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Prediction of 3D Cardiovascular hemodynamics
before and after coronary artery bypass surgery
via deep learning
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The clinical treatment planning of coronary heart disease requires hemodynamic parameters

to provide proper guidance. Computational fluid dynamics (CFD) is gradually used in the

simulation of cardiovascular hemodynamics. However, for the patient-specific model, the

complex operation and high computational cost of CFD hinder its clinical application. To deal

with these problems, we develop cardiovascular hemodynamic point datasets and a dual

sampling channel deep learning network, which can analyze and reproduce the relationship

between the cardiovascular geometry and internal hemodynamics. The statistical analysis

shows that the hemodynamic prediction results of deep learning are in agreement with the

conventional CFD method, but the calculation time is reduced 600-fold. In terms of over 2

million nodes, prediction accuracy of around 90%, computational efficiency to predict car-

diovascular hemodynamics within 1 second, and universality for evaluating complex arterial

system, our deep learning method can meet the needs of most situations.
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Coronary heart disease (CHD) has become a leading cause
of global mortality1,2, with more than 50% of these cases
being related to coronary stenosis3. In order to achieve

successful therapeutic effects, CHD clinical treatment plans
require a variety of hemodynamic parameters to provide proper
guidance. Currently, pressure field-based fractional flow reserve
(FFR) is the gold standard for the clinical diagnosis of myocardial
ischemia severity caused by stenosis4–7. The treatment regimen
guided by FFR has been proven safe and effective8,9. For patients
with severe myocardial ischemia, revascularization is typically
required. Coronary artery bypass grafting (CABG) is the most
commonly used revascularization procedure10. Velocity field-
based postoperative blood flow changes in the grafts and the
distal end of the stenotic coronary artery are thought to be the
most direct parameter for assessing the influence of CABG11,12.
However, the application rate of hemodynamic parameters in
clinical practice is low, mainly due to its high measurement cost
and potential risks during catheter insertion. Taking invasive FFR
as an example, the price of the pressure guide wire required for
measurement is relatively high. In addition, the use of vasodilator
drugs such as adenosine may increase the time and cost of
interventional surgery13, and may also increase the surgical risk
of patients with adenosine sensitivity or asthma14. Therefore,
obtaining hemodynamic parameters, including velocity and
pressure inexpensively and non-invasively is crucial for the sup-
port of CABG and the treatment of CHD.

A large number of previous studies have used computational
fluid dynamics (CFD) to obtain cardiovascular hemodynamics15–19.
Based on the patient’s cardiovascular geometry, provided by med-
ical imaging data (e.g., MRI, CT, etc.) and given boundary condi-
tions, CFD can inexpensively and non-invasively obtain solutions
for velocity and pressure through the conservation of mass and
momentum under isothermal and incompressible assumptions.
However, the cost to model cardiovascular hemodynamics with
available computational resources is very high20. When subjects’
personalized CFD boundary conditions (e.g., the inlet is set to
pulsatile flow, and the outlet pressure is an invasive measured value)
are used to calculate the hemodynamics of complex cardiovascular
models with small grafts and coronary branches, even high-
performance computational clusters usually require several hours of
iteration to ensure the accuracy of the model. Even with simplified
boundary conditions (e.g., steady flow at the inlet and zero pressure
at the outlet), CFD methods require a calculation time around
10min. In addition, each patient’s cardiovascular geometry is
unique. This means that the CFD procedure will need to be com-
pleted separately and repeatedly for each patient. The high com-
putational cost of CFD hinders its clinical application to the
treatment of CHD, such as the inability to provide surgical gui-
dance. Therefore, it has become increasingly necessary to develop a
cardiovascular hemodynamic calculation method that can reduce
calculation costs while ensuring model accuracy.

The development of deep learning, one of many machine
learning methods, provides a new way to solve the above pro-
blems. Deep learning detects distributed representation features
of data by constructing neural networks and combining low-level
features to form more abstract high-level features or attribute
features, thus completing the task of classification or regres-
sion21–27. Advanced deep learning algorithms and high-
performance GPU servers can greatly reduce computing times
while ensuring high accuracy. Due to the development of deep
learning techniques, some studies have introduced its application
to predict 2D/3D flow fields from geometrical features. For
example, Guo et al. put forward a calculation method of 2D flow
around simple geometric models based on convolutional neural
networks28. And Liang et al. proposed a deep learning method to

predict 3D simplified thoracic aortic hemodynamics29. However,
the research concerning predictions of hemodynamics via deep
learning is still very limited30. The main limitations of these
studies are: (1) most studies focus on 2D flow fields, which have a
limited scope of application31–34, (2) the 3D flow field model
only appears in ideal geometry, and sample resolution in the
dataset is too low to represent complex flow field distributions
and geometric structures28,29. For CABG surgery, a cardiovas-
cular model with small grafts and coronary branches has an
intricate geometry and internal flow field distribution. Therefore,
in this study, in order to accurately predict complex 3D cardi-
ovascular hemodynamics with limited samples, new require-
ments to adapt to the flexibility and high resolution of the input
geometry have been imposed on datasets and deep learning
networks, which is also the main technical problem and con-
tribution of this study. Concerning the dataset, each sample must
have enough spatial resolution to resolve complex flow field and
model geometry. Therefore, it is necessary to find a new, high-
resolution sample representation format. And concerning the
network, it is necessary to propose a new network structure that
can effectively handle the new sample format.

In this study, with the aim of predicting 3D hemodynamics in
the real cardiovascular systems of patients with coronary stenosis
(e.g., geometry containing aorta, coronary arteries, and bypass
graft), we have proposed a new deep learning method that could
predict the velocity field and pressure field based on the geometric
features of the model. We collected cardiovascular data with small
branches from computed tomography angiography (CTA) per-
formed on 110 patients with CHD for model expansion and
simulation of CABG surgery. Under certain boundary conditions,
a CFD method was used to obtain the hemodynamic results (i.e.,
velocity and pressure field) of all models. Later, we converted the
CFD results into high-density 3D point clouds. The point cloud
inherited the ability of CFD results to characterize the geometric
structure and flow field distribution of the model, which could
characterize the complex flow field distribution and geometry of
real cardiovascular models with high resolution35,36. On this
basis, preoperative and postoperative cardiovascular hemody-
namic point datasets were established, respectively. We also
proposed a new deep learning network based on the PointNet
structure37, which could effectively resolve the disorder of point
clouds and introduce spatial relationships. By extracting and
integrating global and local features of the point cloud, the net-
work could analyze and reproduce the relationship between vessel
geometry in the point cloud datasets and the corresponding
hemodynamics. The deep learning network only needs to be
trained once. Next, when we input cardiovascular geometry
information from a new patient, the corresponding 3D hemo-
dynamic parameter prediction results could be obtained within
1 second. In order to verify the accuracy of our deep learning
method, we define error functions (ERR), normalized mean
absolute error (NMAE), and mean relative error (MRE) to eval-
uate the difference between the two methods. Based on the
acquired hemodynamic results, we further calculated and com-
pared the preoperative FFR and the postoperative blood flow of
the graft and the distal stenotic coronary artery. Statistical ana-
lysis results showed that the predicted results of deep learning
were in agreement with the traditional CFD method, but the
calculation time was reduced 600-fold. Our deep learning method
aims to realize the prediction of velocity and pressure fields before
and after CABG surgery instead of CFD. To the best of our
knowledge, this study represents the first report describing deep
learning techniques that can effectively and accurately predict 3D
hemodynamics of complex cardiovascular system with small
grafts and coronary branches with limited data.
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Results
Prediction results of velocity field. When the preoperative and
postoperative velocity field datasets were used as inputs to the
proposed deep learning network, the loss function value versus
epochs was made available (as seen in Supplementary Fig. 1). The
loss function fully converged.

We compared the prediction results of deep learning with
CFD. Figure 1 displays the streamline diagram of a 3D velocity
field distribution and a cross-sectional view of velocity magnitude
contour in the same areas. It showed that the velocity fields
obtained by the two methods had good reliability. Our deep
learning method could predict the distribution of velocity fields in
the entire cardiovascular model before and after CABG, which
included not only general attributes such as laminar blood flow,
but also the occurrence of complex vortex structures.

We calculated the mean value of the predicted velocity field
ERR of the 100 models in the test sets, as shown in Table 1. The
result showed that the prediction accuracy of the coronary arteries
(NMAE < 3%, MRE < 5%) and grafts (NMAE < 1.5%, MRE
< 2.5%) was higher than that of the aorta and superior aortic
branch artery (Preoperative: NMAE= 6.02%, MRE= 9.77%;
Postoperative: NMAE= 6.01%, MRE= 9.74%). This was mainly
due to the larger magnitude of flow and the complicated flow field
distribution by vortex and flow separation in both the aorta and
superior aortic branch artery parts. We give detailed explanations
and feasible improvements in the prediction error analysis section
below.

Deep learning prediction results (shown in Fig. 1 and Table 1)
could reflect the effect of CABG on the distribution of internal
flow field in the cardiovascular system. It could accurately
reproduce velocity fields in the small lesion coronary and
reconstructed grafts, which meant that it could not only reflect
the preoperative ischemic condition of LAD branches with
different stenosis rates, but also signal the postoperative
improvement of blood supply. In addition, it could be seen from
the predicted results that CABG had a big impact on the flow field
of the grafts and LAD with stenosis but had little influence on the
flow field of other parts. The proposed network could effectively
identify significant and non-significant disturbances of the graft
on the flow field, which highlighted its high performance.

Prediction results of pressure field. This study aimed to develop
a universal deep learning method. The same network structure
could accomplish predicting hemodynamic parameters with dif-
ferent attributes, which could then be proven via the analysis
results of the velocity field and pressure field.

Different from the velocity, the pressure in the flow field was
scalar, that was, the pressure at a point had the same value in all
directions. There were different vector components of velocity
vector in X, Y, and Z directions. Therefore, the pressure datasets
as the network input contained less information than the velocity
field datasets, which was reflected in the convergence speed of the
loss function value versus epochs (as seen in Supplementary
Fig. 1). The loss function converged faster.

Figure 2 displays a 3D pressure distribution cloud map
obtained from deep learning and CFD method, with a cross-
sectional view of the same part. The pressure fields obtained by
the two methods were also in agreement. Our deep learning
method could accurately replicate the pressure distribution of the
entire cardiovascular model with small grafts and coronary
branches.

We calculated the mean value of the predicted pressure field
ERR of the 100 models in the test set, as shown in Table 2. The
prediction accuracy of pressure fields of coronary artery (NMAE
< 2.5%, MRE < 4%) and grafts (NMAE < 1.5%, MRE < 2%) was

also higher than that of the aorta and superior aortic branch
artery (Preoperative: NMAE= 4.30%, MRE= 7.61%; Postopera-
tive: NMAE= 4.28%, MRE= 7.35%), as explained in the
prediction error analysis section below.

Based on the velocity and pressure field, we calculated
important clinical indicators related to CABG surgery: preopera-
tive FFR of the lesion LAD and the postoperative blood flow of
the graft and the distal stenotic coronary artery. The performance
of our deep learning method could be further evaluated by
comparing the indicators obtained by the two methods, which is
described in detail below.

Deep learning improves computing efficiency. After the train-
ing was completed, and when the point coordinate space infor-
mation of the cardiovascular model in the test set was input to the
network, the hemodynamics of the query point could be obtained
within 1 second using a NVidia GeForce GTX 1080 Ti GPU. For
the CFD method, the calculation time of one model on an Intel
Xeon Gold 6148 2.4 Ghz × 2 CPU server was about 10 min. Deep
learning improved the computational efficiency of a single model
600-fold. Although it took some time (about 40 h) to complete
network training, this process only needs to be completed once to
predict the hemodynamic of all models in the given test set.
Compared to the traditional CFD method, where each model
requires independent simulation calculations, the computational
cost of deep learning is far less than CFD.

Together with the accuracy analysis of the results, the proposed
deep learning network could efficiently and accurately predict 3D
hemodynamics of complex cardiovascular system with small
grafts and coronary branches. This also meant that deep learning
has broad application prospects, such as the possibility of
application in the early planning or even real-time support
of CABG.

Calculate FFR and improved flow based on prediction results.
In order to further confirm the accuracy and clinical utility of our
deep learning method, we calculated the preoperative FFR value
and postoperative blood flow value of the grafts and the distal end
of the stenosis using the hemodynamic results acquired from
CFD and deep learning, respectively. The FFR was defined as the
ratio of the mean pressure at a cross-section 3 cm downstream of
the stenosis to the mean pressure at the LAD coronary entry
region38. Improved blood flow was defined as graft inlet flow,
which was calculated based on the diameter and velocity of the
graft inlet section. Figure 3a, b were the scatter plots of FFR and
improved flow on each model obtained from the two methods,
which showed that the correlation between the FFR and
improved flow attained from these methods was excellent (FFR: r
= 0.9580, P < 0.001; Flow: r= 0.9734, P < 0.001). Also, the
Bland–Altman analysis result is as shown in Fig. 3c, d: 97 sets of
FFR data and 97 sets of improved flow data fall within the 95%
confidence interval (FFR: −0.07780–0.09254; flow: −1.282–
0.8568), which confirmed that the clinical indicators calculated by
these methods were in agreement.

Our deep learning method reduced the computational time of
hemodynamics to 1 s, and its output was a point cloud format
which was easy to post-process. On this basis, the calculation time
of clinical indicators such as FFR and improvement of blood flow
could also be reduced to a few seconds while ensuring high
accuracy, which further confirmed the superiority of our deep
learning method.

Prediction error analysis. We extracted regions with large pre-
diction error function values (MRE > 10%) in the entire cardio-
vascular model. These regions were highly consistent with the
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Fig. 1 Comparison of velocity fields from CFD and deep learning (DL) methods, using a sample with a stenosis rate of 85%. a–d Are streamline
diagrams of the entire cardiovascular internal flow field before and after CABG obtained from CFD and DL. The position indicated by the black arrow
in a–d is the vortex region of ascending aorta. The position indicated by the red arrow in c, d is the grafts. e–h Are streamline diagrams of the
coronary artery and grafts flow field. The blood flow velocity inside the coronary artery is smaller than that in the aorta, which means that it is
difficult to clearly show the distribution of the internal flow field in the coronary artery under the same velocity color bar. Therefore, the coronary
flow field is displayed separately. The position indicated by the blue arrow in g–h is the connection site between the graft and the LAD. i, j Are
cross-sectional views of the velocity distribution, respectively from (i): RA branch; (ii): the proximal end of LAD before stenosis; (iii): the distal end
of LAD after stenosis; (iv): descending aorta; (v): graft. (v) can reflect laminar flow in the graft. The comparison results confirm the high consistency
of the velocity field obtained by the two methods. This clearly shows the effect of CABG surgery on the flow field distribution of the entire
cardiovascular system.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01638-1

4 COMMUNICATIONS BIOLOGY |            (2021) 4:99 | https://doi.org/10.1038/s42003-020-01638-1 | www.nature.com/commsbio

www.nature.com/commsbio


Table 1 Performance evaluation of the velocity field.

ERR(%) Proximal end of LAD Distal end of LAD LCX RA Graft Aorta and superior aortic
branch artery

Preoperative NMAE 2.62 ± 1.47 2.53 ± 1.02 2.33 ± 1.25 2.91 ± 1.64 6.02 ± 2.97
MRE 4.12 ± 2.46 3.97 ± 2.77 4.61 ± 2.13 4.35 ± 1.87 9.77 ± 3.86

Postoperative NMAE 2.60 ± 1.43 2.64 ± 1.25 2.33 ± 1.25 2.91 ± 1.64 1.12 ± 0.57 6.01 ± 2.96
MRE 4.11 ± 2.42 4.21 ± 2.96 4.61 ± 2.13 4.35 ± 1.87 2.01 ± 1.25 9.74 ± 3.83

Fig. 2 Comparison of pressure field from CFD and deep learning (DL), using a sample with a stenosis rate of 85%. Because the CFD outlet boundary
was set as zero pressure condition, the pressure value in this figure was actually the pressure difference relative to the coronary outlet. a–d Are pressure
distribution cloud maps of the entire cardiovascular before and after CABG obtained from CFD and DL. e, f Are cross-sectional views of the pressure
distribution, respectively from (i): the proximal end of LAD before stenosis; (ii): the distal end of LAD after stenosis; (iii): descending aorta; iv): graft. The
comparison results confirm the high consistency of the pressure field obtained by the two methods. The results of coronary pressure prediction can help us
calculate FFR to further evaluate the performance of our deep learning method.
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vortex regions in the CFD calculation results, as shown in Fig. 4a,
b. Vortexes were mainly distributed in the aorta and superior
aortic branch artery rather than the coronary artery and graft.
Points in the aorta and superior aortic branch artery region
accounted for more than 99% of the query point cloud, and more
than 30% of the points in the whole region were located in the
vortex region, which was the main source of prediction errors for
the cardiovascular model. We extracted the points only in the
vortex region which was defined with Eigen Helicity method,
level 0.005, actual value 44.89 s−1 for predicted results and cal-
culated the error as shown in Fig. 4c. The points in the coronary
artery and graft part only accounted for 1% of the query point
cloud, and only about 10% of them were in the vortex region,
which had little effect on the prediction errors. The vortex dis-
tribution also explained why the graft and coronary parts had
higher prediction accuracy.

Compared to laminar flow, the vortex flow part was extremely
complicated. Previous studies that used deep learning to predict

complex vortexes required much more training data than ours,
even in 2D space39–41. Taking Lee’s research as an example39, in a
2D plane with a size of 250 × 250 (grid cells), 500,000 vortex
samples were needed to train the network. The number of
samples was far more than that of this study. However, the
complexity of the vortex (2D) was lower than that of this study
(3D). Therefore, we hypothesized that the limited dataset of this
study was not sufficient to fully characterize the characteristics of
vortex, which could lead to a decrease in the accuracy of the
prediction results. To verify this theory, we fixed the test set and
increased the size of the training set from 10% to 100% and then
calculate the MRE of the vortex region, as shown in Fig. 4c. Even
at the maximum of the training set, the MRE of the vortex part
still had a downward trend. With a larger dataset, accuracy would
also improve. The collection of more cardiovascular models of
patients with coronary artery stenosis to build a richer dataset is
necessary as more data will lead to higher prediction accuracy and
better model performance.

Table 2 Performance evaluation of the pressure field.

ERR(%) Proximal end of LAD Distal end of LAD LCX RA Graft Aorta and superior aortic
branch artery

Preoperative NMAE 2.03 ± 1.13 1.83 ± 1.18 1.71 ± 1.49 2.04 ± 1.12 4.30 ± 1.58
MRE 3.55 ± 1.74 3.12 ± 1.63 3.52 ± 1.97 3.63 ± 1.96 7.61 ± 1.99

Postoperative NMAE 1.99 ± 1.09 1.96 ± 1.31 1.71 ± 1.49 2.04 ± 1.12 1.01 ± 0.47 4.28 ± 1.55
MRE 3.52 ± 1.72 3.57 ± 1.98 3.52 ± 1.97 3.63 ± 1.96 1.98 ± 0.97 7.35 ± 1.89

Fig. 3 Comparison of FFR and improved blood flow obtained from CFD and deep learning. a Is a scatterplot of FFR values from CFD (FFRCFD) and deep
learning (FFRDL). b Is a scatterplot of improved blood flow values from CFD (FLOWCFD) and deep learning (FLOWDL). c, d Are Bland–Altman analysis plot
of corresponding (a, b). The hemodynamic results used to calculate FFR and improved blood flow are from 100 cardiovascular models in the test set.
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Discussion
In this study, we used deep learning to predict 3D hemodynamics
of complex cardiovascular systems with small grafts and coronary
branches before and after CABG surgery. Our results showed that
calculation results of the deep learning and CFD methods were
highly consistent, and the calculation efficiency was improved
600-fold. This study proved that deep learning could achieve
efficient and accurate predictions of 3D hemodynamics in com-
plex models, which also means that it has great application value
in scientific research and clinical fields.

The comparative analysis of our deep learning method against
previous deep learning approaches is available in Supplementary
Table 1. As mentioned above, there was no previous research that
achieved 3D hemodynamic prediction of complex models such as

thoracic aortic tree, including the small grafts and coronary
branches. Our work made up for this gap, which was mainly due
to the use of the point cloud to create datasets and propose a
high-performance deep learning network. Previous studies typi-
cally required normalized flow field data to help deep learning
networks obtain correspondence between model geometry and
flow field distribution24,25. In other words, regular spatial rela-
tionships (e.g., orthogonalization) are introduced into the flow
field data by interpolation or other methods. Therefore, the
spatial resolution of flow field data depends on space segmenta-
tion size during normalization. When there are big differences in
the size of different parts of the model, such as the radius of the
aorta which is much larger than that of the coronary artery and
the graft in this study, it will be very difficult to choose the

Fig. 4 Prediction error analysis. Using a model in the preoperative test set as a sample, a shows the vortex regions in its CFD simulation flow field, which
are mostly distributed in the aorta and superior aortic branch artery rather than the grafts and coronary arteries. Compared to the entire model, the number
of points in the vortex region of grafts and coronary arteries only accounted for 0.1% of all query points. For most models, there is an obvious vortex region
in the ascending aorta area circled by the red box. In order to clearly indicate the distribution of points with high prediction errors (MRE > 10%), b shows
the points with high errors in deep learning predicted velocity field of the same model as (a) (the circled area). The distribution of these points is highly
consistent with the vortex region in (a), which proves that the error mainly comes from the vortex region of the aorta and superior aortic branch artery.
c Shows the prediction errors along to the different size of training set only in the vortex region. c Shows the influence of the training set size on MRE of the
vortex region. We fix the test set and increase the size of the training set from 10% to 100%. Then we calculate and observe the MRE of the vortex region.
When the size of the training set reach 100%, MRE still displays a downward trend. The minimum value of 28.53% is still far greater than the aorta and
superior aortic branch artery MRE of 9.74 ± 3.83% as shown in Table 1. It further confirms the source of the prediction error and shows that it is necessary
to increase the size of training sets.
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appropriate space segmentation size. Large segmentation sizes
cannot characterize small parts of the model. Small segmentation
size results in a large amount of data exceeded the upper limit of
server processing. For example, when using Guo et al.’s nor-
malization method to process the cardiovascular models in this
study28, we should place the model in a three-dimensional space
cuboid. The length, width, and height of the cuboid should be the
maximum value in the corresponding direction of the model.
For a cardiovascular model with a length of 80 mm, a width of
120 mm and a height of 95 mm, when using 0.1 mm as the
segmentation size, one 3D cardiovascular model needs to have
800 × 1200 × 950= 836,000,000 normalized points to contain the
mean shape, which is unacceptable for network and GPU pro-
cessors. Liang et al. proposed a normalization method for deep
learning29. However, it was only suitable for large ideal aorta, not
for the whole complex cardiovascular system, especially for small
coronary branches. In addition, Liang et al. normalized the
thoracic aortic models of different patients to the same meshes
with only 80,100 nodes. However, in this study, the mesh inde-
pendence test (as seen in Supplementary Fig. 4) showed that for
the thoracic aortic, when the number of meshes exceeded one
million, the CFD simulation results can be considered to be
stable. Therefore, the deep learning method proposed by Liang
et al. still has great limitations in the application range and data
resolution. Due to limitations of resolution and network perfor-
mance, most of the previous research objects are simple idealized
flow fields. Unlike previous approaches, we utilized high-density
3D point clouds to build datasets. A point cloud is the connection
point of CFD meshes and is generally called a node. It is directly
output by the mesh result and does not require normalization or
other processing. The point cloud can represent complex or small
features of the model under the appropriate mesh setting42,43. In
this study, the mesh independence test results confirmed that the
model contains about 2 million points that could represent the
complex structure of the entire cardiovascular system, of which
0.4 million were surface model point clouds and 1.6 million were
internal query point clouds. Each point has only spatial coordi-
nates and hemodynamic information, which means there is no
connection or interaction between them. Thus, it can store a lot of
useful information with a small amount of data unlike a con-
nected point set. In order to resolve the disorder of the point
cloud and introduce the spatial relationship, we propose a dual
sampling channel network structure based on PointNet. Since
there is no connectivity information between the points, there is
no specific input sequence for the points. That is to say, when N
points are used as input to the network, due to the different input
sequence, there may be N! input permutations, that is, the dis-
order of the point cloud. Symmetric function can ensure that the
output is the same regardless of the order of input, to resolve
point disorder37. The dual sampling channel can extract the
geometry of the model point cloud of the surface as the global
geometry feature, and the internal query point cloud distribution
as the local flow field feature. Global features convey the outer
geometry information within the model, which can help the
query point cloud to obtain its position inside the model. Under
the uniform CFD boundary conditions, the position of the query
point is corresponding to the flow field. The local flow field
characteristics and the corresponding position information can be
used as teacher signals to help the network learn the hemody-
namic values of a specific position. In this way, the spatial rela-
tionship is effectively introduced to help the network attain
correspondence between the model geometry and the flow field
distribution.

Our deep learning method is highly universal, which is not
limited to guiding the implementation of CABG and the treat-
ment of CHD. It can analyze and reproduce the relationship

between complex cardiovascular geometry and hemodynamics in
a given dataset, which can be extended to the hemodynamic
simulation of other organs and tissues, or even the flow field
research under experimental conditions, such as replacing the
steady flow 3D PIV experiment with sufficient data. From a
technical perspective, our deep learning method is highly prac-
tical. For different properties of hemodynamic parameters, the
prediction can still be completed without adjusting the network
structure, which was difficult to achieve in the past28,29. The
analysis results of the velocity and pressure fields confirm that the
same network structure can achieve high accuracy predictions for
physical fields with and without spatial components. In addition,
point cloud, as a conventional data format, can be accepted by
most of analysis software (e.g., ANSYS and Python) which makes
the processing of point cloud data relatively easy. In terms of
resolution, universality, accuracy, and computational efficiency,
our deep learning method can meet the needs of most situations.
We also noticed that the four datasets (preoperative, post-
operative, velocity, and pressure fields) need to be trained sepa-
rately as inputs, which increased the computational cost and
operational complexity of deep learning to a certain extent.
Therefore, we will explore potential improvements due to simi-
larities in features between the different fields and application
scenarios in further work. For example, by merging four datasets
(with different labels), all prediction results can be output in one
training session.

The biggest limitation of this study is the lack of clinical data.
In CFD simulation, there is no boundary condition information
for patients. Currently, we adopted constant values on inlets and
outlets, which have been widely used among a number of geo-
metries44–46. Therefore, the simulation results should include
differences from real hemodynamics. In future approaches that
include boundary conditions, another input channel will be
required on the network. This input channel will take the
patient’s personalized boundary conditions as the input, and
together with the model point cloud as the teaching signal to
control the training process. In the analysis of prediction accu-
racy, we only compared the prediction results of deep learning
with CFD, but lack of comparison with clinically measured data
of patients (such as invasive FFR). Itu et al.47 and Tesche et al.48

proved that under the premise of good consistency between the
FFR calculated by deep learning and CFD, compared with the
invasive FFR, the FFR values calculated by these three methods
were also with good consistency, which we intend to address in
the future. The data for this study comes from a project opti-
mizing the treatment plan of coronary stenosis. Therefore, our
datasets do not contain information on other cardiovascular
diseases such as coronary aneurysms or aortic diseases. In addi-
tion, the point cloud data used in this study is extracted from the
CFD meshing result. In the point cloud extraction process, we
deleted the connection relationship between the grids. Although
the point cloud can reproduce the CFD flow field prediction
results, it also brings potential limitations, such as the loss of
correlation information between different nodes in the original
CFD results and the introduction of the disorder of point clouds.
Based on the above limitations and prediction error analysis
results, in future work, we need to increase the number and type
of patients in datasets to include the characteristics of different
cardiovascular diseases and improve the accuracy of predictions.
Regarding the datasets with several types of disease, we also need
to establish the quantitative methodology to evaluate the variety
of geometry as a training data. Secondly, we need to collect
physiological information of patients to build the datasets under
personalized boundary conditions. Based on this study, we aim to
build a network with multiple constraints, multiple channels of
input, and multiple sampling layers in parallel. It can help us use
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deep learning to achieve the prediction of high-dimensional flow
field such as fluid–structure interaction (FSI), etc. Thirdly, the
uncertainty of vessel wall identification should be noted as the
common limitation in image-based analysis including CFD.
Present study exhibits the flow estimation on the point clouds
which generated on segmented blood vessel. Then, the flow field
strongly depends on the quality of vessel wall segmentation.
Though CFD results from the same STL file can exhibit good
consistency among different research groups49, still segmentation
process from DICOM images can lead to variability in geo-
metry50. To overcome this uncertainty of real geometry, the
establishment of stable segmentation method or normalization of
hemodynamic parameters will be required.

Methods
Ethics approvals. The experimental scheme and related details of this study were
approved by the Institutional Ethics Committee of People’s Hospital (Beijing,
China) and Tohoku University (Sendai, Miyagi, Japan). All experiments were
carried out in accordance with relevant guidelines and regulations. We explained
research content to the subjects in detail and obtained their written informed
consent.

Data collection. The patient data used in this study was based on the project
‘Biomechanics study on quantitative relationships between coronary artery stenosis
and myocardial ischemia51–53, which focused on the diagnosis and optimization of
coronary stenosis surgical procedures. The CTA data for 110 patients with LAD
stenosis who had visited the People’s hospital since 2018 was collected and collated
by professional clinicians with a 128-slice CT scanner (Brilliance iCT, Philips
Healthcare, The Netherlands). 3D model reconstruction was also performed by the
clinician. We obtained 110 STL cardiovascular models as raw data.

Model geometric parameters modification. The deep learning dataset, which
only contained 110 real cardiovascular models, had a very limited amount of
information, which was far from enough to represent the relationship between the
geometry of the model and the corresponding hemodynamics. Therefore, based on
the statistical results of previous cardiovascular morphology studies47,48,54–59, the
geometric parameters of the 110 original cardiovascular models were adjusted to
increase the number of models. For each parameter, we randomly selected one
value within the given range as the modification basis of the original model, as
shown in Table 3. Based on this method, we extended one original model into nine
new models, which meant that the total number of models increased to 1100, as
shown in Supplementary Fig. 2.

Simulated operation of CABG and CFD simulation. After model expansion, we
performed the simulation implementation of the CABG operation and the CFD
simulation.

As the most patients did not have undergone CABG surgery, the virtual bypass
surgery was performed except for undergone CABG case (as seen in
Supplementary Fig. 3). With the agreements of clinicians, the left internal
mammary artery (LIMA) with diameter of 2 mm was deployed using modeling
software Mimics (Materialize NV, BE).

According to the generation of geometry, tetrahedron numerical meshes with
boundary layers were generated by ANSYS-Meshing (ANSYS, Canonsburg, USA).

Total mesh number was selected to have the number of nodes from 2.83 to 3.01
million based on mesh-independence test.

Steady flow simulation was performed on ANSYS-CFX (ANSYS, Canonsburg,
USA). Blood flow was simplified to be an incompressible Newtonian fluid with
1050 kg/m3 density and 0.0035 Pa·s viscosity. Velocity boundary of 1.125 m/s was
imposed on the inlet assuming the peak wave velocity of cardiac cycle60. Outlet
boundary was set as zero pressure condition. No-slip condition was assigned to all
wall boundaries.

More detail is summarized in the Supplementary Method.

Creation of datasets and proposal of deep learning network. Using simulation
software (e.g., ANSYS, OpenFOAM, etc.), the high-density 3D point cloud form of
the four groups—preoperative, postoperative, velocity, and pressure fields—of the
CFD simulation results could be directly output (i.e., they could be represented as a
set of points {Pi | i = 1, ..., N} in space). Each point Pi was a vector containing
spatial coordinates (x, y, z) and hemodynamic parameters at that point. Pi was the
connection point of CFD meshes (usually called node). CFD meshes generation
was only related to the geometry of the model. Therefore, the distribution of points
depended only on the geometry of the model. The position of points in the model
was fixed, we could not change its spatial distribution. What we could do is to
directly extract and analyze the points in a certain position through the simulation
software.

We divided each group of point cloud data into two sets: a training set and a test
set. The training set included simulation results of 1000 cardiovascular models
based on the original 100 models. In order to ensure the generalization of the deep
learning network, the test set consisted of the CFD results of 100 cardiovascular
models that were expanded from the 10 original models which were different from
the training set. Based on this, the four groups—preoperative, postoperative,
velocity, and pressure fields—of hemodynamic datasets were established,
respectively. These four datasets were used independently to train four separate
networks. Hence, we obtain four optimal network configurations to further predict
the corresponding hemodynamics.

In the case of certain boundary conditions, the values of flow velocity and
pressure at each point were jointly determined by the overall shape of the model
and its specific spatial coordinates. This was also the basic principle for CFD to
resolve the simulation results via the Navier-Stokes and continuity equations. The
segmentation network structure of PointNet37 could realize feature extraction and
hemodynamic prediction of point clouds. This study inherited the concepts of
global feature and local feature proposed by the original PointNet, and optimized
the network structure. Since the original PointNet had only one single input
channel, global features, and local features were extracted from the same and all
input points, which could help the PointNet identify the relationship between these
two features. However, it was inevitable that there would be duplication between
the two features, and then some effective and specific information would be lost. In
order to solve this problem, a network structure with double input and double
sampling channels was proposed in this study. The structure and parameter setting
were shown in Fig. 5. For each model in the dataset, we extracted two types of point
clouds. One was the model point cloud, which only included spatial coordinates for
the outermost points of the cardiovascular model. These points could represent the
global features of the overall model geometry. The second was the query point
cloud, which included the remaining points inside the cardiovascular model. These
points contained local features, such as the spatial coordinates of each point and its
corresponding hemodynamics. The 3D deep learning network had two
independent input channels that corresponded to these two point clouds. Two
feature extraction parts were directly connected to their respective input and
sampling channels. This effectively enhanced the extraction of effective and specific
information from these two features, and improved the prediction accuracy. For

Table 3 Geometric parameters with corresponding ranges.

Geometric parameter Parameter details or measurement methods Range

Coronary artery Number of branches47,48 Main branches 3 (LAD, LCX, RC)
Side branches 0–3

Bifurcation angle between LAD
and LCX54,55

The angle described by the two branches in the first
10 mm of their course was measured

30–90°

Stenosis location Random positions on LAD LAD (main branch)
Number of stenosis Determined by the patient’s actual condition 1–2
Stenosis Rate Idealized stenosis model 60–90%

Aorta and superior aortic
branch artery

Aortic arch angulation56,57 Angulation of the arch at the level of the left
subclavian artery

80–140°

Diameter of ascending aorta58,59 Increased or decreased the diameter of original artery
uniformly

20–30mm

Diameter of descending aorta58,59 Increased or decreased the diameter of original artery
uniformly

15–20mm

Superior aortic branch artery Kept the original geometry
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the same point cloud data, the comparison of prediction MRE from the original
single channel PointNet and our dual channel network was shown in Table 4. The
prediction ERR of our dual channel network was lower than that of the original
PointNet.

Global features were the global geometric information of the model. Local
features referred to the location of each point and the corresponding flow field
distribution inside the model. These two features both contained the geometric
features of the same cardiovascular model (commonality). The two features also
had different effective information (difference). The network needed to extract
commonality and difference and learned the correlation between them to further
realize the flow field prediction.

Based on the above principle, the network construction scheme was as follows:
To enhance the commonality and correlation, the first two feedforward fully-

connected layers (FC1 and FC2) of the two feature extraction sections shared
weights, which meant they shared the same underlying feature extraction methods.
In order to evaluate the necessity of sharing weights, we compared the network
without shared weights with the results of this study, as shown in Table 5. The
results showed that the shared weight could effectively reduce the prediction error.
The two feature extraction sections also had independent feedforward fully-
connected layers (FC3 and FC4), which further enhanced the ability of the network
to recognize the effective and specific information (difference) of global features

and local features. After FC3 and FC4, the global and local features contained in the
two point clouds were represented as a N * 512 and N * 128-dimensional vectors,
respectively. We concatenated the two vectors to form an N * 640-dimensional
vector. This vector contained both the global features of the model point cloud and
the local features of the query point cloud, which helped the network further
integrate the correlation between the two features. The last part of the network was
feedforward fully-connected layers (FC5 and FC6), which were used to yield
hemodynamic results.

For other details of the network, we added a Maxpooling layer as a symmetric
function in the feature extraction part of the model point cloud, which could aid in
resolving the disorder of the input point cloud37. We used the mean absolute error
as the regression loss function24,61. We used the Adam optimizer with specific
parameters: learning rate = 0.001, ϵ = 0.001, ρ1= 0.9, ρ2= 0.999, and δ= 1E
−862. The 3D deep learning network was trained by TensorFlow (v2.0.0rc, Python
3.6 on a Nvidia GeForce GTX 1080 Ti GPU). The preoperative and postoperative
datasets needed to be separately trained as inputs for the network. During the
training process, we saved the optimal network parameter configurations for both
training sets. After that, while only inputting the spatial coordinates in the test set,
the network could recognize the hemodynamic prediction output of query
point cloud.

Definition of error functions. Referring to the evaluation criteria of previous
studies, NMAE29 and MRE28 were defined as error functions to evaluate the
accuracy of deep learning network predictions based on the CFD results, as shown
in equation (1) and equation (2):

NMAE ¼ 1
N

PN
i¼1 Pi � P̂i

�
�

�
�

MaxjPj �MinjPj ´ 100% ð1Þ

MRE ¼ 1
N

XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pi � P̂i
� �2

q

ffiffiffiffiffi
P2
i

p ´ 100% ð2Þ

N represented the number of selected query points. i was the spatial
sequence of the 3D point cloud. Pi and P̂i represented the flow velocity or
pressure value at a certain point calculated by CFD and deep learning,
respectively. Max|P| and Min|P| represented the maximum and minimum
magnitude of the corresponding hemodynamic parameters among all points in
the selected area, respectively. NMAE can characterize the error of the deep
learning prediction result relative to the true value of the overall flow field
(CFD result). MRE can characterize the error of the deep learning prediction
value relative to the true value at all query points of the model. The definition
of the error function draws on previous studies. The comparative analysis
results are shown in Supplementary Table 1. In this study, ERR is designed to
evaluate the velocity or pressure fields represented by point clouds. For other
parameters (such as FFR calculated by pressure field, etc.), new ERR should be
defined according to the specific situation. In these definitions, each of the
points of different cardiovascular parts can affect ERR with the same weight.
However, the number of points and the magnitude of velocity and pressure
must have a great difference among aorta, coronary arteries, and bypass graft.
In order to avoid the impact of this variation on the evaluation results, local
ERR (The model was divided into several parts, and the ERR value of a certain
part, such as the left anterior descending branch, was called local ERR.) values
were obtained to assess the prediction accuracy on small-to-large parts. We
calculated the ERR values of the proximal and distal end of left anterior
descending artery (LAD), graft, right coronary artery (RA), the left circumflex
branch (LCX), the aorta and superior aortic branch artery, respectively.
Regarding the LAD, the proximal and distal ends were divided by stenosis.
When there were multiple stenosis in the LAD branch, the stenosis with
highest degree was selected.

Statistics and reproducibility. All ERR calculations were based on the velocity or
pressure results of 100 models in the test set. The definition of query point cloud
number (i) was defined in equation (1) and equation (2). This study took the
average value of ERR of 100 models. The standard deviation was used to calculate
the error bars.

Fig. 5 Deep learning network construction. The network takes N points
with three-dimensional spatial components of x, y, and z (for pressure,
the three-component values are the same) as input. After feature
extraction and stitching layer processing, spatial relationships are
introduced to extract and reproduce the relationship between model
geometry and hemodynamic. The Maxpooling layer resolves the disorder
of the point cloud. The output of the network is the hemodynamic three-
dimensional spatial components of N points in corresponding query
point cloud.

Table 4 Comparison of MRE from original PointNet and our
network.

Hemodynamic Velocity field Pressure field

Original PointNet 18.42 ± 6.71 14.59 ± 5.31
Our network 9.77 ± 3.86 7.61 ± 1.99

The MRE is calculated according to the hemodynamic prediction values of the preoperative
aorta and superior aortic branch artery.

Table 5 Comparison of MRE from network with or without
shared weights.

Hemodynamic Velocity field Pressure field

Without shared weights 16.37 ± 5.43 13.42 ± 5.21
With shared weights 9.77 ± 3.86 7.61 ± 1.99

The MRE is calculated according to the hemodynamic prediction values of preoperative aorta
and superior aortic branch artery.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data analyzed during the current study are available from the corresponding author
upon reasonable request. Restrictions apply to the sharing of patient data that supports
the findings of this study. With the approval of the Institutional Ethics Committee of
People’s Hospital, the patient’s data can be authorized for use by qualified researchers.
The Source data underlying the graphs and charts presented in the main figures (from
Fig. 1 to Fig. 4) can be accessed at: https://doi.org/10.6084/m9.figshare.13295915.v163.

Code availability
All source code described in this project can be accessed at: https://doi.org/10.5281/
zenodo.428710364.
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