvetanov et al. 2019). However, in contrast to the
results reported by Tsvetanov et al. (2019), we found that only

controlling for WMH volume alone was necessary to attenuate
the age relationship. Age relationships with resting-state BOLD
SD were still observed after controlling for a CVH composite,
which included measures of pulse, systolic blood pressure, and
BMI, as well as WMH. Moreover, WMH volume was only mod-
estly correlated with other measures in the CVH composite.
Although somewhat surprising, these observations suggest that
age-related variance in resting-state BOLD SD may be associ-
ated with WMH-specific pathology, rather than CVH in gen-
eral. Importantly, although WMH should be related to CVH,
WMH should not be interpreted as simply a proxy for CVH
in the current sample. It is possible that WMH may reflect
cumulative lifetime injury related to cardiovascular disease, as
opposed to current CVH status, which may be better captured
by other measures (e.g., blood pressure). Furthermore, as noted
earlier, it is also worth noting that WMH may additionally be
sensitive to traumatic brain injury (Marquez De La Plata et al.
2007) or other disease processes, including multiple sclerosis
(Filippi et al. 2011).

These inconsistent findings may be attributed to sample- or
method-related differences. Specifically, since our study exam-
ined a relatively narrow age range of middle-aged to older adults
(43–89), we may observe a relatively restricted range of CVH,
as compared with the adult lifespan sample (18–88) reported
by Tsvetanov et al. (2019). Also, overall levels of WMH were
relatively low in the current sample, due to screening of the
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cohort, and thus, these results might not be representative of
a population with greater vascular risk. Finally, the CVH com-
posite used in the current study was formed using fewer avail-
able measures and used simple a priori averaging, rather than
the data-driven factor analysis used by Tsvetanov et al. (2019),
but see the Supplementary Material for “Principal Component
Analyses of CVH Composite Measures” (Supplementary Table 4,
Supplementary Figs 6 and 7).

Although age relationships with resting-state BOLD variabil-
ity did not reach statistical significance after controlling for
WMH, it is noteworthy that we observed nonsignificant negative
trends in the same networks where significant age relationships
were formerly observed. Indeed, a binomial test of the likelihood
of observing 12 or more negative trends in the 14 networks
revealed that this pattern was highly unexpected by chance,
P = 0.006. Hence, there may be some meaningful negative rela-
tionship between age and resting-state BOLD variability below
the level of statistical significance, even after controlling for
WMH volume.

It is possible that the influence of WMH-related pathology
may extend to other age-dependent imaging measures, beyond
resting-state BOLD variability. For instance, there are well-
established negative relationships between age and estimates
of within-network functional connectivity (Betzel et al. 2014;
Chan et al. 2014). As shown in Supplementary Table 5, we
replicated the negative relationships between age and within-
network functional connectivity in most networks when
conservatively controlling for motion and global signal artifacts
(mean r = −0.15, range = −0.23 to −0.02). Importantly, these
relationships were reduced after controlling for WMH (mean
r = −0.06, range = −0.17 to .09). Hence, similar to resting-state
BOLD SD, it appears that fMRI-based estimates of functional
connectivity might also be sensitive to age-related WMH pathol-
ogy in carefully screened cognitively normal adults, similar
to effects demonstrated using pulse and heart rate variability
(Geerligs et al. 2017).

The influence of WMH on age-related differences in resting-
state BOLD variability and functional connectivity might offer
insight into the theoretical understanding of these measures.
Specifically, low-frequency resting-state BOLD fluctuations
might be the outcome of spontaneous activity within a differen-
tially connected network of nodes (Honey et al. 2007). Under this
framework, disruptions in the network structure might produce
reductions in both the amplitude of these fluctuations and the
magnitude of correlations among the fluctuations. Thus, to
the extent that WMH lesions observed in the current sample
disrupt white matter connections and network structure, these
changes might be observed as reductions in both resting-
state BOLD variability and functional connectivity. In this view,
resting-state BOLD variability and functional connectivity might
each reflect the outcomes of the same underlying age-related
and pathological processes. Future studies might investigate
similarities between age-related differences in resting-state
BOLD variability and functional connectivity and test whether
they might emerge from shared mechanisms.

Potential Clinical Utility of Resting-State BOLD
Variability

Using a supervised, multivariate machine learning approach,
we were able to successfully generate predictions about clin-
ically relevant, continuous measures, including age, cognitive
composite score, and WMH volume, in untrained observations.

This demonstration suggests that resting-state BOLD variability
might serve as a sensitive, generalizable biomarker of age-
related decline, extending upon recent work using machine
learning techniques to establish age-related biomarkers in
structural MRI and functional connectivity measures (for
review, see Cole and Franke 2017). Future machine learning
analyses should assess whether resting-state BOLD variability
(or deviations in normative age trajectories in resting-state BOLD
variability) may successfully predict early neurodegenerative
pathology, for example, Alzheimer disease.

Limitations and Future Directions

Although we demonstrated that WMH burden was related to
resting-state BOLD variability and may influence relationships
with age, we are limited in our ability to interpret the mech-
anisms underlying these relationships. As mentioned, WMH
are associated with a range of pathological processes and were
highly correlated with age in the current sample. These rela-
tionships might be sensitive to cardiovascular and/or metabolic
factors (Alfaro et al. 2018). Alternatively, WMH may be sensitive
to co-occurring neurodegeneration (Wardlaw et al. 2013), which
may contribute to age relationships with resting-state BOLD
SD. Finally, the observed patterns may result from the general
relationship between age and WMH. Thus, correcting for WMH
may reduce age relationships with resting-state BOLD SD simply
due to shared variance between these measures, rather than
any mechanistic contribution of WMH-related changes. As a
hypothetical example, one might expect a similar reduction in
the age relationship if one controlled for bone density. Although
the results are consistent with recent proposals that vascular
influences may be an important factor in age-related cognitive
decline (for review, see Abdelkarim et al. 2019; Wåhlin and
Nyberg 2019), future studies should further examine resting-
state BOLD variability using methods that allow for more mecha-
nistic insight into the vascular contributions on the BOLD signal,
including measures of cerebral blood flow and cerebrovascular
reactivity.

Additionally, it might be informative to study relationships
with white matter integrity using diffusion tensor imaging. Pre-
vious studies have demonstrated relationships between white
matter integrity and resting-state BOLD variability in studies of
cognition and physical activity in older adults (Burzynska, Wong,
Voss, Cooke, Gothe, et al. (2015), Burzynska, Wong, Voss, Cooke,
McAuley, et al. (2015)). Future studies should consider whether
white matter integrity contributes to age-related differences in
resting-state BOLD variability.

Conclusions
Our results replicate previous demonstrations that resting-state
BOLD variability is negatively associated with age differences.
We also demonstrate that if uncorrected by conservative
preprocessing, head motion may positively bias estimates of
resting-state BOLD variability. Moreover, age-related differences
in resting-state BOLD variability may be sensitive to anatomi-
cally diffuse mechanisms, possibly related to WMH pathology,
although our results do not suggest that these relationships
are sensitive to CVH in general. Hence, the potential influence
of motion, global signal artifacts, and WMH burden should
be considered when processing, analyzing, and interpreting
estimates of resting-state BOLD variability.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa138#supplementary-data
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Overall, these results support the proposal that variability
in the resting-state fMRI BOLD signal may reflect a sensitive
signal that declines in older adulthood. It appears that WMH
burden strongly modulates this relationship. As a speculation,
the role of WMHs in the age-variability relationship could simply
be due to damage to neural tissue that connects distinct areas
of functional activity. However, vascular mechanisms might
also be possible, as WMH has previously been shown to relate
to cerebrovascular impairments, including greater pulsatility
(Mok et al. 2012; Purkayastha et al. 2014) and arterial stiffness
(Poels et al. 2012). Independent of the precise mechanism, it
appears that estimates of resting-state BOLD variability might
afford reliable, potentially clinically relevant biomarkers of age-
related decline. The network-based, machine learning approach
outlined in the present report might offer methods to maximize
the sensitivity of these measures in future evaluations.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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