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SUMMARY

Dysregulation of the gut microbiome has been implicated in the progression of nonalcoholic fatty 

liver disease (NAFLD) to advanced fibrosis and cirrhosis. To determine the diagnostic capacity of 

this association, stool microbiomes were compared across 163 well-characterized participants 

encompassing non-NAFLD controls, NAFLD-cirrhosis patients and their first-degree relatives. 
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Interrogation of shotgun metagenomic and untargeted metabolomic profiles using the Random 

Forest machine learning algorithm and differential abundance analysis identified discrete 

metagenomic and metabolomic signatures that were similarly effective in detecting cirrhosis 

(diagnostic accuracy 0.91, AUC). Combining the metagenomic signature with age and serum 

albumin levels accurately distinguished cirrhosis in etiologically and genetically distinct cohorts 

from geographically separated regions. Additional inclusion of serum aspartate aminotransferase 

levels, which are increased in cirrhosis patients, enabled discrimination of cirrhosis from earlier 

stages of fibrosis. These findings demonstrate that a core set of gut microbiome species may offer 

universal utility as a non-invasive diagnostic test for cirrhosis.

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease 

worldwide and is estimated to affect 24% of the global population (Loomba and Sanyal, 

2013; Younossi et al., 2018). NAFLD encompasses a spectrum of diseases prognostically 

sub-categorized into non-progressive nonalcoholic fatty liver (NAFL), progressive 

nonalcoholic steatohepatitis (NASH), and NAFLD-cirrhosis. NAFLD-cirrhosis, the most 

advanced form of the disease, is a major risk factor for hepatocellular carcinoma and the 

second leading indication for liver transplantation in the United States (Wong et al., 2014). 

Accurate, non-invasive tests to identify patients at greatest risk for advanced NAFLD are 

urgently needed.

A link between NAFL and the gut microbiome is supported by several studies (Da Silva et 

al., 2018; Hoyles et al., 2018; Raman et al., 2013; Sharpton et al., 2019). Consistent with 

this, we previously demonstrated that a gut microbiome-based metagenomic signature can 

differentiate between mild or moderate and advanced fibrosis in patients with biopsy-proven 

NAFLD, as well as defined a stool microbiome signature that accurately detected cirrhosis 

(UCSD twin and family cohort with and without NAFLD (Caussy et al., 2019b; Loomba et 

al., 2017)). However, given the influences of both host and environmental factors on the gut 

microbiome (Li et al., 2014), the universal applicability of microbiome-based diagnostic 

signatures was not known. Here, we define a gut microbiome signature for NAFLD-cirrhosis 

determined from metagenomic and metabolomic characterizations of stool microbiomes 

from a twin and family cohort comprised of NAFLD-cirrhosis probands and their first-

degree relatives. Notably, this signature accurately identified patients with cirrhosis in 2 

independent cohorts that included multiple cirrhotic etiologies: Chinese cohort (Qin et al., 

2014) and Italian cohort (Iebba et al., 2018). The remarkable robustness of this signature in 

identifying cirrhosis across geographically and culturally distinct populations reinforces the 

intimate association of the gut and the liver, and demonstrates its potential utility as a 

diagnostic tool.

RESULTS

Characterization of the Study Population

The prospective cohort comprised 163 well-characterized participants with diagnoses that 

covered the spectrum of non-alcoholic fatty liver disease (NAFLD), including non-NAFLD 
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controls, NAFLD-cirrhosis patients as well as their first-degree relatives. Detailed 

demographic, clinical, biochemical, and metabolic profiles of the entire cohort are provided 

in Figure S1A, and Tables 1 and S1.

The proband cohort (UCSD Cohort) comprised 27 prospectively recruited patients with 

NAFLD-cirrhosis (81.5% female; 16 with compensated cirrhosis, 11 with decompensated 

cirrhosis) and 54 non-NAFLD controls without liver disease (72.2% female). NAFLD 

diagnosis was based upon the American Association for the Study of Liver Diseases 

(AASLD) practice guidelines, and the presence of cirrhosis was confirmed by liver biopsy or 

imaging. The mean age and body-mass-index of the control group were lower than the 

NAFLD-cirrhosis group (45.9 ± 19.9 versus 64.7 ± 9.8 years, and 26.1 ± 6.8 versus 32.8 ± 

10.1 kg/m2, respectively). Demographics, clinical history, and biochemical and imaging 

parameters are reported in Table 1.

Advanced magnetic resonance imaging (MRI) techniques were employed for liver 

phenotyping including MRI proton density fat fraction (MRI-PDFF) for fat content and 

magnetic resonance elastography (MRE) to measure liver stiffness as a correlative of 

fibrosis. Compared to the control group, the NAFLD-cirrhosis group had higher liver fat 

content (2.4 ± 0.9 % versus 5.2 ± 4.1%, p < 0.01; Table 1) and liver stiffness (2.13 ± 0.37 

kPa versus 5.04 ± 2.68 kPa, p < 0.001; Table 1). Detailed associations between MRI-PDFF 

and MRE and demographics, metabolic risk factors, and biochemical and metabolic 

parameters are shown in Figure S1A–C.

Taxonomic Profiling

The compositions of the microbial communities and the abundance of microbial pathways 

were determined from shotgun sequencing of stool samples using Metagenomic 

Phylogenetic Analysis (MetaPhlAn2, (Segata et al., 2012) and HMP Unified Metabolic 

Analysis Network 2 (HUMAnN2, (Franzosa et al., 2018) respectively. In total, 1,216,335 

gene-families and assembled sequences for 356 species were identified, and after removal of 

unannotated species, 310 microbial species representing 53 families and 115 genera were 

identified in the 163 patient samples (Figure 1A). Using the Inverse Simpson index to 

measure microbial richness, we found α-diversity to be decreased in the NAFLD-cirrhosis 

compared to the control group, consistent with a previous report (Figure 1B and S1D), 

(Caussy et al., 2019b). Similar enteric dysbiosis has been reported in patients with cirrhosis 

attributed to multiple etiologies (Figure 1B) (Iebba et al., 2018; Qin et al., 2014). 

Interestingly, the α-diversity in NAFLD-cirrhosis correlated with clinical parameters 

including levels of low-density lipoprotein (LDL), blood coagulation as measured by 

prothrombin time (PT) and international normalized ratio (INR), and glucose homeostasis 

reported by insulin levels (Figure S1E). In addition, a clear separation could be seen between 

NAFLD-cirrhosis and the non-NAFLD probands using a principal coordinate analysis 

(PCoA) coupled with weighted UniFrac, indicating altered β-diversity (Figure 1C; 

PERMANOVA < 0.001).

Major differences in the gut microbial communities between the NAFLD-cirrhosis and 

control probands were observed at taxonomical levels from phylum down to family (Figure 

S1F–H). Notable compositional shifts in NAFLD-cirrhosis probands included an enrichment 
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in Negativicutes and a reduction in Clostridia classes (Figure 1D). These class level shifts 

are consistent with previous studies of microbial populations in patients with advanced 

fibrosis due to NAFLD or cirrhosis of multiple etiologies (Iebba et al., 2018; Loomba et al., 

2017; Qin et al., 2014).

A Metagenomic-derived Gut Microbiome Signature for NAFLD-cirrhosis

Notable correlations were observed between microbial species and clinical metadata 

associated with NAFLD-cirrhosis (Figure S2). Of the 310 microbial species identified, 108 

showed significant correlation with metadata in the proband cohort. For example, the levels 

of Veillonella parvula inversely correlated with albumin and platelet counts, parameters 

decreased in cirrhosis (Figure S2). In contrast, species enriched in the control group 

including Eubacterium eligens showed a positive correlation with albumin and platelet 

counts (Figure S2). The sharp dichotomy observed in associations between certain species 

altered in diseased probands and clinical metadata led to the hypothesis that a selection of 

gut microbial organisms may be indicative of the disease state. To explore this notion, 

Random Forest (RF) machine learning was employed to identify key discriminatory species 

of NAFLD-cirrhosis. Specifically, differentially abundant microbial species were detected 

using the DESeq2 tool, and a NAFLD-cirrhosis signature identified using the RF classifier 

for feature selection. Remarkably, this approach identified a gut microbiome signature 

comprised of 19 discriminatory species that accurately detected NAFLD-cirrhosis in the 

proband cohort (area under the receiver operating curve [AUC] of 0.91, Figure 1E and 1F).

The identified disease signature included increases in the levels of Veillonella parvula, 

Veillonella atypica, Ruminococcus gnavus, Clostridium bolteae and Acidaminococcus sp. 
D21 accompanied by decreases in the abundances of Eubacterium eligens, Eubacterium 
rectale and Faecalibacterium prausnitzii (Figure 1E). Notably, despite its low abundance, 

Veillonella parvula was the most discriminatory adverse species for the association with 

NAFLD-cirrhosis. A second member of the class Negativicutes, Acidaminococcus sp. D21 
levels were 15-fold higher in the NAFLD-cirrhosis group. In contrast, Eubacterium rectale 
and Faecalibacterium prausnitzii are members of the class Clostridia which decreased with 

NAFLD severity, and have previously been associated with NAFLD and cirrhosis (Loomba 

et al., 2017; Qin et al., 2014). Faecalibacterium prausnitzii is a beneficial commensal species 

with anti-inflammatory functions that are decreased in several intestinal and metabolic 

disorders including inflammatory bowel disease (IBD), colorectal cancer (CRC), obesity, 

celiac disease as well as cirrhosis from multiple etiologies (Olsson et al., 2019; Qin et al., 

2014; Zaarour et al., 2019). In our dataset, it is the most critical beneficial species for 

discriminating between the NAFLD-cirrhosis and control groups. Consistent with the RF 

model at the species level, the genera with the highest discriminatory values included 

Veillonella and Faecalibacterium in the up- and down-signatures, respectively (Figure S3A).

Metagenomic sequencing facilitated the identification of 188 individual strains, of which 53 

showed differential abundance between groups, as well as correlations with clinically 

important parameters (Figure S3B and 3C). Dorea longicatena (GCF_000154065), reduced 

1.3-fold in NAFLD-cirrhosis, and Acidaminococcus sp. D21 (GCF_000174215), enriched 

15-fold, were the most important reduced and enriched strains for predicting disease status 
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(Figure S3C). Of note, Veillonella dispar (GCF_000160015) levels were 8.6-fold higher in 

the NAFLD-cirrhosis compared to the control probands (adjusted P = 4.79 E-43). In 

addition, 7,355 functional pathways were identified, of which 39 differed between the 

NAFLD-cirrhosis and control probands including those involved in the biosynthesis of 

aromatic amino acids (AAA), branched-chain amino acids (BCAA), fatty acids, and 

nucleotides (Figure 2A). An association of dysregulated pathways with specific microbial 

species and genera highlighted Acidaminococcus and Veillonella, both of which have been 

associated with AAA and BCAA synthesis. Importantly, these discriminatory pathways 

correlated with clinical metadata, and are consistently dysregulated in independent cohorts 

from China and San Diego (Figure 2B and S4). These findings suggest that dysregulation of 

essential microbial metabolic processes may contribute to disease progression in NAFLD-

cirrhosis.

Metabolite Abundances Associated with NAFLD-cirrhosis

To further refine the disease signature, we quantified the abundances of 435 distinct stool 

metabolites in NAFLD-cirrhosis and control probands, of which 75 associated with 

clinically significant metadata in NAFLD-cirrhosis (Figure S5) (Lai et al., 2018; Tsugawa et 

al., 2015). Feature selection using RF machine learning combined with differential 

expression/abundance revealed 17 metabolites that, in combination, were able to accurately 

detect NAFLD-cirrhosis (AUC; 0.91, Figure 3A and 3B). Consistent with this, the levels of 

these 17 metabolites were sufficient to discriminate NAFLD-cirrhosis from control probands 

in a principal component analysis (Figure 3C). Metabolites with the greatest predictive 

power for identifying NAFLD-cirrhosis included those involved in metabolism of aromatic 

amino acids (AAA), branched chain amino acids (BCAA), bile acids, and Vitamin D. 

Tryptophan and related metabolites such as indole and kynurenic acid also featured 

prominently in the metabolomic signature. Products of microbial dissimilation of tryptophan 

(indole and indole-related compounds) were increased, while the metabolite kynurenic acid 

was reduced in NAFLD-cirrhosis samples, resulting in an overall increase in tryptophan 

levels (Figure 3A). NAFLD-cirrhosis samples were enriched in leucine and phenylalanine 

derivatives such as leucyl-proline, γ-glutamyl-isoleucine, and glutamyl-phenylalanine 

isomer (Figure 3A). Glutamyl-phenylalanine isomer, the leading discriminatory metabolite, 

was previously reported to be elevated in serum samples from non-alcoholic steatohepatitis 

(NASH) patients (Kalhan et al., 2011). These observations are intriguing given past studies 

that have shown gut microbial sources of aromatic and branched chain amino acid 

derivatives influence intestinal permeability, systemic immunity, and liver steatosis (Dodd et 

al., 2017; Hoyles et al., 2018).

C18-Sphingosine and the bile acid glycochenodeoxycholic acid (GCDCA) were also 

enriched in NAFLD-cirrhosis samples (Figure 3A). Interestingly, GCDCA is a ligand for the 

farnesoid X receptor (FXR), an important target in experimental NASH therapeutics. In 

addition, vitamin D and its derivatives were reduced in NAFLD-cirrhosis stools (Figure 3F). 

Given that vitamin D deficiency has been linked to many cancers including hepatocellular 

carcinoma (HCC), and the high risk for HCC among patients with cirrhosis, this finding 

warrants further exploration of a possible causative association.
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It is worth noting that several microbial species (e.g., Faecalibacterium prausnitzii, Alistipes 
putredinis, Eubacterium eligens, Dorea longicatena) and key metabolites including 

kynurenic acid, vitamin D3, and enterolactone strongly correlate with α-microbial diversity, 

suggesting a potential role for these discriminatory species and metabolites in maintaining 

microbiome richness (Figure 3D and 3E).

Association of Microbes and Metabolites with NAFLD-cirrhosis

Microbial metabolites have been tightly linked to pathophysiological processes contributing 

to NAFLD, IBD and colon cancer (Perry et al., 2016). In study probands, correlated 

abundances between key discriminatory microbial species and metabolites were observed 

(Figure 4A). For example, levels of C18-Sphingosine correlated with increased abundances 

of Ruminococcus gnavus. In contrast, levels of kynurenic acid positively correlated with 

Faecalibacterium prausnitzii (Figure S6A and S6B). To further examine extended network 

links, abundances of microbial gene-families from discriminatory species were evaluated for 

associations with key metabolite levels. The resulting network contained 33 nodes and 338 

edges representing significant microbial gene-families, metagenome-derived species, and 

metabolites (Figure 4B).

To in part validate these associations, we sought to confirm the link between increased C18-

Spinghosine and Ruminococcus gnavus (Figure 4A and B). Ruminococcus gnavus was 

cultured under anaerobic conditions in the presence of increasing concentrations of 

chenodeoxycholic acid (CDCA) to approximate the increased bile acid levels seen in 

NAFLD-cirrhosis patients (Acharya and Bajaj, 2019), and the levels of metabolites 

including aromatic and branched-chain amino acids determined by LC-MS/MS. 

Consistently, the levels of C18-Sphingosine and 1H-Indole-3-carboxaldehyde produced by 

Ruminococcus gnavus increased with CDCA concentrations (Figure 4C). The data in 

Figures 4A and B support altered metabolite production as a plausible mechanism by which 

changes in the gut microbiome are communicated to the liver. An important direction for 

future studies is to define the relationships between liver disease and key microbial species 

and metabolites.

Validation of Microbiome Cirrhosis Signature

To evaluate the utility of the metagenomic gut microbiome signature for the detection of 

cirrhosis, we tested its diagnostic accuracy in the first-degree relative cohort comprised of 51 

non-NAFLD, 21 NAFLD without advanced fibrosis, 3 NAFLD-related fibrosis, and 7 

NAFLD-cirrhosis participants (Table S1). In this cohort, the combination of our microbiome 

signature with proband age (AUC 0.91 in training cohort, Figure S6C) identified cirrhosis 

with a diagnostic accuracy of AUC 0.88 (Figure 5A). Subsequently, we determined its utility 

in published studies that included diverse disease etiologies (alcoholic liver disease, hepatitis 

B, hepatitis C, and NAFL) (Qin, 2014, Iebba, 2018). Interrogation of the data from an Italian 

cohort (16S rRNA sequencing data from 46 cirrhotic patients and 14 healthy age-matched 

controls) using the trained model identified cirrhosis with a diagnostic accuracy of AUC 

0.89 (Figure 5B) (Iebba, 2018). Similarly, reanalysis of a quantitative metagenomic study 

conducted in a Han Chinese population (123 diseased patients and 114 healthy controls) 

identified cirrhosis with comparable accuracy to that reported with their “15 gene marker” 
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signature (AUC 0.86 and 0.84, respectively; Figure 5B). Given the array of clinical data 

normally available for patients presenting with possible cirrhosis, we explored including 

BMI and serum markers such as albumin, alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), bilirubin, cholesterol, gamma-glutamyltransferase (GGT), glucose, 

insulin, and platelet count to improve the diagnostic accuracy of the microbiome and age 

signature. In sensitivity analysis, several clinical parameters greatly improved the diagnostic 

accuracy of the signature, thereby identifying cirrhosis (Figure S6D). For example, 

combining the 19 discriminatory species and age with serum albumin levels, available in 

both current and Chinese studies, improved the diagnostic accuracy in the proband cohort to 

AUC 0.92 (Figure S6E). Notably, this combination signature showed improved diagnostic 

accuracy in both our relative and the Chinese cohorts (AUC 0.91 and 0.95, respectively, 

Figure 5C and 5D).

Model Validation in the Mixed Fibrosis Cohort

Given its clinical importance, we next ran a sensitivity analysis to determine whether our 

combination signature could discriminate cirrhosis from fibrosis. To explore this possibility, 

we interrogated a previously described cohort of biopsy-proven NAFLD patients that 

included 36 patients with fibrosis stage 0 (NAFL), 41 patients with fibrosis stages 1–3 (mild 

or moderate fibrosis) and 9 patients with stage 4 fibrosis (cirrhosis) (Loomba et al., 2017). 

Encouragingly, the model was able to distinguish cirrhosis from NAFL and mild or 

moderate fibrosis (AUC 0.85 and AUC 0.84, respectively; Figure 5E and 5F). Furthermore, 

incorporation of serum AST levels, which are increased in cirrhosis patients, both improved 

the signature’s accuracy in the UCSD cohort (Figure S6F) and markedly improved its ability 

to distinguish cirrhosis from NAFL and fibrosis (AUC 0.94 and 0.91, respectively; Figure 

5G and 5H). To examine the pattern of specific microbial abundance, we further interrogated 

the previous cohort of fibrosis stage 0–4 by adding 27 cirrhosis of the current study. 

Significant changes in the relative abundance of individual signature species were seen 

across NAFL, mild or moderate fibrosis and cirrhosis groups (Kruskal-Wallis ANOVA test, 

fast zero inflated negative binomial mixed model [FZINBMM] and DESeq2; Figure 5I and 

5J). The robustness of this gut microbiome based signature across geographically and 

culturally distinct populations, as well as in mixed fibrosis patients, attests to its potential 

utility as a diagnostic approach for cirrhosis detection.

DISCUSSION

Broadly applicable, non-invasive methods for diagnosing cirrhosis are currently not 

available. Here we identify a gut microbiome-derived signature that, when combined with 

the patient age, accurately detected cirrhosis in a well-characterized NAFLD-cirrhosis 

population. Importantly, this microbiome-based signature achieved similar diagnostic 

accuracies in Chinese and Italian cohorts, where the underlying causes of cirrhosis included 

viral and alcohol-induced liver damage. Furthermore, combining serum albumin levels with 

the signature microbial species and patient age in our RF model improved the diagnostic 

accuracy in both our NAFLD-cirrhosis and the Chinese cohort (AUC of 0.91 and 0.95, 

respectively). Moreover, this signature was sufficient to distinguish earlier stage fibrosis 

from cirrhosis.
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We demonstrate here that a core gut microbiome signature can identify cirrhosis across 

geographically separated cohorts, independent of disease etiology and the effects of host 

genetics and environmental factors on the gut microbiome. The apparent universal nature of 

our microbiome-derived signature suggests that key microbial species within the signature 

may play causal roles in the pathophysiology of cirrhosis. Indeed, the abundances of several 

Veillonella species were commonly altered in patients in all 3 cirrhosis studies. In further 

support of a potential causal association, a metabolite-derived signature was able to achieve 

similar diagnostic accuracy, and significant correlations were found between this and the 

microbiome-derived signature. Moreover, levels of several signature metabolites including 

tryptophan, leucine derivatives, and kynurenic acid are also altered in a rat model of 

cirrhosis, suggesting that dysregulation of microbial AAA and BCAA synthesis may affect 

liver biology (Chang et al., 2017). Epidemiologic principles indicate that the greater the 

heterogeneity in the validation cohort (i.e., the etiology of cirrhosis, diet, ethnicity) the more 

generalizable the finding of a universal cirrhosis signature (Guyatt et al., 2000a; Guyatt et 

al., 2000b). Thus, the finding that our microbiome-derived signature accurately distinguishes 

liver cirrhosis independent of the aforementioned confounding factors speaks to the 

universality of this signature. Our multi-omic analyses provide a roadmap for future 

investigations into causal associations between key microbial species and their metabolites 

in the development and progression of cirrhosis.

NAFLD is considered a hepatic manifestation of metabolic syndrome and is closely 

associated with obesity, insulin resistance and type 2 diabetes. Distinct from viral or 

alcoholic fatty liver driven cirrhosis, NAFLD-cirrhosis is a consequence of accumulated 

metabolic damage rather than external insults. The finding of a core set of microbial species 

that are broadly relevant to cirrhosis indicates previously unappreciated commonalities in the 

hepatic damage response. Alternatively, the severity of liver damage in cirrhosis may result 

in a convergence of dysbiosis. Further studies in cohorts of single etiologies will be 

necessary to distinguish these possibilities.

Our finding of a universal microbiome-derived signature lays the foundations for a stool-

based diagnostic test for advanced fibrosis or cirrhosis among high-risk individuals. This 

represents an important advance for the field, because the diagnosis of cirrhosis continues to 

be challenging due to the limited accuracy of serum markers and the expense and restricted 

availability of MRE technologies. Rapid, inexpensive methods to identify patients with 

cirrhosis is important due to their heightened risks for hepatocellular carcinoma and liver 

failure. Our discovery of a universal gut microbiome-derived signature that accurately 

identifies cirrhosis, regardless of etiology, has immense potential to improve disease 

diagnosis, especially in resource-limited settings where hepatologists and/or imaging may 

not be available. Similar to screening for colon cancer, we believe a diagnostic panel could 

be developed to detect cirrhosis in high-risk individuals such as patients with type 2 

diabetes. In addition, the identification of pathogenic and beneficial microbial species may 

lead to novel therapies for severe forms of NAFLD.
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Limitations of Study

Limitations of this study include the relatively small sizes of the experimental cohorts, the 

lack of differentiation between compensated and decompensated cases, and limited access to 

clinical parameters in the Italian and Chinese validation cohorts. In addition, the association 

between microbial species identified in our study and cirrhosis does not demonstrate 

causality. Multi-center studies of well-phenotyped patients with mixed stages of hepatic 

fibrosis will be needed to further validate study findings.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for reagents should be directed and will 

be fulfilled by the Lead Contact, (Rohit Loomba; roloomba@ucsd.edu)

Materials availability—All reagents generated in this study are available from the Evans 

lab or various core services. All human data are available from the Loomba laboratory.

Data and Code Availability—The accession numbers for shotgun sequencing datasets 

reported in this paper are publicly available at the European Genome-Phenome Archive 

(EGAS000010046). The study was conducted for identifying NAFLD-related biomarkers.

Bioinformatics workflows for metagenomics and data are available at: https://bitbucket.org/

biobakery/ and http://bioconductor.org/packages/release/data/experiment/html/

curatedMetagenomicData.html.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects

Study Participants: This study included participants from the Familial Cirrhosis cohort and 

Twins and Family cohort who were prospectively recruited between December 2011 and 

December 2017 at the University of California, San Diego (UCSD) NAFLD Research 

Center. All subjects underwent an exhaustive standardized clinical research visit that 

included a detailed medical history, physical examination, and testing to rule out other 

causes of chronic liver diseases (see inclusion and exclusion criteria), and fasting laboratory 

tests (Caussy et al., 2019a; Caussy et al., 2017; Caussy et al., 2019b; Loomba et al., 2015). 

All study subjects had also participated in a biobank initiative (Caussy et al., 2019b). At the 

time of each research visit, subjects provided stool and fasting serum samples, which were 

collected and immediately stored in a −80°C freezer.

Definition of NAFLD: Participants were considered to have NAFLD if they had hepatic 

steatosis (MRI-PDFF ≥5%) and no secondary causes of hepatic steatosis due to use of 

steatogenic medications, other liver diseases, or significant alcohol intake (see Exclusion 

Criteria). Definition for NAFLD was based upon the American Association for the Study of 

Liver Study (AASLD) Practice Guidelines (Chalasani et al., 2012).
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Definition of cirrhosis and advanced fibrosis: Participants met the criteria for NAFLD-

related cirrhosis if they had NAFLD according to the definition above and biopsy-proven 

cirrhosis (histologic stage 4 fibrosis). For the diagnosis of advanced fibrosis, MRE is the 

most accurate non-invasive test to date (Dulai et al., 2016; Hsu et al., 2019; Loomba et al., 

2014; Park et al., 2016; Sun et al., 2016). We have previously validated that a liver stiffness 

cut point of > 3.63 kPa on MRE provides an accuracy of 0.92 for the detection of advanced 

fibrosis. Therefore, advanced fibrosis among first-degree relatives was determined by 

imaging evidence of nodularity and presence of intra-abdominal varices, other imaging 

evidence of portal hypertension, or through liver stiffness assessment by MRE with a 

threshold ≥ 3.63 kPa (Cui et al., 2015; Hsu et al., 2019; Loomba et al., 2014). The presence 

of cirrhosis was determined by a liver stiffness assessment by MRE with a threshold ≥ 4.69 

kPa Hsu et al. If MRE was not performed due to contraindications, then a transient 

elastography assessment with a VCTE threshold ≥ 11.8 kPa was used as criteria for 

advanced fibrosis (Hsu et al., 2019).

NAFLD-cirrhosis probands and their first-degree relatives: This study included 27 

NAFLD-cirrhosis probands and 38 of their first-degree relatives from the Familial Cirrhosis 

cohort prospectively recruited at the UCSD NAFLD Research Center (Caussy et al., 2019a; 

Caussy et al., 2017; Caussy et al., 2019b). NAFLD-cirrhosis probands had documented 

evidence of NAFLD (see definition of NAFLD) as well as cirrhosis (see definition of 

cirrhosis), proven by either biopsy or by meeting imaging criteria.

Inclusion criteria for NAFLD-cirrhosis probands and their first-degree 
relatives: Probands and first-degree relatives were required to be at least 18 years old. 

Probands were required to have a documented diagnosis of NAFLD-cirrhosis either by liver 

biopsy or by imaging evidence, as defined by criteria in the protocol. First-degree relatives 

(sibling, child, or parent) who did not meet any exclusion criteria were also included in the 

study, if they gave written informed consent. Subjects were included if they were twin, 

sibling, or parent-offspring pairs, at least 18 years old, and willing and able to complete all 

research procedures and observations (Cui et al., 2016; Loomba et al., 2015).

Exclusion criteria for NAFLD-cirrhosis probands and their first-degree 
relatives: Participants were excluded from the study if they met any of the following 

criteria: significant alcohol intake (>10 g/day in females or >20 g/day in males) for at least 3 

consecutive months over the previous 12 months or if the quantity of alcohol consumed 

could not be reliably ascertained; clinical or biochemical evidence of liver diseases other 

than NAFLD (e.g., viral hepatitis, HIV, coeliac disease, cystic fibrosis, autoimmune 

hepatitis); metabolic and/or genetic liver disease (e.g., Wilson’s disease, haemochromatosis, 

polycystic liver disease, alpha-1-antitrypsin deficiency, dysbetalipoproteinaemia); clinical or 

laboratory evidence of systemic infection or any other clinical evidence of liver disease 

associated with hepatic steatosis; use of drugs known to cause hepatic steatosis (e.g., 
amiodarone, glucocorticoids, methotrexate, L-asparaginase and valproic acid) for at least 3 

months in the last past 6 months; history of bariatric surgery; presence of systemic infectious 

illnesses; females who were pregnant or nursing at the time of the study; contraindications to 

MRI (e.g., metal implants, severe claustrophobia, body circumference greater than the 
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imaging chamber); any other condition(s) which, based on the principal investigator’s 

opinion, may significantly affect the participant’s compliance, competence, or ability to 

complete the study.

Non-NAFLD control probands and their first-degree relatives: The study included 54 

non-NAFLD control probands and 44 of their community-dwelling first-degree relatives 

(i.e., twins, parents, offspring, or siblings) from the previous Twin and Family study (Caussy 

et al., 2019a; Caussy et al., 2017; Caussy et al., 2019b; Cui et al., 2016; Zarrinpar et al., 

2016); 7 NAFLD patients with advanced fibrosis in the Twin and Family study were 

included into relative cohorts. Twins with no evidence of either NAFLD (MRI-PDFF < 5%) 

or advanced fibrosis (MRE < 3.63 kPa) were assigned to the non-NAFLD controls subgroup.

Justification for not performing a liver biopsy: Liver biopsy was not used for hepatic fat 

content and fibrosis assessment of non-NAFLD controls and first-degree relatives. As such 

individuals were asymptomatic with no suspected liver disease, performing a liver biopsy 

would have been unethical. A non-invasive, accurate quantitative imaging method was used 

instead to estimate liver fat and fibrosis. We have previously shown that MRI-PDFF is a 

highly precise, accurate, and reproducible non-invasive biomarker for the quantification of 

liver fat content (Noureddin et al., 2013; Reeder, 2013). In addition, MRE is the most 

accurate, currently available, non-invasive quantitative biomarker of liver fibrosis (Cui et al., 

2015; Hsu et al., 2019; Loomba et al., 2014). MRE has been shown to be have excellent 

diagnostic accuracy in differentiating between normal liver and mild fibrosis (stage 0–2) and 

between non-advanced fibrosis and advanced fibrosis (stage 3–4) (Hsu et al., 2019; Kim et 

al., 2013; Yin et al., 2016).

Sample size and power estimation: In our previous study, we identified significant 

differences between two groups (AUC 0.88) that comprised 16 individuals with NASH-

cirrhosis/advanced fibrosis and 33 controls (Loomba et al., 2017). Therefore, the current 

study, which includes 27 participants with NAFLD-cirrhosis and 54 controls, would be 

adequate to detect clinically meaningful differences between the sub-groups with a power of 

at least 80% with an error rate, 0.01.

Patient consent—All subjects provided a written informed consent, and the study 

protocol was approved by the UCSD Institutional Review Board (approval numbers: UCSD 

IRB #140084 and #111282). The study complies with all relevant ethical regulations for 

research with human subjects.

METHOD DETAILS

Clinical assessments and laboratory tests—All study participants underwent a 

standardized clinical research visit at the UCSD NAFLD Research Center. A detailed 

medical history was obtained from all participants. A physical exam, which included vital 

signs, height, weight, and anthropometric measurements, was performed by a trained clinical 

investigator. Body mass index was defined as the body weight (in kilograms) divided by 

height (in meters) squared. Alcohol consumption was documented outside clinical visits and 

confirmed in the research clinic using the Alcohol Use Disorders Identifications Test and the 
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Skinner questionnaire. A detailed history of medications was obtained; no patient took 

medications known or suspected to cause steatosis or steatohepatitis. Other causes of liver 

disease and secondary causes of hepatic steatosis were systemically ruled out using detailed 

history and laboratory data. After completion of the history and physical examination, 

participants underwent comprehensive fasting laboratory tests including metabolic and liver 

assessments (Caussy et al., 2019a; Caussy et al., 2018b; Caussy et al., 2017; Caussy et al., 

2019b; Cui et al., 2016; Loomba et al., 2015; Zarrinpar et al., 2016). At the time of each 

research visit, patients provided stool samples, which were collected and immediately stored 

in a −80°C freezer.

MRI-PDFF assessment—MRI was performed at the UCSD MR3T Research Laboratory 

using the 3T research scanner (GE Signa EXCITE HDxt; GE Healthcare, Waukesha, WI) 

with all participants in the supine position. MRI-PDFF was used to measure hepatic fat 

content, and MRE was used to measure liver fibrosis. For MRI-PDFF, multiple echo 

sequences are acquired at different times when fat and water signals are nominally in phase 

or out of phase with each other. Data from each echo time are passed into an algorithm that 

estimates and corrects T2* effects, models the fat signal as a superposition of multiple 

frequency components, and estimates fat and water proton densities from which the fat 

content is calculated. A magnitude-based technique was applied to echo sequences to avoid 

phase errors, which can adversely affect fat quantification. This algorithm is applied to 

source images using custom analysis software developed at the UCSD Liver Imaging Group 

to generate a PDFF parametric map depicting fat quantity and distribution throughout the 

liver (Patel et al., 2013; Permutt et al., 2012). Image analysts were blinded to all clinical and 

biochemical data as well as the participants’ study group.

MRE assessment—For MRE, a standard 60-Hz shear-wave was generated by an acoustic 

passive driver attached to the body wall anterior to the liver and coupled to an acoustic active 

driver outside the MR examination room. Shear waves were imaged using a two-

dimensional gradient-recalled echo MRE pulse sequence with oscillating motion-sensitizing 

gradients synchronized to the shear wave frequency. Four noncontiguous axial slices (10 mm 

thick with 10 mm inter-slice gap) were acquired, each during a 16-second breath-hold, 

through the widest transverse dimension of the liver with short recovery times in between. 

The acquisition parameters were as follows: repetition time, 50 milliseconds; echo time, 

20.2 milliseconds; flip angle, 30 degrees; matrix, 256 × 64; field of view, 48 × 48 cm; one-

signal average; receiver bandwidth ± 33 kHz; and parallel imaging accelerating factor, 2. 

Total acquisition time was approximately 2 minutes. Wave images from each slice location 

were automatically processed on the scanner computer, using an inversion algorithm, to 

generate axial liver stiffness maps called elastograms. Elastograms were transferred and 

analyzed offline by a trained image analyst with at least 6 months of MRE image analysis 

experience who was blinded to clinical and histologic data.

Ultrasound-based VCTE assessment—Participants from the Familial Cirrhosis cohort 

also underwent an ultrasound-based vibration controlled transient elastography (VCTE) 

assessment using a FibroScan. VCTE was performed by a trained technician, using the 

FibroScan® 502 Touch model (M Probe; XL Probe; Echosens, Paris, France). VCTE 
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measurements were obtained while subjects held a supine position with the right arm fully 

adducted. The area of abdomen at the location of the right liver lobe was scanned during a 

10-second breath hold. Participants were asked to fast at least 3 hours prior to the exam. A 

minimum of 10 valid measurements were used to determine the median liver stiffness 

measurement (LSM) in kilopascals (kPa) and the interquartile range (IQR). In accordance 

with the manufacturer’s protocol, all patients were first scanned using the M probe (3.5 

MHz). If indicated by the equipment upon initial assessment, patients were re-scanned using 

the XL probe (2.5 MHz) (Caussy et al., 2018a; Hsu et al., 2019). The threshold used for the 

classification of cirrhosis (stage 4 fibrosis) was VCTE > 11.8 kPa as previously determined 

in reference (Hsu et al., 2019). Eleven first-degree relatives of NAFLD-cirrhosis probands 

did not have an MRE assessment due to contraindications. For those individuals, the 

presence of cirrhosis (fibrosis stage 4) was determined using a VCTE threshold > 11.8 kPa 

as previously described (Hsu et al., 2019).

Human stool sample preparation: Human stool samples were collected from participants 

in the Familial Cirrhosis and Twins and Family cohorts according to approved HRPP 

protocols (UCSD IRB #140084 and #111282). All samples had been previously processed 

for quantitative metagenomic sequencing and analysis. The unprocessed swabs from original 

double-headed swabs used to collect the samples were placed in a deep-well 2-mL 

polypropylene 96-well microtiter plate according to the plate maps. The material was then 

extracted in 300 μL 50% MeOH overnight, concentrated in centrifugal evaporator and 

redissolved in 100 μL of 50% MeOH with internal standards.

Microbiome profiling—DNA extraction from human stool samples and shotgun 

sequencing were performed by the Center for Microbiome Innovation (CMI) at University of 

California, San Diego (UCSD). DNA sequencing libraries were prepared using Nextera 

Library Prep Kits (Illumina). Shotgun DNA sequencing was performed on the Illumina 

HiSeq4000 platform.

Metagenomic analysis: Raw fastq reads were quality-checked. Briefly, skewer (version 

0.2.2), an accurate adapter trimmer, was utilized with the paired-end mode. Unwanted 

human reads were identified and removed by Bowtie2 mapping against the human genome 

reference (hg19), followed by bam2fastq with --unaligned --no-aligned --force options. After 

trimming and filtering, metagenomic read data was processed with the HUMAnN2 pipeline 

(version 0.11.2). For taxonomic profiling, MetaPhlAn2 (version 2.7.7) embedded in 

HUMAnN2 was utilized with the default setting. For functional analysis, HUMAnN2 was 

conducted with the UniRef90 database. Initially, Bowtie2 mapped reads were analyzed with 

the functionally pre-annotated pan-genome of ChocoPhlAn. Unmapped reads were then 

aligned to UniRef90 with the translated search tool, DIAMOND. Utilizing the MetaCyc 

pathway database, HUMAnN2 algorithm generated gene-family abundance, pathway 

abundance and pathway coverage. Moreover, abundance outputs were normalized with the 

humann2_renorm_table command. Metagenomic profiling outcomes were transformed into 

the R object using the curatedMetagenomicData package based on ExperimentHub platform.
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Shotgun functional profiling: To identify altered microbial pathways between NAFLD-

cirrhosis and non-NAFLD control groups, the HUMAnN2 tool including the analysis of 

microbial gene-families was utilized. HUMAnN2 outcome was transformed into 

curatedMetagenomicData format and loaded into R object. Top discriminatory pathways 

were selected using feature selection by Random Forest (RF) and differential abundance 

analyses from DESeq2 through the computation of mean decrease in Gini and fold-change.

Microbiome data extraction from external cohorts: The curatedMetagenomicData tool 

was used to access the metagenomic data from the Chinese cohort (Qin et al., 2014) and our 

previous study (Loomba et al., 2017), and taxonomy table and metadata including albumin 

were extracted using the query function. For cirrhosis data from the Italian cohort, raw fastq 

reads were curated from PRJNA471972. Using the package, dada2, reads were pre-

processed with default setting. Taxonomy profiling on the RDP reference was conducted 

with assignTaxonomy and addSpecies commands. Assigned taxa were transformed into 

phyloseq format.

Metabolite profiling—Metabolite extraction from human stool samples and the 

subsequent LC-MS/MS was performed by CMI at the University of California, San Diego 

(Wang et al., 2020).

Data conversion: Metabolomic data was processed using MS-DIAL. In brief, LC-MS/MS 

raw data was converted into .abf format using Abf (Analysis Base File) Converter. The 

converted files were then imported to MS-DIAL (version 3.66) for metabolic feature 

extraction, alignment, and putative annotation. Detailed parameters were as 

follows:Tolerances of MS1 0.01 Da and MS2 0.025 Da were employed. For isotope 

recognition: maximum charged number: 2; for metabolic feature picking: minimum peak 

height: 1000, mass slice width 0.1; smoothing method: linear weighted moving average; 

smoothing level 3, minimum peak width: 5 scans. For alignment, retention time tolerance 

was set to 0.2 min and MS1 tolerance was 0.015 Da. After data processing in MS-DIAL, 

manual data checking was performed to visually check and exclude false positive metabolic 

features. The refined metabolic feature table was exported from MS-DIAL and used for 

downstream statistical analysis. Metabolic features with low MS signals that were not picked 

up by MS-DIAL were later manually checked in the raw LC-MS data.

Metabolite annotations: Metabolite annotations were manually performed using MS-

Finder (version 3.20). Each annotated metabolite was assigned a mass error and MS2 

matching score, based upon the MS2 spectrum similarity to matches in the default MS2 

spectral library in MS-Finder. Identified metabolites with the smallest mass error and highest 

MS2 matching score were selected and added to the list of 159 unknown features.The 

threshold for confident identification was set to be mass error ≤ 10 ppm and MS2 matching 

score ≥ 8 (out of 10). However, metabolites that did not meet these thresholds were not 

always false positive identifications. Therefore, metabolites of interest with MS2 matching 

scores between approximately 7.5 to 8.0 were manually identified.

Validation of metabolites synthesized by single microbe cultured with bile 
acid—Bacterial pellets from Ruminococcus gnavus strain VPI C7–9 (#29149) were 
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purchased from ATCC and rehydrated in 0.5ml ATCC 260 broth medium (Tryptic Soy Broth 

(BD 211825) 30g, Sheep Blood 50ml, DI water 950ml) under anaerobic conditions. 50μl of 

resuspended culture was then plated on ATCC 260 Medium (Tryptic Soy Agar (BD 236950) 

40g with 5% Sheep Blood (defibrinated) 50 ml, DI Water 950 ml). The remaining 

rehydrated bacterial culture was transferred to 5ml ATCC 260 broth medium. All cultures 

were incubated in an anaerobic atmosphere containing a gas mix of 5% hydrogen and 95% 

nitrogen at 37°C for 24–48 hours. Ruminococcus gnavus cultures were treated with 12 

concentrations of CDCA (final concentrations ranging from 0.001 μg/ml to 1000 μg/ml) in 

ATCC 260 medium and cultured in total anaerobic conditions. After culturing for 48hrs, 

supernatants were collected for untargeted metabolomics. To extract metabolites, 200 μL 

supernatants was first mixed with 600 μL LC-MS grade ice-cold methanol. The solution was 

placed in a −20°C freezer for 2 hours to denature and precipitate the proteins. Further 

centrifugation (17,530 g, 4°C, 15 min) removed the precipitated proteins and the supernatant 

was carefully transferred to a new vial. The solvent was evaporated in a Speedvac at 4°C. 

The dried sample was reconstituted in 200 μL solvent (ACN:H2O=1:3, v:v). The 

reconstituted sample was centrifuged (17,530 g, 4°C, 15 min) again to remove any insoluble 

particles. The final solution was transferred into the LC glass insert for untargeted LC-

MS/MS analysis in data-dependent acquisition mode on a Bruker Impact II Ultra-High 

Resolution Qq-Time-Of-Flight Mass Spectrometer (UHR-QqTOF-MS) coupled with an 

Agilent 1290 Infinity II Ultra High-Performance Liquid Chromatography (UHPLC) system.

QUANTIFICATION AND STATISTICAL ANALYSIS

Development of a model utilizing stool-derived signatures—To develop models 

capable of distinguishing NAFLD-cirrhosis from non-NAFLD control samples, we utilized a 

supervised learning algorithm available in the Classification And Regression Training (caret) 

package in R to independently identify signatures from metagenomic and metabolomic 

datasets. A priori relative abundance taxonomic tables were pre-processed using preProcess 
and predict functions with the zv, scale and center methods. Briefly, the model was trained 

using the Caret parameter as follows; 10 fold cross-validation, smote sampling mode and 10 

repeats in trainControl. To determine the best hyperparameter setting, mtry value for the 

number of variables randomly sampled as candidates at each split was set at the range (0, 10, 

20, 30, 40, 50) or (−1, 0 and +1 of the square root of the feature number) on grid tuning. The 

ntree setting for the number of trees to grow was 501 with the ROC metric option. For 

feature selection, features (species or metabolites with patient blood data) from the feature 

importance scores of the RF outcome were examined to find a set of features that trains a 

forest with the highest overall accuracy of sample classification. To do so, importance scores 

of features were extracted using varImp function and tested iteratively by ordering from 

highest to lowest Mean Decrease in Gini index. Subsequently, different combinations of 

features from the top rank were compared by calculating AUC. Feature selection was 

utilized to optimize the numbers of the signature sets, with the top-performing models 

utilizing 19 microbiome species in combination with participant age, and 17 metabolites, 

respectively. Further optimization of the microbiome+age signature was performed by 

incorporating serum albumin levels, which were available in the metadata from both the 

UCSD and Chinese cohorts. The model training set included 81 stool samples from non-

NAFLD controls and NAFLD-cirrhosis (fibrosis stage 4) probands. Subsequently, the model 
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was validated in the UCSD relatives, Chinese and Italian cohorts. To calculate AUC, RF 

outcome was matched to disease status using auc function of the pROC package. To evaluate 

the synergistic effect between species and metabolites, a combination of features was 

utilized to distinguish NAFLD-cirrhosis in the training set (from the UCSD cohort).

Model Validation—In order to test and validate the RF model from the UCSD training set 

in external datasets, we curated and established metagenomic data and 16S taxonomy in the 

Chinese (total 237 samples) and Italian cohorts (49 samples) as described above. Machine 

learning models were trained with features, including discriminatory species, as described 

above. Sequentially, we tested models in the Chinese and Italian datasets. To do so, we 

extracted 19 species from all datasets. If the species was absent, abundance was regarded as 

zero. We then tested models in the Chinese and Italian datasets using predict function with 

the option of type prob. For AUC score, roc function was utilized using the setting of boot.n; 

100 and ci.alpha; 0.9. Since the Chinese dataset included albumin scores, we further tested 

our model in the Chinese cohort. For testing the model in the mixed fibrosis cohort, the 

previous dataset was downloaded and established. The 86 samples were split into two 

validation sets: 1) NAFL only vs cirrhosis (stage 4) or 2) mild fibrosis (stage 1–3) vs 

cirrhosis (stage 4). The previously retained RF model was tested in these two sets to evaluate 

whether it could accurately identify cirrhosis cases in a cohort of NAFLD patients with a 

wide range of fibrosis levels. To screen for other clinical features that could improve 

diagnostic accuracy, clinical metadata (e.g., AST) was added to the taxa table, and RF 

training and testing were conducted. To visualize AUC outcome, plot function was utilized 

in R.

Statistical analysis—In order to quantify within-sample diversity, we computed alpha-

diversity scores (Inverse Simpson) using the phyloseq package and calculated P-values with 

t-test. For between-sample diversity, we utilized the ordinate function in phyloseq with the 

top significant microbiomes. PCoA plot was generated with weighted-Unifrac distances. To 

examine the significant alteration of ordination, we performed permutational analysis of 

variance (PERMANOVA) using the adonis function from the R package, vegan. To identify 

important features including microbial data and metabolites, we used the DESeq2 pipeline 

and the feature selection of Random Forest. To compare altered pathways in different 

cirrhosis datasets, we performed the RV-correlation analysis using the coeffRV of the 

FactorMineR package. First, we compared the matrices of the top significant pathways from 

the current study to other datasets. Subsequently, we conducted RV-correlation analysis with 

all detected and common pathways between datasets. To measure multivariate analysis with 

significant metabolites, we used R’s ropls package and computed Partial Least Squares 

(PLS) and Orthogonal PLS (OPLS) scores. For the statistic reported in figure 5I and 5J, we 

utilized Kruskal-Wallis ANOVA test, fast zero-inflated negative binomial mixed model 

(FZINBMM) and DESeq2 using custom R commands. The most significant outcomes were 

indicated using asterisks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Major alterations in the gut microbiome profiles of the NAFLD-cirrhosis group 
compared to the non-NAFLD control group
(A) Study overview depicting the study cohort, sample collection, and stool metagenomic 

and metabolomic analyses.

(B) Inverse Simpson α-diversity scores highlighted significant decreases in the richness of 

gut microbiota from the NAFLD-cirrhosis group (N = 27) compared to the non-NAFLD 

control group (N = 54; P < 0.05). Significant α-diversity differences were also observed 

between non-NAFLD control group and NAFLD-cirrhosis patients in cohorts from China 

and Italy (P < 0.05 and P < 0.001, respectively). Gray dots represent values for individual 

participants. Boxes represent the interquartile range (IQR) between the first and third 

quartiles. Median values are represented by horizontal lines within the boxes. Notches 

represent 95% confidence intervals for the medians. Whiskers indicate the range from 

minimum (first quartile – 1.5*IQR) to maximum (third quartiles + 1.5*IQR). The 

estimate_richness function of phyloseq was utilized for this analysis. *P < 0.05, ***P < 

0.001. T-test was used to determine significance.

(C) Principal coordinate analysis demonstrating significant separation between stool samples 

from NAFLD-cirrhosis and non-NAFLD control groups, using weighted-UniFrac distances. 

Blue dots represent individual non-NAFLD control participants. Orange dots represent 

individual NAFLD-cirrhosis patients. PERMANOVA was performed to determine 

significance (P < 0.001).
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(D) Stacked bar plots depicting class-level differences in gut microbiome composition 

between the NAFLD-cirrhosis and non-NAFLD control groups. The “Other” subcategory 

included viruses, fungi and rare species (< 1%).

(E) Relative abundances of top discriminatory microbial species for the prediction of 

NAFLD-cirrhosis. Violin plots depict the relative abundances of the top 19 discriminatory 

species identified by Random Forest (RF) machine learning in the NAFLD-cirrhosis and 

non-NAFLD control groups. Species were chosen from the highest scores of Mean Decrease 

in Gini using RF feature selection. Importance scores in the RF classification model and 

fold-change levels in log2 scale are noted below the plot for each species.

(F) Receiver operating characteristic (ROC) curve of the RF model using 19 discriminatory 

species in the UCSD proband cohort including 27 NAFLD-cirrhosis and 54 non-NAFLD 

control stool samples. Random Forest (RF) method was used with train function of R’s caret 

package. For training set, 10-fold cross-validation (CV) was applied with trainControl 

function. To compute and visualize AUC from ROC outcome, the pROC package was 

utilized.
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Figure 2. Microbial functional pathways altered in cirrhosis.
(A) Microbial pathways associated with NAFLD-cirrhosis and non-NAFLD control groups 

were identified using the HUMAnN2 tool, which includes an analysis of microbial gene-

families. Discriminatory pathways were selected using feature selection by Random Forest 

(RF) and differential abundance analyses through the computation of mean decrease in Gini 

and fold-change. Left column denotes fold-change, based on log2 scale. In the fold-change 

color scale, yellow represents microbial pathways that were increased in the NAFLD-

cirrhosis group compared to the non-NAFLD control group. Purple represents pathways that 

were decreased in the NAFLD-cirrhosis group compared to the non-NAFLD control group. 

Right column denotes importance of the pathway in the RF model, based on Mean Decrease 

in Gini score. In the associated color scale, pathway importance is represented by a gradient 

going from light purple to dark purple. Circles denote specific genera that significantly 

associate with discriminatory functional pathways.

(B) A multivariate RV-coefficient analysis was performed with HUMAnN2 pathway 

outcomes from three different datasets including the current study, Chinese cohort and our 

previous study. The statistic tool, the FactorMineR package, was utilized to calculate RV-

coefficient scores among cohorts. The color of the inner line represents the significant of top 

discriminatory pathways shown in Figure 2A. Outer line represents the significance of 

pattern alteration from all detected pathways.
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Figure 3. Identification of discriminatory metabolites for cirrhosis
(A) 17 discriminatory metabolites were identified in NAFLD-cirrhosis group versus non-

NAFLD control group. Metabolites were chosen from the highest scores of Mean Decrease 

in Gini using Random Forest (RF) feature selection. Importance scores in the RF 

classification model and fold-change levels in square root (sqrt) scale are presented below 

the plot for each metabolite. Boxes represent the interquartile range (IQR) between the first 

and third quartiles. Median values are represented by horizontal lines within the boxes. 

Notches represent 95% confidence intervals for the medians. Whiskers indicate the range 

from minimum (first quartile - 1.5*IQR) to maximum (third quartiles + 1.5*IQR).

(B) ROC curve of the RF model using 17 discriminatory metabolites in the UCSD proband 

cohort. RF method was used with train function of R’s caret package. For training set, 10-

fold cross-validation (CV) was applied with trainControl function.

(C) Discriminative power of significant metabolites using a multivariate model, Orthogonal 

PLS (OPLS). R’s ropls package was utilized to compute Partial Least Squares (PLS) and 

OPLS scores. The scatter plot was generated with the ggplot2.

(D) Decreased abundance of vitamin D derivatives in NAFLD-cirrhosis group relative to 

non-NAFLD control group. Decreased intensity of vitamin D2–5 and dihydroxy-vitamin D3 

isomer in square root scale were shown using the boxplots.
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(E) Correlation analysis between relative abundance of species and α-diversity using 

Spearman’s test. Statistic outcome was shown with gradient colors in -log10(P-value) scale. 

Correlation r scores were presented in x-axis.

(F) Correlation analysis between metabolites and α-diversity using Spearman’s test. Statistic 

outcome was shown with gradient colors in -log10(P-value) scale. Correlation r scores were 

presented in x-axis.
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Figure 4. Interaction network of metagenomic and metabolomic features for cirrhosis
(A) Key discriminatory microbial species show significant associations with specific stool 

metabolites. The heatmap depicts correlative relationships between 19 discriminatory 

microbial species and 17 metabolites identified in the NAFLD-cirrhosis and non-NAFLD 

control groups. Color scale represents Spearman correlation coefficients. Red denotes strong 

positive correlations. Blue denotes strong negative correlations. Correlation r scores were 

visualized with gradient colors using the ggplot2 package of R. + denotes p < 0.05.

(B) Network map depicting relationships between species, metabolites, and microbial gene-

families that are significantly associated with either the up- or down-signature in the 

NAFLD-cirrhosis group (P < 0.05). Color scale represents the Spearman correlation 

coefficient. Red denotes positive associations between components of the network; blue 

denotes negative associations. Species nodes are represented as circles. Orange denotes 

species that are significantly associated with the up-signature in the NAFLD-cirrhosis group. 

Dark blue denotes species that are significantly associated with the down-signature in the 

NAFLD-cirrhosis group. Metabolite nodes are represented as squares. Yellow denotes 

metabolites that are significantly associated with the up-signature in the NAFLD-cirrhosis 

group. Light blue denotes metabolites that are significantly associated with the down-

signature in the NAFLD-cirrhosis group. Microbial gene-family nodes are represented as 

arrowheads. Interactions were visualized using Cytoscape.

(C) Anaerobic culturing of Ruminococcus gnavus with increased chenodeoxycholic acid 

(CDCA) demonstrates increased production of discriminatory metabolites (e.g., C18-

Sphingosine and 1H-Indole-3-carboxaldehyde).
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Figure 5. Validation of the machine learning RF model from stool metagenome for cirrhosis
(A) Validation of the RF model using 19 discriminatory species and age in the UCSD 

relatives cohort for NAFLD-cirrhosis. ROC curve shows the diagnostic accuracy of the RF 

model in identifying cirrhosis in the UCSD relatives cohort. The 19-discriminatory species 

and age identified NAFLD-cirrhosis with a robust accuracy of AUC 0.88. RF modeling was 

implemented using the train function in R’s caret package. To compute and visualize AUC 

from ROC outcome, the pROC package was utilized.
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(B) External validation of the RF model in geographically independent cohorts of patients 

with cirrhosis. ROC curves show the diagnostic accuracy of the RF model in identifying 

cirrhosis in cohorts from China (123 cirrhosis patients and 114 controls; total N=237) and 

Italy (35 cirrhosis and 14 controls; total N = 49). The 19-discriminatory species and age 

identified cirrhosis of multiple etiologies with robust accuracy. For Chinese cohort (red line) 

the AUC was 0.86. Validation in Italian dataset was performed with 19 species, due to 

limitation of demographic data. For the Italian cohort (green line), the AUC was 0.89.

(C-D) Validation of the RF model using 19 discriminatory species, age and serum albumin 

in the UCSD relative and Chinese cohorts. ROC curves show the diagnostic accuracy of a 

22-feature RF model combining 19-microbial species, age, and serum albumin scores in 

identifying cirrhosis in geographically independent cohorts--the UCSD relative and Chinese 

cohorts. The addition of serum albumin levels to the 19 discriminatory species improved the 

model’s diagnostic accuracy in the (C) UCSD relative cohort (AUC 0.91) and (D) Chinese 

cohort (AUC 0.95).

(E-F) Accuracy of microbiome-based signature to differentiate cirrhosis from fibrosis in a 

previously-described mixed fibrosis cohort. ROC curves show the diagnostic accuracy of an 

RF model combining 19-microbial species and age in identifying cirrhosis in a cohort of 

NAFLD patients with mixed fibrosis stages (stage 0 [NAFL, N = 36]; stages 1–3 [mid 

fibrosis, N = 41]; stage 4 [cirrhosis, N = 9]).

(G-H) Effect of including serum liver damage marker AST on the accuracy of discriminating 

cirrhosis from fibrosis in the mixed cohort described in (E-F).

(I-J) Relative abundances of signature microbial species with disease progression. Data from 

the current NAFLD-cirrhosis study (27 cirrhosis) was combined with the mixed fibrosis 

cohort described in (E-F) and analyzed using Kruskal-Wallis ANOVA test, fast zero-inflated 

negative binomial mixed model (FZINBMM) and DESeq2. * p < 0.05, ** p < 0.01, *** p < 

0.001.
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Table 1:

Baseline characteristics between (i) non-NAFLD control group and (ii) NAFLD-cirrhosis group

Characteristics non-NAFLD group (N = 54) (i) (s.d.) NAFLD-cirrhosis group (N = 27) (ii) (s.d.) Wilcoxon p-value 
(i↔ii)

Demographics

Age (years) 45.85 (19.86) 64.74 (9.80) <0.001

Female (n%) 39 (72.2%) 22 (81.5%)

White (n%) 43 (79.6%) 9 (33.3%)

Hispanic (n%) 8 (14.8%) 15 (55.6%)

BMI (kg/m2) 26.07 (6.83) 32.85 (10.06) <0.001

Clinical

Type 2 Diabetes (n%) 1 (1.9% ) 23 (85.2% )

Biological data

AST (U/L) 22.31 (8.44) 46.26 (23.11) <0.001

ALT (U/L) 18.81 (8.84) 44.3 (36.86) <0.001

Alk P (U/L) 68.17 (19.04) 112.19 (39.63) <0.001

GGT (Ui/L) 17.63 (8.02) 97.04 (57.71) <0.001

Total Bilirubin (mg/dL) 0.51 (0.25) 2.33 (6.63) <0.01

Direct Bilirubin (mg/dL) 0.12 (0.04) 1.36 (5.21) <0.001

Albumin (g/dL) 4.53 (0.33) 4.06 (0.61) <0.001

Glucose (mg/dl) 86.09 (9.04) 132.07 (61.85) <0.001

Hemoglobin A1c (%) 5.65 (0.32) 7.06 (1.88) <0.001

Insulin (U/ml) 8.79 (6.35) 43.52 (33.06) <0.001

Triglycerides (mg/dL) 81.50 (44.73) 147.42 (136.45) <0.001

Total cholesterol (mg/dL) 188.57 (40.94) 162.83 (64.23) <0.05

HDL-cholesterol (mg/dL) 69.87 (19.89) 49.17 (18.49) <0.001

LDL-cholesterol (mg/dL) 102.43 (32.17) 79.3 (32.42) <0.01

Platelet count (103/μL) 246.94 (48.54) 149.11 (72.73) <0.001

Prothrombin time 10.56 (0.69) 13.04 (3.66) <0.001

INR 1.02 (0.07) 1.22 (0.35) <0.01

Ferritin (ng/mL) 103.89 (82.9) 132.79 (123.19) n.s.

Imaging data

MRI-PDFF (%) 2.41 (0.86) 5.16 (4.11) <0.01

MRE (kPa) 2.13 (0.37) 5.04 (2.68) <0.001
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Human stool samples UCSD NAFLD 
Cohort (PI: Rohit 
Loomba)

UCSD IRB #140084 UCSD IRB #111282

Ruminococcus gnavus Strain VPI C7–9 ATCC 29149 NA

Critical Commercial Assay

Nextera XT Library Illumina

Deposited Data

Raw metagenomic data EGAS000010046

Software and Algorithms

HUMaAn2 https://bitbucket.org/biobakery/humann2

MetaPhAln2 https://bitbucket.org/biobakery/metaphlan2

curatedMetagenomicData http://bioconductor.org/packages/release/data/experi-ment/html/
curatedMetagenomicData.html

Random Forest in caret https://cran.r-project.org/web/packages/caret/

DESeq2 https://bioconductor.org/packages/release/bioc/html/DESeq2.html

Dada2 https://www.bioconductor.org/packages/release/bioc/html/dada2.html

phyloseq https://bioconductor.org/packages/release/bioc/html/phyloseq.html

FZINBMM http://github.com//nyiuab//NBZIMM

Cytoscape https://cytoscape.org/

Other

Illumina HiSeq4000 Illumina NA

DNA extraction Qiagen MagAttract 
PowerSoil DNA kit

http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/dna-
extraction-protocol/
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