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Abstract
Purpose Deep learning can be used for improving the performance of computer-aided detection (CADe) in various medical
imaging tasks. However, in computed tomographic (CT) colonography, the performance is limited by the relatively small
size and the variety of the available training datasets. Our purpose in this study was to develop and evaluate a flow-based
generative model for performing 3D data augmentation of colorectal polyps for effective training of deep learning in CADe
for CT colonography.
Methods We developed a 3D-convolutional neural network (3D CNN) based on a flow-based generative model (3D Glow)
for generating synthetic volumes of interest (VOIs) that has characteristics similar to those of the VOIs of its training dataset.
The 3D Glow was trained to generate synthetic VOIs of polyps by use of our clinical CT colonography case collection.
The evaluation was performed by use of a human observer study with three observers and by use of a CADe-based polyp
classification study with a 3D DenseNet.
Results The area-under-the-curve values of the receiver operating characteristic analysis of the three observers were not
statistically significantly different in distinguishing between real polyps and synthetic polyps. When trained with data aug-
mentation by 3D Glow, the 3D DenseNet yielded a statistically significantly higher polyp classification performance than
when it was trained with alternative augmentation methods.
Conclusion The 3D Glow-generated synthetic polyps are visually indistinguishable from real colorectal polyps. Their appli-
cation to data augmentation can substantially improve the performance of 3D CNNs in CADe for CT colonography. Thus,
3D Glow is a promising method for improving the performance of deep learning in CADe for CT colonography.

Keywords Generative models · Data augmentation · Deep learning · Computer-aided detection · Virtual colonoscopy ·
Artificial intelligence

Introduction

Colorectal cancer (CRC) is the third most common cancer
in terms of incidence and the second most common cancer
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in terms of mortality worldwide [1]. However, CRC can be
prevented considerably by early detection and removal of
its precursors, colorectal polyps [2]. Computed tomographic
colonography (CTC) can be used both for detecting CRCs
and for preventing CRCs by early detection of clinically sig-
nificant polyps that could develop into cancers [3].

Deep learning based on convolutional neural networks
(CNNs) has made it easy to obtain state-of-the-art results
in various medical imaging tasks [4]. However, one of the
limitations of deep learning is that the development of gen-
eralizable CNNs requires a large amount and great variety of
training data [5]. In CTC, the available training datasets are
relatively small and limited in numbers and variations.

The two principal approaches for addressing the issue
of small training datasets in deep learning have included
(1) transfer learning of CNNs and (2) data augmentation
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of training datasets. With the first approach, transfer learn-
ing, one starts with a CNN that has been pre-trained with
a large number of images. The CNN is then adapted to the
desired application by continuation of the training with the
available domain-specific data. In CTC, transfer learning has
been used successfully in training of CNNs for interpreting
virtual endoluminal views [6], for detecting contrast-coated
serrated polyps [7] and for performing electronic cleansing
[8]. However, transfer learning has the limitations that most
of the publicly available pre-trainedCNNs have not been pre-
trained with medical images and that most of these CNNs are
2D CNNs.

With the second approach, data augmentation, the train-
ing dataset is enhanced artificially so that the number and
variety of training samples are increased. The most common
method for implementing data augmentation has been the
manipulation of the training samples by basic image pro-
cessing operations [5]. In CTC, this approach has been used
successfully for training of CNNs for detection of polyps [9]
and masses [10], and for reduction in the number of false-
positive (FP) detections in computer-aided detection (CADe)
[11,12]. However, the approach has the limitation that some
of the image transforms that are commonly used with natural
images are not appropriate for use with medical images. This
can limit the number and variety of the obtainable training
samples.

Recently, several studies have explored the possibility of
performing data augmentation by use of generative adver-
sarial networks (GANs) [13,14]. In CTC, 3D GANs have
been used for generation of synthetic polyps to improve the
training of 3D CNNs in CADe [15]. However, the develop-
ment of GANs that can generate realistic synthetic images
at a high image resolution is known to suffer from various
problems, such as non-convergence of themodel parameters,
mode collapse or training imbalance between the generator
and the discriminator [5].

Flow-based generative models have several advantages
over GANs [16]. UnlikeGANs, they are designed to learn the
distribution of the input data explicitly, thereby providing an
exact latent-variable inference, log-likelihood evaluation and
a meaningful latent space for performance of valid manip-
ulations of the data. They are also highly parallelizable and
can be implemented with a small memory footprint [16].

In this study, we investigated the feasibility of apply-
ing a flow-based generative model to 3D data augmentation
of colorectal polyps in CTC. We hypothesized that (1) a
3D CNN that implements a state-of-the-art flow-based gen-
erative model known as Glow [16] (hereafter referred to as
3D Glow) can be trained to generate synthetic polyps that
are visually indistinguishable from real colorectal polyps in
CTC, and that (2) data augmentation by use of 3D Glow-
generated synthetic polyps can be used for improving the
performance of deep learning in differentiating between

polyps and non-polyps in CADe for CTC. One could use
successful development of 3D Glow to overcome the limita-
tions of currently available CTC datasets, thereby enabling
the training of generalizable high-performing 3D CNNs for
CADe in CTC.

Flow-based generative model

Given an observed (complicated) probability distribution, a
flow-based generative model provides a bijective mapping
f between the observed distribution and a simple, well-
understood target probability distribution, such as a standard
Gaussian distribution. The desired computations can then be
performed on the simple target distribution rather than on the
observed distribution. Such a mapping that is constructed as
a sequence of invertible bijective transforms is called the nor-
malizing flow. Formally, let x denote an observation sampled
from a training dataset D that has an unknown probability
distribution p(x). The normalizing flow can be defined as

z = f (x) = fL ◦ fL−1 ◦ · · · ◦ f1(x), (1)

where z is a latent random variable of the desired target dis-
tribution. The corresponding flow-based generative model is
constructed by optimizing the parameters of the component
functions of Eq. (1), fi , by use of the maximum-likelihood
method. The training loss is the negative log-likelihood over
D, or

L(D) = − 1

|D|
∑

x∈D
log p(x) . (2)

Figure 1 illustrates the construction of a normalizing flow.
The path traversed by the random variables, zi , is a flow, and
the full chain that is formed by the corresponding probability
distributions is the normalizing flow.

3D Glow

Figure 2a illustrates the overall architecture of our 3D Glow
model. The model extends the originally proposed 2D Glow
framework [16] into a 3D CNN for processing of volumetric
CTC images.

The model has three types of layer blocks. Squeeze trans-
forms an input w × h × d × c tensor, where w × h × d is
the input image size and c is the number of channels, into a
w
2 × h

2 × d
2 × 8c tensor; thus, trading spatial size for number

of channels [17]. Flow implements one step of the flow. Split
splits the input tensor along the channel dimensions [16].

Figure 2b illustrates the design of a Flow block. There
are three layers: an activation-normalization (actnorm) layer
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Fig. 1 Diagram of a
normalizing flow between a
simple Gaussian distribution
z0∼p0(z0) and an observed
distribution x = zL ∼ pL (zL )

Fig. 2 a Illustration of the architecture of 3D Glow. The model implements K levels and L steps of flow [16]. b Design of a flow block

[16], an invertible 1× 1× 1-convolutional layer [16] and an
affine-coupling layer [18]. The actnorm layer performs an
affine transformation of the input tensor, where the trainable
per-channel scale and bias parameters are initialized to yield
a mean of zero and a standard deviation of one based on the
first mini-batch [16]. The invertible 1× 1× 1-convolutional
layer implements a trainable permutation that reverses the
order of the input channels, where the weight matrix of the
transform is initialized as a random rotation matrix [16]. The
affine-coupling layer splits the input into two parts: the first d
dimensions remain the same, whereas the latter dimensions,
d + 1 to D, undergo an affine transformation based on the
scale and shift parameters as

y1:d = x1:d , (3)

yd+1:D = xd+1:D� exp(s(x1:d)) + t(x1:d) , (4)

where � denotes an element-wise product and s(.) and t(.)
are scale and translation functions that map R

d→R
D−d .

It can be shown that the transformation above satisfies
the basic properties required by efficient computation of the
flow transformation [16]. The model is trained with the loss
function of Eq. (2).

Construction of synthetic polyps

Figure 3 illustrates the principle of the 3D Glow-based data
augmentation. The training of themodel involves the learning
of a bijective mapping from input polyp VOIs (volumes of
interest, xa and xb) to vectors of the latent space (za and zb)

by use of the latent variable z and the normalizing flow of
Eq. (1).

We interpolate the new samples in the latent space by use
of linear interpolation between any two training samples.
Given two vectors of the latent space, such as za and zb, we
calculate a new sample as z̃ ∼ za + α(zb − za), where α is
sampled randomly from the uniform distribution and scaled
linearly to α∈[0.4, 0.6] to avoid generating VOIs that would
be nearly identical to the VOI of real polyps in the training
dataset.

Materials

CTC cases

We constructed two independent CTC datasets for the
experiments: a development dataset and a test dataset. The
development dataset was constructed for providing samples
of polyps for the training of 3DGlow for generating synthetic
polyps and for providing samples of real polyps and normal
anatomy for training of a 3D CNN for polyp detection. The
independent test dataset was constructed for testing of the
3D CNN performance. The details of the training and testing
of the polyp detection are explained in the section of “Polyp
classification study” in “Evaluation methods” section.

Weconstructed a retrospective development dataset of 203
patients with 269 colonoscopy-confirmed polyps ≥ 6 mm in
size from cases of various clinical CTC screening trials [19–
22]. Most of the patients had been prepared with a cathartic
bowel preparation and oral contrast (fecal tagging) by iodine
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Fig. 3 Illustration of 3D Glow-based data augmentation. Two training VOIs, xa and xb, are mapped to points za and zb of the latent space, which
are used for interpolating a new point z̃. By mapping z̃ back to the VOI space, we generate a new synthetic VOI, x̃ , which is different from, yet
similar to xa and xb

Fig. 4 Virtual endoscopic views of the VOIs of a six real polyps and b six 3D Glow-generated synthetic polyps. Each VOI was 32 × 32 × 32
voxels in size

and/or barium. The patients had been scanned in two (supine,
prone and/or decubitus) positions by use of a total of 11 CT
scanner models (Siemens, Philips, Toshiba, and GEMedical
Systems) at 120 or 140 kVp, 0.54–0.97 mm pixel spacing,
0.75–5.00 mm slice thickness and 0.7–2.5 mm reconstruc-
tion interval. The spatial locations of the polyps on the CTC
images were established by experienced radiologists.

We constructed an independent test dataset of 36 patients
with 64 colonoscopy-confirmed polyps from two distinct
subgroups of patients. The first subgroup of these patients
(20 patients with 45 polyps) was prepared by use of a reduced
cathartic bowel preparation with 18 g of magnesium cit-
rate and fecal tagging by 50 ml of non-ionic iodine. The
CTC acquisitions (SOMATOM Definition, Siemens Health-
care, Erlangen, Germany) were performed at 140 kVp with
64×0.6 mm collimation, pitch of 0.85, rotation time of 0.5 s,
1.0 mm slice thickness and a 0.6–0.7 mm reconstruction
interval. The second subgroup (16 patients with 19 polyps)
was prepared by use of the previously established proto-
col of polyethylene glycol solution plus contrast medium
[23]. The CTC acquisitions (Acquilion, Canon Medical Sys-
tems, Tochigi, Japan) were performed at 120 kVp with 16 or
64 × 0.6 mm collimation, pitch of 0.81–0.94, rotation time

of 0.5 s, 0.5 or 1.0 mm slice thickness and 0.8 or 1.0 mm
reconstruction intervals.

Extraction of VOIs

For the experiments, we extracted three types of VOIs by
use of the development dataset: 100 VOIs of real polyps,
100 VOIs of synthetic polyps and 100 VOIs of normal
anatomy. The 100 VOIs of real polyps were those of ran-
domly sampled real polyps. The VOIs of synthetic polyps
were generated by 3D Glow after training with the VOIs
of the 269 real polyps from the development dataset. The
VOIs of normal anatomywere theVOIs of randomly sampled
FPdetections obtained at 100%polyp detection sensitivity by
the 3D detection module of our previously developed CADe
system [24–26].

Figure 4 shows examples of the VOIs of the real polyps
and 3D Glow-generated synthetic polyps that were included
in our experiments. The synthetic polyps look visually indis-
tinguishable from real polyps. Figure 5 shows a visual
comparison of the radiomic values of the polyp regions of the
real and synthetic polyps in terms of two radiomic features
that we had previously identified as being most effective in
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Fig. 5 Visual comparison of the volumetric shape and texture features
of the 100 real polyps (“Real”) and 100 3D Glow-generated synthetic
polyps (“Fake”)

the differentiation of true polyps from non-polyps in CADe
[27]. The comparison indicates that the synthetic and real
polyps are radiomically indistinguishable.

For independent testing, we acquired all of the VOIs of
the polyp candidates that were detected from the test dataset
(see the subsection of “CTC cases”) by the detection module
of our previously developed CADe system. There were 92
true-positive (TP) detections ≥ 6 mm in their largest diame-
ter (6–9 mm: 61 TPs) and 6519 FP detections. To calculate
meaningful area-under-the-curve (AUC) values for receiver
operating characteristic (ROC) analysis, we balanced the
number of TP and FP detections in the test dataset by data
augmentation of the TPVOIs with 3D rotations. This yielded
a total of 12,407 VOIs for independent testing.

Evaluationmethods

Observer study

Three experienced observers (two physicians and one physi-
cist, each with experience of reading > 500 CTC studies)
attempted to differentiate the VOIs of the 100 real polyps
from those of the 100 3D Glow-generated synthetic polyps.
The VOIs were loaded to a commercial CTC reading work-
station (AZEVirtual PlaceRaijin, Canon Inc., Tokyo, Japan),
where they were presented to the readers in random order.
The readers were instructed to evaluate the VOIs interac-
tively by use of the standard 2D and 3D CTC reading modes.
For each VOI, the reader recorded his/her confidence that

the VOI contained a real polyp, on a scale from 0 (synthetic
polyp) to 10 (real polyp). The reading time was unlimited.

The discrimination performance was evaluated by use of
ROC analysis, where the confidence levels recorded by each
reader were analyzed by use of the pROC package (version
1.16.2) [28] in R (version 3.6.3) [29]. The ROC curves were
generated by use of binomial fitting. The 95% confidence
intervals were computed by use of bootstrapping with 1000
replicates. The difference of the AUC value from 50% (the
level of not being able to tell the difference between a real
polyp and a synthetic polyp) was tested by use of a boot-
strap test with 1000 replicates, where p < 0.05 indicated a
statistically significant difference.

Polyp classification study

We trained our previously developed 3DDenseNetCNN [30]
to detect polyps with five data augmentation approaches:
baseline augmentation, nonlinear augmentation, 3D GAN
with baseline augmentation, 3D Glow with baseline aug-
mentation and 3D Glow with nonlinear augmentation. The
baseline augmentation included random flipping and/or 1–
3-times zooming of the VOIs. The nonlinear augmentation
included the baseline augmentation plus 3D shifting, 3D rota-
tion and/or application of Gaussian noise to the CT values
of the VOIs. The GAN-based augmentation was based on
our previously developed 3D self-attention GANmethod for
generating synthetic 3D polyp VOIs [15].

For the training of the 3D DenseNet, 200 VOIs of real
polyps and normal anatomy were extracted from the devel-
opment dataset as described in section “Extraction of VOIs”.
In the baseline and nonlinear augmentation approaches, the
3D DenseNet was trained with the 200 VOIs augmented by
each approach. In the Glow- and GAN-based augmentations,
the training dataset also included 100 synthetic polyp VOIs
generated by each method.

After training with data augmentation, the 3D DenseNet
was tested with the 12,407 VOIs extracted from the indepen-
dent test dataset. The likelihoods for the presence of a polyp
in a VOI as estimated by the 3D DenseNet were analyzed by
use of the pROC package (version 1.16.2) [28] in R (version
3.6.3) [29]. The classification performance was evaluated for
the clinically significant polyp size categories of≥ 6 mm (all
polyps) and 6–9 mm (small polyps) by use of the AUC as
the performance metric. Bootstrapping with 1000 replicates
was used for calculation of the 95% confidence intervals of
the AUC values as well as for testing of the difference of
the AUC values, where p < 0.01 indicated a statistically
significant difference.
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Fig. 6 ROCcurves of the three observers for the differentiation between
synthetic polyps and real polyps

Table 1 The AUC values, 95% confidence intervals (CIs) and p values
of the three ROC curves in Fig. 6

AUC (%) (95% CI) p value

Observer 1 52.7 [40.7, 62.5] 0.65

Observer 2 51.9 [43.6, 60.3] 0.81

Observer 3 50.3 [42.8, 59.1] 0.84

Results

The observer study

Figure 6 shows the ROC curves of the performance of
the three observers in the differentiation of the 3D Glow-
generated synthetic polyps from real polyps. The ROC
curves indicate that the observers were unable to differen-
tiate between the polyps. Table 1 shows an analysis of the
AUC values of the ROC curves and their statistical signifi-
cance with respect to difference from 50%. None of the AUC
values of the ROC curves were statistically significantly dif-
ferent from 50% (p ≥ 0.65).

The polyp classification study

Figure 7 shows the ROC curves representing the classifica-
tion performance of the 3D DenseNet between polyps and
non-polyps based on the training with the different augmen-
tation approaches. The ROC curves on the left show the
classification performance for all polyps in our test dataset,
whereas the ROC curves on the right show the perfor-
mance for the clinically significant small polyps (6–9 mm
in size), the detection of which is generally challenging.
In both cases, the use of the 3D Glow-based augmenta-
tion approaches, Glow+ (red curves) and Glow (blue curves)
yielded a higher performance than did any of the other
augmentation approaches, and Glow+ yielded the highest
performance.

Table 2 lists theAUCvalues obtained from theROCcurves
in Fig. 7, as well as their pairwise comparison results. The

Fig. 7 ROC curves representing the performance of the 3D DenseNet
in the classification of polyp candidates with respect to the five different
augmentation approaches used for the training step. The left plot shows
the ROC curves for all polyps in our test dataset, whereas the right plot
shows the ROC curves for clinically significant small polyps. Abbrevia-

tionsGlow+ = 3DGlowwith nonlinear augmentation; Glow = 3DGlow
with baseline augmentation; Nonlinear = nonlinear augmentation only;
Baseline = baseline augmentation only; GAN = 3D GAN with baseline
augmentation
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Table 2 AUC values obtained from the ROC curves in Fig. 7, and their pairwise comparison results

Glow+ Glow Nonlinear GAN Baseline

≥ 6 mm

Glow+ 88.1 [87.5, 88.7] 0.00013 < 0.0001 < 0.0001 < 0.0001

Glow 0.9 87.2 [86.5, 87.8] < 0.0001 < 0.0001 < 0.0001

Nonlinear 3.4 2.5 84.7 [84.1, 85.4] 0.49 < 0.0001

GAN 3.5 2.6 0.1 84.6 [83.9, 85.3] < 0.0001

Baseline 7.0 6.1 3.6 3.5 81.1 [80.3, 81.8]

6–9 mm

Glow+ 88.7 [88.1, 89.2] < 0.0001 < 0.0001 < 0.0001 < 0.0001

Glow 2.6 86.1 [85.6, 86.7] < 0.0001 < 0.0001 < 0.0001

Nonlinear 4.6 2.0 84.1 [83.4, 84.8] 0.51 < 0.0001

GAN 4.8 2.2 0.2 83.9 [83.3, 84.6] < 0.0001

Baseline 8.3 5.7 3.7 3.5 80.4 [79.6, 81.4]

The diagonal components show the AUC values in percentage with the 95% confidence interval in square brackets. The upper triangle shows the
p values obtained from a bootstrap test (1000 replicates) for the pairwise comparison of the AUC values. The lower triangle shows the pairwise
differences in the AUC values
Glow+ = 3D Glow with nonlinear augmentation; glow = 3D Glow with baseline augmentation; nonlinear = nonlinear augmentation only; base-
line = baseline augmentation only; GAN = 3D GAN with baseline augmentation

upper table shows the results for all polyps,whereas the lower
table shows the results for the clinically significant small
polyps (6–9 mm in size). In both cases, the 3D Glow-based
augmentation approaches (Glow+ and Glow) yielded statis-
tically significantly higher AUC values than did the other
augmentation approaches, and Glow+ yielded the highest
AUC values.

Discussion

Although deep learning has made it relatively easy to obtain
state-of-the-art results of various medical imaging tasks, in
CTC, the available training datasets are relatively small, and
the numbers of clinically significant polyps are even smaller.
In this study, we investigated the feasibility of developing a
flow-based generativemodel for simulating colorectal polyps
to improve the training of 3D CNNs in CADe for CTC. The
results of our experiments indicate that this is indeed feasible.

In the first experiment, we performed an observer study to
compare the visually observed characteristics of 3D Glow-
generated synthetic polyps with those of real polyps. To the
best of our knowledge, this is the first study to show that
it is possible to generate VOIs of synthetic polyps that are
visually equivalent to VOIs of real polyps in CTC.

In the second experiment, we investigated the effect of
the training of deep learning (3D DenseNet) with synthetic
polyps generated by 3DGlow on the differentiation of polyps
from non-polyps in CTC. To the best of our knowledge, this
is the first study to show that data augmentation by syn-
thetic polyps can be used to yield a statistically significant

performance improvement in deep learning for CTC. We
demonstrated that the use of synthetic polyps generated by
3D Glow outperformed the use of traditional nonlinear and
GAN-based augmentations, and that the classification perfor-
mance was highest when 3D Glow was used in combination
with a nonlinear augmentation.

The observed improvement in the polyp classification per-
formance by use of the 3D Glow was high for small polyps
(6–9 mm in size). This result is important, because it is the
detection of small polyps that remains challenging in CTC,
whereas many clinical studies have demonstrated that exist-
ing CADe systems can detect large polyps in CTC at a high
accuracy [31,32]. Therefore, 3D Glow could have a mean-
ingful impact in improving the detection of small polyps.

We performed the polyp detection by use of volumetric
analysis of 3D CT colonography data, because this enables
deep learning to review the complete region of the colon
regardless of obstructions such as collapsed or poorly dis-
tended colon segments. Although other methods such as
virtual endoscopic views have been used previously for polyp
detection by deep learning [6], such approaches are limited
to well-distended regions of the colon, whereas obstructed
regions that can hide clinically significant polyps or masses
would need to be identified and reviewed by other means.
Also, the visual appearance of a virtual endoscopic view
depends on the rendering algorithm and its visualization
parameters, whereas 3D CT colonography data are readily
standardized by Hounsfield units. Thus, the volumetric anal-
ysis provides the most uniform approach for the application
of deep learning to polyp detection in CT colonography.
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This study had several limitations. First, the number of
datasets was necessarily relatively small. Second, there are
various other data augmentation methods besides the non-
linear image transforms and the GAN-based method that we
used as reference augmentation methods in this study. How-
ever, a thorough systematic assessment of their comparative
performance against 3D Glow will require a separate study.
Third, the study could be expanded by consideration of the
unique demands of CTC, such as various bowel preparations
or polyps that tend to be underrepresented in CTC datasets.
Addressing such issues provides topics for future studies.

Conclusion

We developed a 3D CNN based on a flow-based generative
model for generating synthetic colorectal polyps in CTC.
Our results indicate that the generated synthetic polyps are
visually indistinguishable from real polyps and that data
augmentation by such polyps can significantly improve the
performance of deep learning in CADe for CTC.
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