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Abstract
Purpose Severity scoring is a key step in managing patients with COVID-19 pneumonia. However, manual quantitative
analysis by radiologists is a time-consuming task, while qualitative evaluation may be fast but highly subjective. This study
aims to develop artificial intelligence (AI)-basedmethods to quantify disease severity and predict COVID-19 patient outcome.
Methods We develop an AI-based framework that employs deep neural networks to efficiently segment lung lobes and
pulmonary opacities. The volume ratio of pulmonary opacities inside each lung lobe gives the severity scores of the lobes,
which are then used to predict ICU admission and mortality with three different machine learning methods. The developed
methods were evaluated on datasets from two hospitals (site A: Firoozgar Hospital, Iran, 105 patients; site B: Massachusetts
General Hospital, USA, 88 patients).
Results AI-based severity scores are strongly associated with those evaluated by radiologists (Spearman’s rank correlation
0.837, p < 0.001). Using AI-based scores produced significantly higher (p < 0.05) area under the ROC curve (AUC)
values. The developed AI method achieved the best performance of AUC = 0.813 (95% CI [0.729, 0.886]) in predicting ICU
admission and AUC = 0.741 (95% CI [0.640, 0.837]) in mortality estimation on the two datasets.
Conclusions Accurate severity scores can be obtained using the developed AI methods over chest CT images. The computed
severity scores achieved better performance than radiologists in predicting COVID-19 patient outcome by consistently quan-
tifying image features. Such developed techniques of severity assessment may be extended to other lung diseases beyond the
current pandemic.
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Introduction

The SARS-CoV-2 (COVID-19) outbreak at the end of 2019,
which results from contracting an extremely contagious
beta-coronavirus, has spread worldwide and is responsi-
ble for the latest pandemic in human history. Prior studies
report frequent use of chest computed tomography (CT)
in patients suspicious of pneumonia, including COVID-19
[1,4,10,14,16]. Chest CT is often recommended to assess
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disease severity and monitor progression in patients with
moderate to severe pneumonia as well as to assess suspected
complications. In sites with limited availability of reverse
transcription polymerase chain reaction (RT-PCR) and high
disease prevalence, chest CT is also used in diagnosis for
patients with suspected COVID-19 [1,4,10,14,16].

Recent clinical studies with chest CT have reported that
the qualitative scoring of pulmonary opacities can help assess
severe COVID-19 pneumonia. Examples include Yang et al.
[16], summing up individual scores of 0–2 from 20 lung
regions. Many clinical studies focus on qualitative assess-
ment and grading of pulmonary involvement in each lung
lobe to establish disease severity [7,18]. For example, Li et
al. [7] quantified the presence of consolidation from chest CT
to derive a score between 0 and 5 for each of the five lobes.
Summing all the scores together gives a total score in the
range of [0, 25] indicating the severity of COVID-19 pneu-
monia. Their work [7] suggests that high CT severity scores
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(indicating extensive lobar involvement and consolidation)
are associated with severe COVID-19 pneumonia.

In these clinical studies, radiologists visually assess the
condition of each lobe and estimate the extent of opacities in
each lung lobe to assign a severity score [7,15,18]. The scores
are then added up to become the overall evaluation. However,
such description is inconsistent, subjective, and suffers from
intra- and inter-observer variations. To accurately quantify a
patient’s condition and to relieve clinicians’ labor, an auto-
mated assessment of the extent of pulmonary parenchymal
involvement and distribution of pulmonary opacities is use-
ful since routine clinical interpretation of chest CT does not
quantify the disease burden. To automate quantification of
disease distribution and extent of pulmonary involvement,
automatic segmentation of lung lobes, pulmonary opacities,
and distribution of opacities within each lobe are desired.
Tang et al. [11] employed threshold segmentation based on
the Hounsfield units (HU) range of the ground glass opacity
(GGO) to detect the severe disease on chest CT. He et al. [5]
proposed a framework for joint lung lobe segmentation and
severity assessment of COVID-19 in CT images.We hypoth-
esized that AI-based automatic lung lobe segmentation and
distribution of pulmonary opacities can help assess disease
severity and outcomes in patients with COVID-19 pneumo-
nia.

Thisworkproposes anAI-assisted severity scoringmethod
based on automated segmentation of the lung lobes and pul-
monary opacities. We first analyze the correlation between
scores obtained by AI and radiologists. We then show the
statistics and data distribution of patients and derive the cor-
relation between scores and patient outcomes. To quantify
the correlation, we establish an evaluation scheme that uses
three machine learning models for predicting the patient out-
comes based on severity scores.

Data and annotation

Data sets

The deidentified data used in our work were acquired at two
hospitals, i.e., Site A: Firoozgar Hospital (Tehran, Iran) and
Site B:Massachusetts General Hospital (Boston,MA,USA).
All the CT imaging data were from patients who underwent
clinically indicated, standard-of-care, non-contrast chest CT.

Site AWe reviewed medical records of adult patients admit-
ted with known or suspected COVID-19 pneumonia from
the site between February 23, 2020, and March 30, 2020. In
the 117 patients with positive RT-PCR assay for COVID-19,
three patients were excluded due to the presence of extensive
motion artifacts on their chest CT. One patient was excluded
due to the absence of ICU admission information. The radi-

Table 1 Demographic statistics (mean ± SD, except for gender) for
Site A dataset

ICU admission Not admitted ICU admitted

Gender (M:F) 43:28 27:12

Age (year) 56.7 ± 16.0 67.1 ± 16.7

Lym_r (%) 22.7± 8.3 15.2 ± 12.4

WBC 5831.0 ± 1848.9 8046.2 ± 4650.9

Lym 1244.7 ± 482.8 1013.6 ± 976.6

Table 2 Demographic statistics (mean ± SD, except for gender) for
Site B dataset

ICU admission Not admitted ICU admitted

Gender (M:F) 18:21 24:25

Age (year) 79.5 ± 10.1 74.4 ± 9.1

Lym_r (%) 17.4 ± 12.8 12.6 ± 11.0

WBC 7587.0 ± 4527.5 10,625.5 ± 5941.8

Lym 999.7 ± 463.3 1274.7 ± 2033.3

ologists annotated 105 CT volumes of the left 113 available
scans excluding those with significant motion artifacts.

Site BWe reviewed medical records of adult patients admit-
ted with COVID-19 symptom between March 24 and May
9, 2020. 125 RT-PCR positive admitted patients underwent
unenhanced chest CT are selected to form this dataset. The
radiologists labeled 88 patients with both ICU admission and
mortality risk.

Demographic statistics Tables 1and 2 summarize the demo-
graphic data from Sites A and B, respectively. Several data
variables (age, gender, white blood cell (WBC) count, lym-
phocyte count (Lym), lymphocyte-to-WBC ratio (Lym_r))
have significantly different values between patients with and
without ICU admission.

Annotation of severity

Two thoracic subspecialty radiologists (one with 16 years
of experience and the other with 14 years of experience)
reviewed all CT images without the knowledge of clinical
features, laboratory data, and patient outcomes. Chest CT
images were reviewed on DICOM image viewer (MicroD-
icom DICOM Viewer, Sofia, Bulgaria) in lung windows
(windowwidth 1500HU,window level-600HU). The radiol-
ogists recorded the type of pulmonary opacities (ground glass
opacities, mixed ground glass and consolidative opacities,
consolidation, organizing pneumonia, nodular pattern, and
ground glass opacities with septal thickening (crazy-paving
pattern)). Extent of involvement of each lobe (right upper,
right middle, right lower, left upper, and left lower lobes)
by the pulmonary opacities was assessed using a previously
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described scale (0: 0% lobar involvement; 1: < 5% involve-
ment of lobar volume; 2: 5–25% involvement of lobe; 3:
26–50% lobar involvement; 4: 51–75% lobar involvement;
5: >75% lobar involvement) [10]. The two thoracic subspe-
cialty radiologists reviewed all CT images independently.
Any discordance between them was resolved by consensus
readout of cases. Total extent of pulmonary opacities was
estimated by adding the scores of all lobes (lowest score 0,
highest possible score 25) [8,10,13].

AI-assisted severity assessment

Since pulmonary opacity (PO) is an important criterion in
terms of the patient severity assessment, we further evalu-
ated our AI-based quantification scores against radiologists’
manually graded scores in patients’ outcome prediction. In
order to obtain explainable severity scores, we divide the AI-
assisted procedure into two steps as same as radiologists. In
the first step, we use deep learning-based method to auto-
matically segment the lung lobes and pulmonary opacities.
Then, severity scores of each patient are computed from the
sizes of the lobes and pulmonary opacities. In this way, the
severity scores are not dependent on the radiologists’ anno-
tation. Furthermore, we use the association of severity scores
with patient outcome, ICU admission, and mortality risk of
patients with COVID-19 pneumonia, as the criterion to eval-
uate the severity assessment between AI against radiologists.

Deep learning-based image segmentation

This work employs deep neural networks to segment both
lungs, five lung lobes (left upper lobe, left lower lobe, right
upper lobe, right middle lobe, right lower lobe) and pul-
monary opacity regions of infection from non-contrast chest
CT examinations. For network training, we semiautomat-
ically labeled all five pulmonary lobes in 71 CT volumes
from Site A using chest imaging platform [17]. A radiologist
(M.K.K.) annotated the lung opacities slice by slice in 105
CT volumes from Site A. For lung lobe segmentation, we
adopted the automated lung segmentation method proposed
by Hofmanninger et al. [6]. Their work provides a trained
U-net model for lung segmentation. The U-Net consists of
an encoder with regular convolutions and max pooling lay-
ers, and a decoder that applies transposed convolutions along
with regular convolutions. The network consists of 19 convo-
lutional layers. Each convolutional block in the encoder and
decoder uses two 3×3 convolutional layers. Finally, a 1×1
convolutional layer is applied to squeeze the number of fea-
turemap channels into 2. To improve themodel performance,
residual connections between the encoder and decoder were
employed. Same as their pre-processing step, the intensity
HU range is cropped into the window of [− 1024, 600] and

then normalized into [0, 1]. The pre-trained model1 was fine-
tuned with a learning rate of 10−5 using our annotated data.
During tuning, each slice was randomly cropped into patches
with size 224 × 224. The tuned model was then applied to
segment all the chest CT volumes.

Segmentation of pulmonary opacities was completed by
our previously proposed method, Pyramid Input Pyramid
Output Feature Abstraction Network (PIPO-FAN) [3] with
publicly released source code.2 The network integrates image
pyramid and multi-scale feature analysis into one single
end-to-end framework. It applies spatial pyramid pooling
on one 2D slice to generate pyramid input and hierarchi-
cally fuses semantically similar features after convolutional
blocks. Pyramid features were then adaptively fused via
attention module to obtain the lesion map of the slice. In the
pre-processing step, all slices were resampled into a fixed
resolution of 256 × 256 pixels, and to improve the contrast
of pulmonary opacity, the intensity HU range was cropped
into a window of [−1000, 200]. In training, the learning rate
was set to be 0.002. Softmax activation function with thresh-
old 0.5 was used to obtain the infection area. Morphological
operationwas applied to refine the segmentation of lung lobes
and pulmonary opacities. Using a 3×3 kernel which only
connects the nearest neighbors to the center, we first perform
the opening operation to remove small noisy segmentation
and then apply the closing operation using the same kernel
to generate a smooth segmentation.

Figure 1 shows the segmentation results of lung lobes and
pulmonary opacities. Fromaxial and 3Dview,we can see that
the segmentation model can smoothly and accurately predict
isolated regions with pulmonary opacities. Based on the area
of pulmonaryopacities,we then computed the ratio of opacity
volume over lobes, which is a widely used measurement to
describe the severity [11,20]. The dice similarity coefficient
(DSC) was used to quantitatively evaluate the segmentation
accuracy. For Site A dataset, we obtained DSC scores of
82.5% and 90.0% on lung opacity segmentation and lobe
segmentation, respectively.

Severity scoring

Based on the segmentation process in the section “Deep
learning-based image segmentation,” the AI-based quantifi-
cation scores are obtained based on the segmentation results
with similar procedure, followed by radiologists (see section
“Annotation of severity” for more details). First, RPO (ratio
of pulmonary opacities) over lobe was calculated for each
lobe and graded into 6 levels (0–5). Then, the final score
for a patient was the sum of the scores of the 5 lobes which
ranges from 0 to 25.

1 https://github.com/JoHof/lungmask.
2 https://github.com/DIAL-RPI/PIPO-FAN.
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Fig. 1 Segmentation results of lung lobes and pulmonary opacities. Areas colored in magenta indicate segmented lesions. Other colored areas
represent the segmented lobes, with orange: right upper, green: right middle, navy: right lower, yellow: left upper and ocean: left lower

To show relationship between the severity scores and
patient outcome, patients were divided into 4 groups (Group
I, II, III and IV) based on their final outcome from mild to
severe. Groups I and II included recovered patients without
admission to ICU. Group I consisted of patients discharged
from hospital within 7 days. Group II included patients with
more than 7 days of hospital stay. Group III patients had
ICU admission and recovered, whereas Group IV patients
succumbed to COVID-19 pneumonia. We then divided the
severity scores into four buckets. The patients were first
divided into two groups using the mean severity score 15
assigned by the radiologists. Each group is then further
divided by halving the buckets. We display the statistic of
severity groups in different buckets and evaluate the corre-
lation between severity buckets and patient outcome using
mean absolute error (MAE).

Severity analysis

This work establishes an evaluation scheme to quantify the
correlation between severity scores and patient outcome. The

severity scores are used as an input to different machine
learning models for predicting patient outcome. The AUC
for this task indicates the correlation between scores and
patient outcomes. Considering the variations introduced by
different prediction targets, models and datasets, to obtain
a more objective evaluation, we conducted experiments for
both ICU admission andmortality prediction with 3 different
models (i.e., support vector machine (SVM), random forest
(RF) and logistic regression (LR)) on the two datasets. Radial
basis function kernels were used to construct SVM models.
Squared L2 norm is used as a regularization term for the
SVM and LR models. The RF model has 300 trees, and the
Gini index is used as the criterion for calculating information
gain.We bootstrapAUCswith 1000 entries to obtain the 95%
confidence interval.

In addition to the scores estimated by radiologists and out
AI methods, we also include another two groups of scores,
i.e., threshold-based scores, and the mixture of radiologists’
scores and the AI-based scores. As HU [−750,−300] cor-
responds to GGO regions [2,11], the method regards voxels
within this threshold as pulmonary opacities and further cal-
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Fig. 2 Correlation between the
severity scores assigned by
radiologists and computed by
our deep learning-based
segmentation on Site A dataset

culates the severity scores. To investigate whether the scores
of ourAImethod are complementarywith those of the radiol-
ogists on patient outcome prediction, we merged their scores
(denoted as AI + Radiologists). Specifically, while all other
methods use 5 scores of 5 lobes as inputs of the prediction
models, AI + Radiologists uses all 10 scores obtained by
both the AI methods and the radiologists as inputs. The aver-
age results of the three models is used to compute AUC of
each scoring method. We conducted one-tailed z-test [19] on
ROC curves using scores from radiologists and other severity
scoring methods.

Experimental results

This section presents the results of the developed techniques.
We show the effectiveness of our proposed segmentation-
based severity scoring on the two datasets separately through
comparison with different severity scoring methods.

The results are summarized in three parts. In the first part,
we computed the correlation coefficient between severity
scores assigned by radiologists and computed by our deep
learning-based segmentation to demonstrate a good consis-
tency between AI and radiologists. In the second part, we
display the statistics of number and proportion of patients in
severity groups on different buckets based on section “Sever-
ity scoring.” The number of patients in each group is overlaid
on the corresponding segment. We use the mean absolute
error (MAE) between severity score and patient severity
group to evaluate the consistency between severity scores
and patient outcome.

Finally, to further evaluate the association between the
scores and patient outcome, we use the different groups

of scores to do ICU admission and mortality prediction,
respectively. We computed the AUC for mortality and ICU
admission prediction using the severity scores to evaluate
the association between scores and patient outcomes. Cross-
dataset validation (training on Site A and testing on Site B;
training on Site B and testing on Site A) was performed for
each model on each group of severity scores to compute the
AUC.

Correlation between AI and radiologists

The score for a patient is the sum of the scores of the 5 lobes
which ranges from 0 to 25. Similar to the work of Li et al. [9],
we evaluated Spearman’s rank correlation and associated p-
value to determine the strength of the correlation between
scores computed by AI-assisted method and assigned by
radiologists on Site A and Site B dataset. Figure 2 shows
the correlation between the two types of severity scores. We
obtained a considerable positive Spearman’s rank correla-
tion of 0.770 on Site A dataset (p < 0.001). Figure 3 shows
the correlation between the two types of severity scores of
88 patients. We obtained a considerable positive Spearman’s
rank correlation of 0.837 on Site B dataset (p < 0.001), indi-
cating that the AI-assisted prediction can obtain consistent
results with radiologists.

Severity scores and patient outcome

Figures 4 and 5 display the statistics on number and propor-
tion of 105 patients in SiteA dataset falling into the four score
buckets based on the computed severity scores, assigned by
radiologists and our AI algorithm, respectively. As one can
see from the figure, patient severity groups are positively
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Fig. 3 Correlation between the
severity scores assigned by
radiologists and computed by
our deep learning-based
segmentation on Site B dataset

Fig. 4 For different buckets divided by severity scores obtained by AI and radiologists, values of number of patients from different patient groups
(I, II, III, IV) are presented on Site A dataset. RA: Results of radiologists’ annotation. AI: Results of the AI-based method. Heights of the bars
represent the number

correlated with the severity scores buckets. In Fig. 5, we can
see that for our AI method, no patients in Group III and
Group IV are in the bucket [20,25]. For quantitative evalu-
ation, we then computed the MAE between severity score
buckets and patient severity groups. Each bucket of severity
score is paired with one severity group. The MAE for radiol-
ogists andAI quantification computed using the number is 88
and 84, respectively. The MAE computed using the propor-
tion is 3.51 and 2.65. Our AI method obtained comparable
MAE when compared to the radiologists, i.e., the difference
in the MAE scores is not statistically different.

Figures 6 and 7 display the statistics on number and pro-
portion of 88 patients in Site B dataset falling into different
categories based on the computed severity scores, given by
radiologists and ourAI algorithm, respectively. TheMAE for
radiologists and AI quantification computed using the num-

ber is 89 and 89, respectively. The MAE computed by the
proportion is 3.88 and 3.38 for the radiologists and the AI,
respectively. That means the AI-assisted method achieved
comparable consistency with patient severity groups than
radiologists. In Fig. 7, we can see that for our AI method,
the proportion of the severe patients (Group III and Group
IV) monotonically increases with the raising of the severity
score, while the result of the radiologists has a drawback on
the second score bucket.

Patient outcome prediction

Results on Site A

Table 3 summarizes the AUCs and 95% confidence intervals
of threemachine learningmodels on ICUadmission andmor-
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Fig. 5 For each severity score bucket shown in vertical, horizontal
stacked bars present the proportion of patient number of one severity
group to patient number of all severity groups of Site A in the bucket.

Widths of the bars represent such proportion (mild patient: green for
group I and light green for group II; severe patient: light red for group
III and red for group IV)

Fig. 6 For different buckets divided by severity scores obtained by AI and radiologists, values of number of patients from different patient groups
(I, II, III, IV) are presented on Site B dataset. RA: Results of radiologists’ annotation. AI: Results of the AI-based method. Heights of the bars
represent the number

Fig. 7 For each severity score bucket shown in vertical, horizontal
stacked bars present the proportion of patient number of one severity
group to patient number of all severity groups of Site B in the bucket.

Widths of the bars represent such proportion (mild patient: green for
group I and light green for group II; severe patient: light red for group
III and red for group IV)
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Table 3 Comparison of AI with radiologists in predicting ICU admission and mortality prediction on Site A dataset

Outcome Severity scoring SVM RF LR

Mean 95% CI Mean 95% CI Mean 95% CI

ICU admission Radiologists 0.689 (0.594, 0.778) 0.663 (0.562, 0.759) 0.642 (0.535, 0.739)

Threshold [11] 0.753 (0.666, 0.830) 0.706 (0.607,0.796) 0.787 (0.713, 0.854)

AI segmentation (AI) 0.733 (0.641, 0.816) 0.778 (0.698, 0.848) 0.723 (0.623, 0.810)

AI + radiologists 0.726 (0.639, 0.804) 0.759 (0.638, 0.836) 0.681 (0.575, 0.778)

Mortality Radiologists 0.639 (0.527, 0.743) 0.644 (0.531, 0.738) 0.566 (0.441, 0.674)

Threshold [11] 0.605 (0.479, 0.718) 0.593 (0.474, 0.702) 0.614 (0.480, 0.741)

AI segmentation (AI) 0.720 (0.626, 0.812) 0.723 (0.623, 0.820) 0.670 (0.545, 0.777)

AI + radiologists 0.693 (0.589, 0.788) 0.719 (0.618, 0.807) 0.638 (0.505, 0.758)

tality. The threemachine learningmodelswere trainedonSite
B and tested on Site A. The bold values represent the best
AUCs. We can see that AI achieved higher AUC than radi-
ologists under all models and tasks. We further use the mean
of the scores from the three models as a simple ensemble
strategy to compute the AUC value for each severity scor-
ing method. ROC curves on ICU admission and mortality
prediction are shown in Fig. 8a, b. AI obtains best AUC
0.755 and 0.723 on ICU admission and mortality, respec-
tively. One-tailed z-test is used to evaluate the statistical
significance between radiologists and other scoringmethods.
Threshold-based method outperforms radiologists in ICU
admission with p = 0.031 although performance in mor-
tality prediction was not significantly different (p = 0.426).
AI significantly outperforms radiologists with p = 0.044 <

0.05 in ICU admission and p = 0.031 < 0.05 on mortality.

Results on site B dataset

The same set of experiments were repeated on the Site B
dataset. The three machine learning models are trained on
Site A and tested in Site B. Table 4 summarizes the AUCs
of different models with 95% confidence interval indicated
by ICU admission and mortality on Site B dataset. The bold
values represent the best AUCs. We can see that AI achieved
best AUC under all models and tasks. ROC curves on ICU
admission and mortality prediction are shown in Fig. 9a,
b. AI obtains best AUC 0.813 and 0.741 on ICU admis-
sion and mortality, respectively. One-tailed z-test is used to
evaluate the statistical significance between radiologists and
other scoring methods. Radiologists outperform threshold-
based method in ICU admission with p = 0.016; both
methods had similar performance for mortality prediction
(p = 0.060). AI significantly outperforms radiologists with
p = 0.022 < 0.05 in ICU admission and p = 0.045 < 0.05
on mortality.

Discussion

In the current clinical radiology practice, radiologists from
hospitals do not perform a quantitative or semiquantitative
assessment of disease severity or distribution of pulmonary
opacities. This lack of quantification is related to the fact that
they are not trained and required to assign severity scores
in patients with pneumonia. While in patients with cancer
and focal lesions, radiologists measure and compare single
or volumetric dimension of focal lesions, in patients with
diffuse and ill-defined disease patterns found in pneumonia
suchmeasurements are not feasible and practical. As a result,
radiology reports in patients with COVID-19 pneumonia are
limited to semantic description of extent (such as diffuse,
multifocal, or localized) and type of opacities rather than
an assigned severity score. However, prior studies with sub-
jective severity scores from both chest radiography and CT
report on their ability to predict disease severity and patient
outcome [12,16]. Threshold segmentation can detect coarse
opacities with some degree, but it is known to be less accurate
than AI-based methods.

Results analysis

The study confirms that AI-based severity scoring method
yields AUCs in ICU admission and mortality prediction, on
Site A and B datasets, that exceed those of radiologists.
Considering the large differences in patient demographic
statistics and clinical protocols at the two participating sites,
the results highlight the robustness of the AI-based method
and their generalization ability of the extracted scores.

The statistical test of differences between ROC curves
using scores from AI and radiologists suggests that AI sig-
nificantly outperforms radiologists (A → B: p = 0.022 on
ICU admission, p = 0.045 on mortality; B→A: p = 0.044
on ICU admission, p = 0.031 on mortality). The results out-
line that the correlation between AI-assisted severity score
andprognosis of patients has stronger correlationwith patient
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(a) (b)

Fig. 8 Comparison of severity scoring methods under ROC curves on Site A

Table 4 Comparison of AI with radiologists in predicting ICU admission and mortality prediction on Site B dataset

Outcome Severity scoring SVM RF LR

Mean 95% CI Mean 95% CI Mean 95% CI

ICU admission Radiologists 0.680 (0.581, 0.773) 0.695 (0.600, 0.782) 0.705 (0.608, 0.794)

Threshold [11] 0.719 (0.624, 0.808) 0.703 (0.599, 0.796) 0.701 (0.602, 0.795)

AI segmentation (AI) 0.766 (0.675, 0.851) 0.757 (0.665, 0.840) 0.766 (0.675, 0.851)

AI + radiologists 0.725 (0.634, 0.811) 0.741 (0.657, 0.821) 0.725 (0.634, 0.811)

Mortality Radiologists 0.566 (0.447, 0.679) 0.616 (0.504, 0.727) 0.670 (0.602, 0.795)

Threshold [11] 0.584 (0.481, 0.685) 0.579 (0.470,0.679) 0.605 (0.505, 0.701)

AI segmentation (AI) 0.655 (0.545, 0.766) 0.676 (0.578, 0.779) 0.736 (0.642, 0.828)

AI + radiologists 0.603 (0.496, 0.719) 0.631 (0.530, 0.735) 0.716 (0.623, 0.810)

(a) (b)

Fig. 9 Comparison of severity scoring methods under ROC curves on Site B

outcomes than radiologists, which could effectively improve
the accuracy of severity scoring system.

We explored the potential of combining the scores of
AI and radiologists to further improve the prognosis of
COVID-19 pneumonia. Both score concatenation and sum
were tested. However, compared with AI-based method,
the combination of scores of AI and radiologists did not
present a significant improvement. We also used investi-
gated other machine learning models, decision tree (DT)

and multilayer perceptron (MLP), to predict patient out-
comes. The two models did not perform as well as the three
models reported in this paper. Besides the choice of classifi-
cation model, the segmentation quality of pulmonary lobes
and opacities may be an additional factor that limits the
performance of outcome prediction. More accurate image
segmentation will give a more precise lung opacity quantifi-
cation, which, in turn, may help to improve the performance
of ourAImethod further.Also, ancillary imagingfindings not
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assessed with our segmentation tool such as coronary artery
disease, cardiac enlargement, pleural effusions, co-existing
bronchial wall thickening or emphysema, and mediastinal
lymphadenopathy, may have affected the disease outcome,
and thus decreased the performance of our models.

The AUC obtained for mortality prediction is lower than
in ICU admission prediction. Sincemortality is influenced by
several factors including comorbidities, local treatment con-
dition and disease exacerbation, mortality prediction is more
challenging than ICU admission. However, the AI method
can still persistently improve the AUC over radiologists for
this task by 10%,which further demonstrate the effectiveness
of scores extracted from AI.

Future directions

Although scores from radiologists may not be as accurate as
AI, they may convey overall condition of severe patients.
For example, although not included in our study, radiol-
ogists assessed findings beyond pulmonary opacities such
as architectural distortion in lungs, pleural effusions, medi-
astinal/hilar lymphadenopathy, cardiac enlargement, and
increased subcutaneous fat stranding or attenuation sugges-
tive of anasarca and underlying fluid overload. Li et al. [9]
showed that such findings can be learned by AI algorithms
and help longitudinal disease evaluation onCOVID-19 pneu-
monia.

For futurework,wewill continue to explore developingAI
algorithms, whichmay efficiently incorporate the knowledge
of radiologistswith an overall evaluation of patient condition.
It is also worth noting that the developed techniques of sever-
ity assessment may extend to other lung diseases beyond the
current pandemic.As theworld awaits the introduction of dis-
ease prevention and specific treatment for those infected by
COVID-19 pneumonia, it is important that future versions of
AI-based time-to-event measures assess the extent of chronic
changes from the substantial patient population who had ini-
tial recovery but might have long lasting sequelae from their
infection.

Conclusions

This paper has proposed an AI-assisted severity scoring
method based on automatic segmentation of lung lobes and
pulmonary opacities. The severity scores obtained byAI have
shown to be consistent with those obtained by radiologists
in the two datasets. We have further quantitatively evaluated
the scores based on patient outcomes and demonstrated that
the AI segmentation-based method was significantly more
accurate than current severity scoring by radiologists only.
The results suggest that AI can significantly improve the
patient outcome prediction for patients with severe COVID-

19 pneumonia.We believe such techniques have the potential
to numerous clinical applications involvingCOVID-19 pneu-
monia.
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