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Sept8/SEPTIN8 involvement 
in cellular structure and kidney 
damage is identified by genetic 
mapping and a novel human tubule 
hypoxic model
Gregory R. Keele1,10, Jeremy W. Prokop2,3,10, Hong He4, Katie Holl4, John Littrell4, 
Aaron W. Deal5, Yunjung Kim6, Patrick B. Kyle8,9, Esinam Attipoe8, Ashley C. Johnson8, 
Katie L. Uhl3, Olivia L. Sirpilla3, Seyedehameneh Jahanbakhsh3, Melanie Robinson2, 
Shawn Levy2, William Valdar6,7, Michael R. Garrett8,11 & Leah  C. Solberg Woods5,11*

Chronic kidney disease (CKD), which can ultimately progress to kidney failure, is influenced by 
genetics and the environment. Genes identified in human genome wide association studies (GWAS) 
explain only a small proportion of the heritable variation and lack functional validation, indicating 
the need for additional model systems. Outbred heterogeneous stock (HS) rats have been used 
for genetic fine-mapping of complex traits, but have not previously been used for CKD traits. We 
performed GWAS for urinary protein excretion (UPE) and CKD related serum biochemistries in 245 
male HS rats. Quantitative trait loci (QTL) were identified using a linear mixed effect model that tested 
for association with imputed genotypes. Candidate genes were identified using bioinformatics tools 
and targeted RNAseq followed by testing in a novel in vitro model of human tubule, hypoxia-induced 
damage. We identified two QTL for UPE and five for serum biochemistries. Protein modeling identified 
a missense variant within Septin 8 (Sept8) as a candidate for UPE. Sept8/SEPTIN8 expression increased 
in HS rats with elevated UPE and tubulointerstitial injury and in the in vitro hypoxia model. SEPTIN8 is 
detected within proximal tubule cells in human kidney samples and localizes with acetyl-alpha tubulin 
in the culture system. After hypoxia, SEPTIN8 staining becomes diffuse and appears to relocalize 
with actin. These data suggest a role of SEPTIN8 in cellular organization and structure in response 
to environmental stress. This study demonstrates that integration of a rat genetic model with an 
environmentally induced tubule damage system identifies Sept8/SEPTIN8 and informs novel aspects 
of the complex gene by environmental interactions contributing to CKD risk.

The onset and progression of chronic kidney disease (CKD) is often related to pre-existing hypertension and 
diabetes, and those with CKD are at a significant risk to develop other cardiovascular diseases1,2. The vast majority 
of CKD is complex with a significant contribution from genetics; however, environmental influences also play an 
essential role in adult CKD3. To date, human genome wide association studies (GWAS) have identified hundreds 
of single nucleotide polymorphisms (SNPs) associated with CKD in the context of hypertension, diabetes, and 
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obesity, but in total the effect of identified genetic variation still explains only a small proportion of the heritable 
variance, and many of these associations lack functional validation4.

The genetic dissection and validation of these associations has been challenging in humans, requiring addi-
tional model systems to provide insight into gene function. In particular, inbred rat models have been critical in 
determining CKD genetic mechanisms, serving as the first genetic model of epistasis and establishing independ-
ence of renal damage from hypertension5,6. Multiple genes have overlapping variant associations with kidney 
damage in both rat and human including SHROOM3, RAB38, SH2B3, and PLEKHA7 and ARHGEF117–12. These 
studies show a synergistic nature of both glomerular and tubule genetics in proteinuria and CKD. The initial 
glomerular alterations that lead to proteinuria alter the tubule component through factors such as hypoxia which 
then advance into fibrosis and CKD13,14.

Here, we have used an alternative to traditional rodent genetic studies by employing the heterogeneous stock 
(HS) rat model to identify genetic factors involved in kidney disease. A strength of the HS model is that it allows 
for genetic fine-mapping to only a few megabases, reducing the number of candidate genes and simplifying gene 
identification15. HS rats were created by interbreeding eight inbred founder strains and maintaining the colony 
to minimize inbreeding16. We have previously used HS rats to fine-map genetic loci and identify underlying 
causal genes for diabetes17–19 and adiposity20,21, and have demonstrated phenotypic variation for multiple kidney 
traits22. In the current study, we identified genomic loci for urinary protein excretion (UPE) and intermediary 
serum biochemistries associated with CKD, leading to Septin 8 (Sept8) as a candidate gene linked with renal 
injury. We demonstrate that increased levels of Sept8 are associated with renal damage in the rat model and use 
a unique in vitro renal tubule hypoxia model to demonstrate a potential role of SEPTIN8 in cellular structure 
and organization in response to hypoxia induced stress.

Methods
Animals.  Heterogeneous stock colony: The NMcwi:HS colony, hereafter referred to as HS, was initiated by 
the NIH in 1984 using the following eight inbred founder strains: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, 
MR/N, WKY/N and WN/N16. Rats used for the current study were obtained from a colony maintained at the 
Medical College of Wisconsin (MCW) after approximately 70 generations of breeding. Rats were housed two 
per cage in micro-isolation cages in a conventional facility using autoclaved bedding (sani-chips from PJ Mur-
phy). Animals used for this study were caged under controlled temperature, humidity, and 12-h light/12-h dark 
conditions. They had ad libitum access to autoclaved Teklad 5010 diet (Harlan Laboratories) and were provided 
reverse osmosis water chlorinated to 2–3 ppm. We tested 425 HS male rats in the following protocol, 245 of 
which were genotyped for GWAS. This group of animals is from a subset of HS rats previously studied to map 
loci associated with body weight and obesity related traits21.

Phenotyping protocol.  At 24 weeks of age, animals were placed into metabolic cages for 24 h with free 
access to water, and UPE was determined as previously described23. After removal from the metabolic cage, 
animals were euthanized by decapitation and fasting serum and multiple tissues were collected. Serum clinical 
chemistries, including measures of renal function (creatinine and blood urine nitrogen), lipid metabolism (total 
cholesterol, HDL, LDL, and triglycerides), and electrolytes (sodium, potassium, calcium, and chloride) were 
performed using an automated chemistry analyzer as done previously24. All protocols were approved by the 
IACUC committee at MCW and all methods were performed in accordance with relevant guidelines and regula-
tions. The studies were carried out in compliance with the ARRIVE guidelines (https​://arriv​eguid​eline​s.org/). 
Phenotyping data have been deposited in RGD (www.rgd.mcw.edu).

Histology analysis of HS rat kidneys.  Kidneys were fixed in 10% buffered formalin, embedded in paraf-
fin, cut into 4-μm sections and stained with Periodic acid Schiff (PAS) and/or Masson’s trichrome on selected 
HS animals striated by very low (n = 10), low (n = 10), moderate (n = 10), and high UPE (n = 8). For glomeruli, 
morphometric analysis [diameter (um) and area (um2)] was performed on 20 randomly selected images (PAS 
at 40X) per section. Tubulointerstitial injury was determined by evaluation of slides stained with Masson’s Tri-
chrome to quantify the percent fibrosis (blue staining) compared to background in 20 randomly selected images 
from renal cortex as previously done25. Tubulointerstitial injury was evaluated separately on a semi-quantitative 
scale from 0 (normal) to 4 (severe) using a minimum of 20 randomly selected images (Masson’s Trichrome at 
20 X) as follows: grade 0, no changes; grade 1, mild tubule atrophy/fibrosis involving less than 25%; grade 2, 
lesions affecting 25–50%; grade 3, lesions affecting 50–75%; and grade 4, lesions affecting > 75%25. Morphomet-
ric analysis was also used to measure vessel wall thickening (PAS at 40X). Vessel wall thickening (vessel media, 
um2) was calculated by measuring the outer circumference of the vessel minus the inner circumference of the 
lumen (20 random images at 40X per HS rat). All measurements were done blinded to sample groups. Images 
were captured using SeBaP4-PH1 Brightfield/Phase contrast microscope (Laxco, Mill Creek, WA) and analyzed 
using Nikon Elements image analysis software.

Genotyping.  HS rat DNA was extracted from tail tissue using either the Qiagen DNeasy kit (Valencia, CA) 
or a phenol–chloroform extraction. 245 HS rats were genotyped using the Affymetrix GeneChip Targeted Geno-
typing technology on a custom 10 K SNP array panel as previously described26, with marker locations based on 
rat genome assembly 6.0. Samples were genotyped by HudsonAlpha Institute (http://hudso​nalph​a.org). From 
the 10,846 SNPs on the array, 8,218 were informative and produced reliable genotypes in the HS rats. From 
these final informative markers, the average SNP spacing was 284 Kb, with an average heterozygosity of 25.68%.

https://arriveguidelines.org/
http://www.rgd.mcw.edu
http://hudsonalpha.org
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Targeted RNAseq.  Expression analysis was performed on select candidate genes residing within identi-
fied loci using a next generation sequencing approach as previously described27. RNA was isolated from kidney 
collected from most of the HS rats that had both phenotype and genotype information (n = 240) using an auto-
mated KingFisher Flex nucleic acid system along with KingFisher Pure RNA Kit. RNA was evaluated for quan-
tity (Nanodrop One and Qubit Fluorimeter) and quality using Qiagen QIAxcel advanced system. The Illumina 
DesignStudio application (http://desig​nstud​io.illum​ina.com/) was utilized to design custom amplicons across 
exon–intron boundaries of target genes (n = 36 gene with 1–2 probes per gene). The gene target/probes that were 
designed/used are listed in Supplemental Table S1. Based on the DesignStudio output, the TruSeq Targeted RNA 
Custom Panel Kit was ordered and subsequently utilized to prepare libraries for collected RNA samples. The 
Illumina MiSeq platform allows for analysis of pooled libraries (e.g., n = 96–384 RNA samples) to be processed 
at a single time as individual samples will have a unique “barcode.” Libraries were sequenced on Illumina MiSeq 
using MiSeq Reagent Kit v2 (150 cycle). Sequencing reads were de-multiplexed and aligned to rn6 genome 
assembly using RNA Amplicon Application (along with custom panel manifest) available on Illumina BaseSpace 
Computing Platform (http://bases​pace.illum​ina.com/). Aligned reads for each gene were normalized to count 
per million for downstream analysis.

Statistical analysis.  Heritability estimation for kidney and biochemistry traits.  Prior to analysis, all pheno-
types were normalized using a rank-based inverse normal transformation, and additionally scaled to have mean 
0 and standard deviation 1. Narrow-sense heritability was estimated for each transformed phenotype using a 
Bayesian linear mixed model (LMM) using INLA28,29 as in21. Briefly, the LMM included a random “polygenic” 
effect, representing the effect of overall relatedness (calculated using30). Heritability, h2 , was defined as the pro-
portion of variance attributed to polygenic effects vs residual noise,

where τ 2poly is polygenic effect variance and σ 2 is the residual noise variance. The inverses of the variance compo-

nents, τ−2
poly and σ−2, were given Gamma (1,1) priors to ensure that the prior on h2 was uniform between 0 and 

1. For all other settings, the defaults of INLA were used.

Genome‑wide association.  As previously described, quantitative trait loci (QTL) were identified by genome-
wide association of imputed allele dosages of genotyped SNPs21. A hidden Markov model31 was used to infer 
each HS rat’s haplotype mosaic and thereby obtain robust estimates of each SNP’s genotype. Association tests 
were then performed, SNP-by-SNP, on each trait using a likelihood ratio test from the LMM described earlier 
but with an added SNP effect term in the alternative model. Tests of the SNP effect yielded p values that are 
reported on the negative log to the base 10 scale, or “logP”. Genome-wide significance thresholds for logP scores 
were estimated using 1000 parametric bootstrap samples from the fitted null model17,32. Linkage disequilibrium 
(LD) intervals for the detected QTL were defined by the window of neighboring markers that met a set level of 
LD, measured with the squared correlation coefficient r2; we used r2 ≥ 0.5.

Founder haplotype effect estimation at detected QTL.  To characterize each QTL signal, we used the Diplof-
fect model33 [https​://githu​b.com/gkeel​e/Diplo​ffect​.INLA], which estimates the relative contributions of alter-
nate founder haplotypes. Diploeffect is a Bayesian hierarchical approach designed to work with probabilistically 
inferred haplotype descent, providing shrinkage that mitigates instability from low haplotype frequencies. In 
addition to the population structure effect in Eq. (1), it models two genetic components at the QTL: additive 
(haplotype) effects, ie the effect of each dose of haplotype (eg, WKY); and dominance deviations from the addi-
tive model for specific heterozygous combinations of haplotype, (eg, WKY-ACI). Dominance deviations are 
typically less informed, representing potentially 28 heterozygous states, but their inclusion stabilizes additive 
effect estimation. Both have their own variance parameters, τ 2add and τ 2dom , with QTL effect size recorded as the 
intraclass correlation coefficient

where τ 2QTL = τ
2
add + τ

2
dom . The model was fitted using 200 importance samples from INLA28, with the same 

phenotype transformations and variance component priors as used with heritability estimation, described above.

Bioinformatic analysis and protein modeling.  HS founder sequence (www.rgd.mcw.edu; genome 
build Rn6) was used to identify highly conserved, non-synonymous coding variants within each QTL that 
were predicted to be damaging by Polyphen (http://genet​ics.bwh.harva​rd.edu/pph/) and/or SIFT (https​://sift.
bii.a-star.edu.sg/), focusing on variants specific to founder strains that showed non-zero haplotype effects at the 
locus. High probability variants were confirmed using Sanger sequencing and then analyzed in the Sequence-
to-Structure-to-Function analysis as previously described34. Briefly, proteins were assessed with codon selection 
analysis of multiple species open reading frames, inspected for linear motif impact near variants of interest, and 
modeled with I-TASSER35 and YASARA​36. Models were then assessed for likely impact on protein folding and/
or function based on model confidence, phylogenetic sequence alignment, conservation, and whether or not 

(1)h
2
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τ
2
poly

τ
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poly + σ
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the variant altered structural packing, molecular dynamic simulations, binding partners, linear motifs or post-
translational modifications.

Mediation analysis.  Expression levels of local genes were evaluated as potential mediators of the two UPE 
QTL through mediation analysis37, previously employed in HS rats21. Genes were defined as local if they were 
located within the QTL LD interval. Briefly, to declare mediation, we examined the relationships underlying 
detected QTL based on four sequential criteria. (1) A QTL was detected: this established a causal relationship 
between genetic variation and UPE that may involve gene expression intermediates. (2) The potential mediator 
possessed a cis-eQTL at the UPE QTL: this established that the eQTL co-localizes with the QTL. To avoid false 
signals, mediators were required to have greater than 25% non-zero expression across all samples and the false 
discovery rate (FDR) of mediator eQTL p values was controlled (Benjamini-Hocheberg) at 0.1; genome-wide 
multiple testing correction was unnecessary because testing was constrained to the QTL for local genes. (3) 
After conditioning on the candidate mediator, the significance of the QTL was greatly reduced, consistent with 
full mediation. Local genes with cis-eQTL were evaluated as potential full mediators of the QTL by fitting the 
QTL regression models (alternative and null) with the gene expression mediator included as a covariate. If the 
resulting p value was greater than 0.05 then full mediation was considered plausible. (4) Evidence supporting 
partial mediation was observed, in which the mediator provides additional information beyond the QTL. This 
criterion was formally tested for the expression of local genes with cis-eQTL by comparing the QTL model with 
mediator included as a covariate to the QTL model without the mediator. Similar to step 2, significant partial 
mediators were called based on having FDR q-values ≤ 0.1. Genes that satisfied step 2 and steps 3 and/or 4 would 
be declared candidate mediators of the QTL.

RPTEC‑TERT1 hypoxia model.  Renal proximal tubule epithelial cells (RPTEC) immortalized with 
TERT1 (ATCC, CRL-4031) were grown to confluency in 6-well plates using DMEM:F12 supplemented with 
RPTEC growth kit (ATCC) at 5% CO2. Once cells reached confluency, they were placed at 75 RPM using a 
MaxQ CO2 plus shaker for 1 day followed by elevation to 150 RPM for 4 weeks. Although we used cells cultured 
under this shaking condition for 4 weeks for the current study, a time course of morphological changes suggests 
that approximately 2 weeks of shaking yields the same level of cellular change. We have also determined that 
the cells can be maintained under shaking for up to 6 months or longer. Control cells were treated the same as 
shaking cells except they were held static in the same incubator. Media was changed every other day on all cul-
tures. Hypoxia was induced on cultures (shaking and static) within a PHCbi incubator to 1% O2 using nitrogen 
replacement for 48 or 96 h, with a media change at 48 h in the 96 h experiment. Morphometric analysis was 
conducted using 40 × light images generated on the Evos and processed through MorphoLibJ38 in ImageJ using 
morphological segmentation set to border image with a watershed segmentation tolerance of 17. We demon-
strate that shaking, in combination with hypoxia, leads to a cellular damage state in vitro.

RPTEC‑TERT1 RNAseq.  RNA was extracted using RNeasy plus (Qiagen) followed by quantification using 
Qubit RNA High Sensitivity assay and quality assessed using a Fragment Analyzer RNA Kit. Four groups were 
studied: 20% O2 static (n = 3), 20% O2 shaking (n = 2), 1% O2 static (n = 2), and 1% O2 shaking (n = 2). RNA was 
sent to Novogene for library prep and sequencing. In short, PolyA capture RNA libraries were generated and 
sequenced for paired end 150 cycle reads. FASTQ files were then assessed with a quasi-aligner onto the human 
Ensembl 96 all transcript release using Salmon39. Log2 fold change (FC) was calculated for either 20% shaker vs 
static or 20% shaker vs 1% shaker and a t-test calculated for each comparison, focusing on unique transcripts 
instead of genes. Cutoff levels for differentially expressed genes in each group for fold change was > 2 or < -2 and 
a p value < 0.05. Gene, pathway, and protein–protein interaction enrichment was performed using STRING40. 
Data files are submitted to NCBI as BioProject PRJNA604721 for BioSample SAMN13979617 with reads avail-
able in the SRA (SRR11014348, SRR11014347, SRR11014346, SRR11014345, SRR11014344, SRR11014343, 
SRR11014342, SRR11014341, SRR11014340).

RPTEC‑TERT1 immunofluorescence.  Cells were prepared for Immunofluorescence using the Image-iT 
kit (ThermoFisher). Primary antibodies were incubated overnight in 3% BSA at 1:200. These included ZO-1 
(ThermoFisher, #33-9100), Acetyl-alpha Tubulin (ThermoFisher, #32-2700), and SEPTIN8 (ThermoFisher, # 
PA531356). Secondary antibodies (1:1000) against mouse (ThermoFisher, #A32723) or rabbit (ThermoFisher, 
#A32740) and actin stain (Alexa Fluor 647 Phalloidin) were incubated in 3% BSA for 1 h. Following PBS wash of 
cells, the nuclei were stained with Nucblue fixed cell stain (ThermoFisher, # R37606). Images of cells were gener-
ated on an EVOS FLoid for fluorescence and EVOS XL for light images.

Immunohistochemistry of human kidney biopsies.  To determine if SEPTIN8 is expressed in human 
kidney, we assessed its levels in human kidney biopsies with varying levels of damage. Human kidney biopsies 
were collected with approval by the Institutional Review Board (DHHS FWA #00003630, IRB 2 #00005033) at 
the University of Mississippi Medical Center (Protocol 2010-0297). All methods were carried out in accord-
ance with relevant guidelines and regulations. A waiver of consent was granted as minimal risk and only de-
identified samples were collected per IRB expedited review and category exemption 5. Immunohistochemis-
try was performed as previously done41 using unstained sections and primary antibodies directed at SEPTIN8 
(ThermoFisher, # PA531356) and detected by DAB (Ultravision LPValue Detection System, Thermo Scientific). 
Slides were counterstained with Methyl green. Images were captured using SeBaP4-PH1 Brightfield/Phase con-
trast microscope (Laxco, Mill Creek, WA). SEPTIN8 staining was evaluated in human kidney biopsy material 
from 3 patients with various etiologies, as evaluated by a renal pathologist. These included control biopsy 22 
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(few small loci of inflammation, otherwise unremarkable pathology), collected after nephrectomy subsequent 
to renal pelvic carcinoma; biopsy12 (hematuria, slight interstitial fibrosis, tubular necrosis, and non-nephrotic 
range proteinuria); and biopsy 4 (diabetic mild glomerulosclerosis, moderate diffuse interstitial fibrosis, with 
tubular atrophy and tubular necrosis). All samples were run at the same time and were incubated with DAB for 
the same amount of time.

Results
HS urinary protein excretion (UPE) genetic mapping.  HS rats exhibited large variation in UPE lev-
els with a mean of 11.8 mg/day and a range of 0.166 to 660.9 mg/day by 24 weeks of age (Fig. 1A). Consistent 
with previous findings, 16 out of 245 (6.5%) of the HS rats exhibited UPE greater than 20 mg/day and are con-
sidered to have pathological levels typically noted as proteinuria22. Four rats (1.6%) had a single kidney, two 
of which had normal UPE and two with proteinuria. Select animals from the population striated by very low, 
low, moderate, or high UPE demonstrated a significant increase in glomerular diameter and vessel hypertrophy 
with increasing levels of proteinuria (one-way ANOVA, p < 0.0001) (Fig. 1B–D). Animals with high proteinu-
ria (153 ± 21.1 mg/24 h) demonstrated a 26% increase in glomerular size compared to the very low proteinu-
ria group (1.7 ± 0.2 mg/24 h) (Fig. 1C, Figure S1). We also found a significant correlation (r = 0.61, p < 0.0001) 
between UPE and glomerular area. Similar changes were seen in vessel thickening (Fig. 1D). Although there were 
relatively low levels of fibrosis (measured by Masson’s Trichrome staining), semi-quantitative analysis of tubular 
and interstitial injury was significantly increased with increasing levels of UPE (one-way ANOVA, p < 0.0001; 
Fig. 1E, Figure S1). UPE was strongly influenced by genetics with heritability of 0.45 (0.25–0.55; Table 1).

Two significant QTL were identified for UPE (mg/day): chromosome 2 (246.63–246.81 Mb, − logP = 6.1) and 
chromosome 10 (37.27–40.26 Mb, − logP = 4.9, Figs. 2A, 3A) with effect sizes of 20% and 19%, respectively. The 
chromosome 2 locus contained only a single gene, Pdha2. The G allele (driven mainly by the WKY haplotype) 
was associated with an increase in UPE at this locus (Fig. 2B,C). Targeted RNAseq demonstrated that Pdha2 
expression was essentially undetectable in total kidney from most samples (Fig. 2D), consistent with a known 

Figure 1.   Distribution of urinary protein excretion (UPE) and the relationship between UPE and histological 
analysis of the kidney in HS rats. (A) 24-week old HS rats (n = 425) exhibit strong variation in UPE (mg/24 h). 
The thick black horizontal line indicates the median with the dashed lines denoting 25% and 75% quartiles, 
respectively. (B) UPE is shown for a sub-set of rats selected for histological analysis from one of four groups: 
very low, low, moderate, and high UPE. Histological analysis demonstrates that there is a statistically significant 
increase in (C) glomerular area and (D) vessel hypertrophy in rats with high proteinuria. (E) Although HS rats 
exhibit relatively limited fibrosis, those with high proteinuria exhibit significantly higher scores of tubular injury. 
Solid horizontal bars represent statistically significant differences based on a one-way ANOVA (p < 0.0001), the 
black lines above the bar graph denote p < 0.05 between each group.
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Table 1.   Narrow sense heritability for urinary protein and serum biochemistries.

Trait Heritability: posterior mode (95% highest posterior density interval)

Urinary protein 0.45 (0.25–0.55)

Albumin 0.58 (0.33–0.75)

Alk phosphatase 0.60 (0.35–0.76)

ALT 0.59 (0.32–0.77)

AST 0.30 (0.16–0.53)

BUN 0.39 (0.20–0.63)

Calcium 0.39 (0.19–0.63)

Chloride 0.46 (0.24–0.68)

HDL cholesterol 0.83 (0.64–0.90)

LDL cholesterol 0.84 (0.69–0.91)

Total cholesterol 0.82 (0.67–0.89)

CO2 0.44 (0.23–0.67)

Creatinine 0.66 (0.38–0.82)

Glucose 0.63 (0.41–0.79)

Phosphorus 0.52 (0.28–0.71)

Potassium 0.36 (0.18–0.59)

Sodium 0.33 (0.16–0.57)

Bilirubin 0.35 (0.17–0.61)

Protein 0.69 (0.44–0.82)

Triglycerides 0.44 (0.22–0.67)

Figure 2.   Genome-wide scan and founder effects at the chromosome 2 QTL for UPE. (A) Genome scan for 
UPE shows significant loci on chromosomes 2 and 10. The x-axis is the position on the chromosome, and the 
y-axis is the − log10P level of association. Genome-wide significance thresholds were calculated using parametric 
bootstraps from the null model. Linkage disequilibrium support interval (highlighted as a dashed line box) of 
the chromosome 2 locus is only 0.18 Mb and contains a single gene, Pdha2 (bold). (B) Additive haplotype effects 
were estimated using the Diploffect model, taking into account uncertainty in haplotype state. Single-nucleotide 
polymorphism (SNP) allele information is overlaid on the haplotype effects, with minor allele colored black 
and major colored gray. The WKY haplotype significantly increases urinary protein at this locus. (C) Effect of 
genotype at the peak marker on urinary protein reveals that the G allele is associated with increased urinary 
protein. Boxplots represent data categorized by most likely genotype. (D) Targeted RNAseq data demonstrating 
very limited expression of Pdha2 in the kidney using two separate probes. These data, together with a lack of 
potentially damaging variants in this gene and lack of support from mediation analysis, suggest that Pdha2 is not 
the causal gene at this locus.
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testis-specific expression pattern (based on several expression databases). Although the limited expression in 
kidney did appear to map as a cis-eQTL, Pdha2 expression levels did not correlate with UPE levels and statistical 
mediation analysis (see methods) did not support Pdha2 expression as a mediator of the UPE QTL. In addition, 
the HS founders did not possess any sequence variants within Pdha2. Expression levels were determined for 
several other genes just outside the UPE QTL (Bmpr1b, Pdlim5, Stpg2 and Unc5c) and none map cis-eQTL or 
correlate with UPE. Furthermore, none of these genes possessed non-synonymous or loss of function variants. 
This evidence suggests that a variant within the chromosome 2 locus may be regulating expression of a gene 
outside of this region. 

The chromosome 10 locus contained 50 genes. The C allele, possessed by ACI and BN, was associated with 
decreased UPE (Fig. 3B,C). This effect was driven mainly by the BN haplotype, with few rats possessing the ACI 
haplotype, reflected in the wide estimate intervals (Fig. 3B). We measured expression levels of 31 of the 50 genes 
in the region (Supplemental Table S1), with 24 showing high levels of expression in the kidney. Three of the 
genes had strong cis-eQTL detected in the chromosome 10 locus: Cdk13, Kif3a and P4ha2. Mediation analysis, 
however, did not support a role of these genes’ expression in regulating UPE at the QTL. Seven genes in this 
region harbored missense variants in the founder strains that carry the predisposing allele (ACI and/or BN), 
with two of these variants (Sept8 and Rapgef6) having a potential functional role. Rapgef6 had a non-synonymous 
variant (D1123E) in the BN strain that fell on a site with some selective pressure, although without complete 
evolutionary conservation, thus unlikely to impact protein function. Within Sept8, the ACI founder harbored 
an A at position 38,891,224 bp whereas all other strains harbor a G, resulting in the amino acid substitution 
V102M. The variant fell on a highly conserved site with altered function predicted by PolyPhen2 and SIFT. Based 
on protein modeling, this variant fell within a hydrophobic core near the SEPTIN8 dimer contacts and is 100% 
conserved as a V throughout 179 species (Fig. 3D). The protein modeling and QTL analysis both support that 
genetic variation in Sept8, specifically the V102M mutation, was associated with altered renal injury. Specifically, 
the C allele of the detected QTL (from BN and ACI), protected against high UPE.

Development of a human tubule hypoxia damage model.  To build a model of kidney disease in 
which to study the role of genes involved in kidney injury, specifically Sept8, we developed a human renal proxi-

Figure 3.   Genome-wide scan and founder effects at the chromosome 10 QTL for UPE followed by protein 
modeling of SEPTIN8. (A) Genome scan for urinary protein shows significant loci on chromosomes 2 and 
10. The x-axis is the position on the chromosome, and the y-axis is the − log10P level of association. Genome-
wide significance thresholds were calculated using parametric bootstraps from the null model. Linkage 
disequilibrium support interval (highlighted as a dashed line box) for the chromosome 10 locus is 2.99 Mb. 
Annotation of a sub-set of the 50 genes in this region are shown below the plot. (B) Additive haplotype effects 
were estimated using the Diploffect model, which takes into account uncertainty in haplotype state. Single-
nucleotide polymorphism (SNP) allele information is overlaid on the haplotype effects, with minor allele in 
black and major allele in gray. The BN haplotype significantly decreases urinary protein at this locus, with high 
uncertainty from the ACI haplotype. Both BN and ACI share the C allele at this locus. (C) Effect of genotype at 
the peak marker on urinary protein showing that the C allele decreases urinary protein. (D) Protein modeling 
for SEPTIN8. Variant V102M of SEPTIN8 falls within a hydrophobic core near the SEPTIN8 dimer contacts. A 
zoomed in view is shown to the right. The bottom panel shows sequence alignments of amino acids in multiple 
species. SEPTIN8 amino acid 102 is 100% conserved as a V throughout 179 species.
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mal tubule epithelial cell (RPTEC-TERT1) culture system (Fig. 4). Under normal conditions, RPTEC-TERT1 
cells reached confluency and halted proliferation. When the confluent cultures were exposed to hypoxia, how-
ever, the cells detached from the surface of the plastic (Fig.  4A), posing a challenge for further study. With 
continual shaking of the media over the surface of the RPTEC-TERT1 cells for extended time (4 weeks), the 
cells remained attached to the surface of the plates. When exposed to 1% O2 for up to 4 days (96 h), a drawn-
out structure typical of cell damage response was seen (Fig. 4A). Morphometric analysis of cultures exposed to 
hypoxia and shaking reveals a change in cell area, perimeter, circularity, and ellipse radius relative to cells under 
normal conditions (Figure S2). Using immunofluorescence (IF), cells demonstrated tight junctions (ZO-1) and 
organized acetyl-alpha tubulin staining common of cilia. When exposed to constant shaking under normoxia 
there was an increase in actin strands and these became oriented perpendicular to the fluid flow (Fig. 4B). Under 
shaking and hypoxia, however, acetyl-alpha tubulin became disrupted and the actin strands began to surround 
the cells, representing altered cellular structure.

RNAseq of the cells under constant shaking vs static conditions revealed minor changes, with an elevation 
of lysosomal biogenesis transcripts (Figure S3). RNAseq of normoxic vs hypoxic conditions of the cells under 
constant shaking revealed a higher number of altered transcripts: 284 higher in hypoxia and 131 higher in nor-
moxia (Fig. 4C). We note disruption of multiple pathways expected to be altered in fibrosis and hypoxia including 
genes associated with HIF-1 signaling and nonsense mediated decay, as well as genes linked to metabolism and 
biosynthesis, ruffle assemblies, and renal Bartter syndrome that are higher in normoxic conditions. These data 
support hypoxia, combined with shaking, as a model of RPTEC-TERT1 cell damage.

Sept8/SEPTIN8 plays a role in kidney damage response.  We queried genes within the rat chromo-
some 10 UPE locus to identify those that were differentially expressed in the hypoxia model above. We identified 

Figure 4.   Development of a renal proximal tubule cell culture system using RPTEC-TERT1 cells. (A) 
Light microscope images of RPTEC TERT1 cells under static or shaker conditions in different oxygen 
concentrations. Note the drawn out structure seen when cells are under hypoxic and shaking conditions. (B) 
Immunofluorescence of different markers in different conditions (ZO1 or aetyl-alpha tubulin in green, Actin 
in red, nuclei in blue). Actin strands increase and become oriented perpendicular to the fluid flow when under 
normoxia and constant shaking. Shaking and hypoxia, however, disrupts the cilia and actin strands begin to 
surround the cells. (C) Volcano plot of RNAseq for the log2 of normoxic vs hypoxic conditions, with significant 
pathways shown on the right and left of the chart.
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four significantly differentially expressed transcripts including P4HA2 (Fig. 5A) and SEPTIN8 (Fig. 5A,B), with 
significantly increased levels of SEPTIN8 under shaking/hypoxia conditions. Using multiple single cell datasets, 
we found that SEPTIN8/Sept8 (human and mouse) is frequently expressed in oligodendrocytes, but also shows 
high expression in fibroblasts (Fig. 5C). We also obtained immunohistology results of a 7-year-old healthy kid-
ney from the human protein atlas (www.prote​inatl​as.org)42. In this healthy kidney, SEPTIN8 is found on the 
apical surface of proximal tubules, where cilia would protrude, with low concentrations within all other kidney 
regions (Fig. 5D). Within our tubule model under shear stress, the SEPTIN8 protein localized with acetyl-alpha 
tubulin (Fig. 5E), suggesting cilia localization and supporting the human immunohistology. Additional staining 
of SEPTIN8 relative to actin or tight junctions (ZO-1) confirms specificity with acetyl-alpha tubulin colocaliza-
tion. Upon hypoxic conditions, however, SEPTIN8 becomes more diffuse and localizes to the edges of the cell 
next to actin filaments (Fig. 5F). We note that there are still some areas where acetyl-alpha-tubulin is speckled 
in both Figs. 4 and 5, although both figures clearly show more diffuse staining of both acetyl-alpha tubulin and 
SEPTIN8 under hypoxic conditions. These data suggest a role of SEPTIN8 in structural integrity and cellular 
response to environmental stress.

In adult human kidney biopsies, SEPTIN8 expression was observed in multiple areas of the kidney (tubules, 
glomerulus, small renal vessels) (Fig. 6A). Staining appears to increase with increasing levels of fibrosis, although 
IHC should not be viewed as quantitative, and thus this should be interpreted with caution43. In addition, seg-
regation of genes within mouse single cell datasets44 for cells expressing SEPTIN8 elucidated a gene enrichment 
for stimulus and wounding within the cells (Fig. 6B), further implicating a role of this gene in cellular response 
to injury and establishing a link between the rat genetic mapping and human model data with mouse in vivo 
responses. Although Sept8 did not map as a cis-eQTL to the chromosome 10 locus (likely because relatively few 
rats that were genotyped had very high UPE levels), we ran rt-qPCR in HS rats selected for histological analysis 
and found that Sept8 expression levels increased significantly (one-way ANOVA, p < 0.0001) in animals with 
moderate to high levels of UPE (Fig. 6C). Together, these data strongly support a role of Sept8 in kidney injury 
and cellular response to stress.

HS serum biochemistry genetic mapping.  HS rats exhibited strong variation for multiple serum bio-
chemistry measures that may serve as intermediary phenotypes for CKD (Figure S4). These traits were also 
strongly heritable (Table 1). We identified significant QTL for several biochemistry measures, including: albu-
min on rat chromosome 14 (18.94–19.45 Mb, − logP = 6.5, effect size 32%), AST on rat chromosome 10 (71.85–

Figure 5.   Data implicating Sept8/SEPTIN8 in the human tubule hypoxia cell culture model. (A) RNAseq values 
of genes within rat LD block within the RPTEC TERT1 normoxic vs hypoxic conditions. Genes on the right 
are significant genes. (B) TPM values in each of the RNAseq groups for SEPTIN8 in the RPTEC TERT1 cells. 
(C) Expression of SEPTIN8 in single cell datasets (human and mouse). (D) Immunohistochemistry from the 
Human Protein Altas (modified from www.prote​inatl​as.org/ENSG0​00001​64402​-SEPT8​/tissu​e/kidne​y42) for 
SEPTIN8 using HPA005665 antibody. Labels are added for tubules and glomerulus. (E) Immunofluorescence 
of SEPTIN8 (red) with acetyl-alpha tubulin, actin, or ZO-1 (green) as labeled. SEPTIN8 localizes with acetyl-
alpha tubulin under shear stress with normoxic conditions. (F) Under hypoxic conditions, however, SEPTIN8 
re-localizes near the actin filaments.

http://www.proteinatlas.org
http://www.proteinatlas.org/ENSG00000164402-SEPT8/tissue/kidney
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78.27 Mb, − logP = 5.4, effect size 22%), LDL cholesterol on rat chromosome 17 (53.22–55.01 Mb, − logp = 4.9, 
effect size 20%), and glucose on rat chromosome 4 (131.52–132.42 [r2 = 0.249; highest LD with peak marker], 
− logP = 5.0, effect size 21%) (Fig. 7A). However, no significant associations were observed for serum creatinine 
or BUN, typical measures of renal function. Genome sequence data from the HS founders, haplotype effects and 
literature searches were used to identify plausible candidate genes. Founder haplotype effects at the peak marker 
are shown in Fig. 7B with allele effects shown in Fig. 7C. There were 10 genes within the albumin locus, including 
albumin (Abm) and alpha-albumin (Afm). The A allele from BN, BUF, F344, and WN led to decreased albumin 
levels at this locus. There was a non-synonymous variant that is predicted to be possibly damaging within Afm 
(position 19,082,289 bp) in the founder strains that exhibit the allele effect. The I to M change is likely to alter 
hydrophobic collapse and is found conserved as a V, I, or L in all vertebrate species, never an M, further implicat-
ing Afm as the causal gene (Figure S4). There were 23 genes within the locus for LDL cholesterol, only 9 of which 
are known. Although there was a non-synonymous variant from the WN founder (the founder haplotype that 
leads to increased LDL cholesterol at this locus) in Arhgap12, the variant is neither highly conserved or likely 
to be damaging. Ggps1 is another candidate in this region, as it plays a role in the cholesterol biosynthesis path-
way (www.rgd.mcw.edu) (Fig. 7A). Within the glucose locus, a single gene, Foxp1, falls directly under the peak 
marker, with four additional genes falling within a more conservative LD interval (r2 = 0.249; Gpr27, Ier3ip1, 
Prok2, Eif4e3) (Fig. 7A). None of these genes had a highly conserved non-synonymous variant that is expected to 
be damaging. Foxp1 has previously been shown to regulate hepatic glucose homeostasis45, and insulin stimulated 
glucose uptake46, making it a strong candidate, although both Gpr2747,48 and Prok249 also play a role in glucose 
related phenotypes.

Figure 6.   SEPTIN8/Sept8 expression increases under conditions of fibrosis or wounding. (A) 
Immunohistochemistry of SEPTIN8 in human biopsies. Results are shown from three separate biopsies with 
varying levels of tubulointerstitial injury ranging from none (biopsy 22) to moderate (biopsy 12) to severe 
(biopsy 4). The top panel provides representative low resolution (20X) image of the tubule/interstitial region. 
The bottom panel provides an independent representative high resolution image (40X) of a single glomerulus. 
(B) Interrogating mouse single-cell databases demonstrates very high levels of Sept8 in response to stimulus 
or wounding and (C) HS rats with high levels of UPE exhibit significantly increased levels of Sept8 relative 
to HS rats with low to moderate urinary protein levels. rt-qPCR was run in all HS rats that were selected for 
histological analysis as described in Fig. 1. *p < 0.05 vs very low, †p < 0.0001 vs all groups.

http://www.rgd.mcw.edu
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Figure 7.   Genome scans for select intermediary serum biochemistry measures. (A) Genome scan for select serum biochemistry 
measures including albumin, AST, LDL cholesterol, and glucose. The x-axis is the position on the chromosome, and the y-axis is the 
− log10 P level of association. Genome-wide significance thresholds were calculated using parametric bootstraps from the null model. 
The linkage disequilibrium support interval for each QTL is highlighted, showing neighboring markers that were correlated with 
the peak marker. Annotation of genes that fall within the r2 support interval is found underneath the plot. Both Abm and Afm fall 
within the albumin QTL and are likely candidate genes. Foxp1 is directly below the peak association with no other markers in high 
LD (r2 = 0.5) and is the most likely candidate for the glucose QTL. QTL effects as (B) additive haplotype effects estimated with the 
Diploffect model, which takes into account uncertainty in haplotype state, and (C) in the actual data, plotted as phenotype vs minor 
allele dosage of the peak marker. Boxplots represent most likely genotypes.
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Discussion
The HS rat model provides a unique, highly-recombinant, genetic structure for fine-mapping genetic loci involved 
in complex traits. This study is the first to utilize the HS model, in conjunction with a novel in vitro model of 
human tubule damage response, to identify genetic factors associated with kidney injury. Specifically, we iden-
tify Sept8/SEPTIN8 as a strong candidate for kidney injury, demonstrating its role in structural integrity of the 
cell and response to stress. We also identify additional candidate genes for intermediary serum biochemistry 
measures linked to CKD.

Using genetic analysis in HS rats, we identify two loci for UPE on chromosomes 2 and 10 as well as loci for 
several serum biochemistries. To identify candidate genes that may underlie these traits, a number of genomic 
and bioinformatics tools were utilized. Using these tools, we identify a highly conserved variant predicted to 
damage protein function within Sept8, a gene within the chromosome 10 UPE locus.

To validate the role of Sept8 in the development of renal injury, we developed a novel human tubule hypoxia-
induced damage model using RPTEC-TERT1 cells. Although RPTEC-TERT1 cells have been used to study 
transport functions, including glucose, ion, or drug transport and to test cytotoxicity of new drugs50, their use 
for studying tubule damage has been challenging because the cells lift off the plate in response to hypoxia. We 
have found that once exposed to shaking conditions for an extended period of time, however, the cells continue 
to adhere to the plate even under hypoxic conditions. We show here that RPTEC-TERT1 cells exposed to shak-
ing and hypoxia exhibit both morphological and gene expression changes frequently associated with damage 
response, thereby validating the model.

Using this in vitro model, we demonstrate two main changes in SEPTIN8/SEPTIN8 (mRNA and protein) in 
response to hypoxia-induced damage: (1) a significant increase in SEPTIN8 expression levels and (2) a re-localiza-
tion of SEPTIN8 toward the edge of the cell near actin filaments. As detailed below, these findings are supported 
by our findings in both the rat model, mouse data-sets, and human kidney biopsies, as well as previous work by 
others, thereby strongly supporting Sept8/SEPTIN8 as a renal injury candidate gene involved in kidney damage.

In the current work, SEPTIN8/Sept8 expression increases in the in vitro model, in mouse single-cell data-sets 
responding to stimulus or wound, and in HS rats with high proteinuria and kidney fibrosis. These findings sup-
port previous work demonstrating increased Septins, including Sept8/SEPTIN8, in fibrotic mouse and human 
kidneys43. Although previous work using an experimental unilateral ureter obstruction model found similar 
renal fibrosis in Sept8 knock-out mice relative to wild-type mice, a significant upregulation of various other 
septins were observed in fibrotic kidneys of the Sept8 knock-out mice compared to contralateral kidneys, indi-
cating likely compensatory mechanisms43. Knock-down of SEPTIN6 (which is similar in sequence homology to 
SEPTIN8) results in decreased fibrosis in hepatic stellate cells51, again supporting this possibility. Taken together, 
results in various species and models, including the current work, demonstrate upregulation of Setp8/SEPTIN8 
in response to cellular damage or fibrosis.

Our data demonstrate that SEPTIN8 is found within tubule cells of the kidney. In RPTEC-TERT1 cells, we 
show that under normal conditions, SEPTIN8 co-localizes with acetyl-alpha tubulin, indicative of cilia localiza-
tion. This is supported by immunohistology of a young, healthy human kidney, with SEPTIN8 localizing to the 
apical surface of proximal tubules where cilia protrude. IHC of adult kidneys show more generalized staining of 
SEPTIN8 within the kidney, indicating more work is needed to determine exact location of this protein within 
the kidney. Previous work, however, has shown that SEPTIN8 localizes to ciliary sub-compartments within lung 
epithelium52, further supporting potential ciliary localization of this gene. In the current work, we demonstrate 
that when the tubule culture system is under hypoxia, SEPTIN8 staining becomes more diffuse and localizes to 
the edges of the cell next to actin filaments. It should be noted that some speckling staining of SEPTIN8 is still 
found in hypoxia cultures, but this is minor relative to staining seen at the edge of the cell. These data suggest an 
important role of SEPTIN8 in structural integrity of the cell.

The current work does not lend itself to a full understanding of how Sept8/SEPTIN8 leads to cytoskeletal 
changes and eventual increases in UPE. One specific limitation of the current work is that we were unable to suc-
cessfully knock-down SEPTIN8 in the cell culture system; studies that would prove invaluable in further support-
ing a role of this gene and in understanding its function in kidney damage. That said, the current work, combined 
with what is known in the literature, can provide some clues. Septins are GTPase proteins that are co-expressed 
with extracellular matrix components and crucial for cytoskeleton organization. Septins have been shown to 
play a role in multiple functions including membrane remodeling and compartmentalization, cytoskeleton rear-
rangement, vesicle trafficking, and apoptosis (see43,53). Fibrosis is marked by an excess of extracellular matrix 
protein in tubuloinsterstitial compartments, myofibroblast transformation, and cytoskeletal rearrangement54. 
Several ciliopathies, including polycystic kidney disease, exhibit fibrosis55. In addition, primary cilia are involved 
in myofibroblast transition56, a key process in fibrosis. Potential ciliary localization of SEPT8 under normal con-
ditions with re-localization toward actin filaments during cellular damage suggests Sept8/SEPTIN8 may play a 
role in cell damage through myofibroblast transition and/or cytoskeleton reorganization. In addition, previous 
work has found that SEPTIN8 partners with mitogen-activated protein kinase 5 (MK5)53, pointing to its role in 
vesicle trafficking. In neuroblastoma cells, M5K phosphorylates SEPTIN8 and this could account for the rapid 
re-localization of SEPTIN8 under hypoxic conditions in the current study. It should also be noted that MK5 has 
been connected to cellular stress, hypoxia-induced cell migration, and fibrosis pathways57. Given the current 
data, we thus propose that under normal conditions, Sept8/SEPTIN8 functions at the apical surface and is likely 
involved in endocytic vesicle trafficking. Upon cellular stress, however, SEPTIN8 relocalizes near actin filaments 
and may become part of the stress fibers of hypoxia induced migration and/or myofibroblast transition, eventu-
ally leading to fibrosis. Importantly, the current studies are only the beginning of trying to understand function 
of SEPTIN8 and much more work is needed to test these hypotheses.



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2071  | https://doi.org/10.1038/s41598-021-81550-8

www.nature.com/scientificreports/

Another limitation of this work is that the current studies are unable to unravel the relative contributions of 
the V102M coding variant (which is protective against proteinuria) and unidentified regulatory variants altering 
expression levels (which increase proteinuria susceptibility) within Sept8 on kidney fibrosis and proteinuria. The 
current work in the HS rat, combined with functional analysis using the in vitro hypoxia model, however, suggest 
that subtle changes in genetic variation within Sept8/SEPTIN8 may interact with other disease factors (eg, age, 
hypertension, stress, and glomerular damage) to alter susceptibility to kidney fibrosis. Based on the above, we 
postulate that increased Sept8 expression in the kidney leads to increased cell migration and eventual fibrosis, 
although it is important to note that the current studies are unable to determine if increased Sept8 expression 
is a cause or consequence of tubule damage. In contrast, we postulate that subtle change in SEPT8 function via 
the V102M variant prohibit Sept8 re-localization and thus protect against fibrosis and increased UPE. These 
interactions will be explored in future studies.

While most groups have studied genetics of the glomerulus through either podocyte or endothelial dysfunc-
tion, several mapping studies in the rat suggest tubule genetics also contribute to CKD, with the work here further 
supporting these contributions. This mechanism is likely through initial glomerular damage that propagates into 
altering the tubule and interstitial space, with genetics elevating the damage response, fibrosis, and progression 
into CKD13,14. Our new tubule model system is a potential powerful model to test the genetics that contribute 
to this mechanism. Future work in HS rats with the V102M mutation will also enable us to test this hypothesis.

In contrast to the chromosome 10 region, we are unable to find a plausible candidate gene within the chro-
mosome 2 UPE locus despite the fact that it is only 0.2 Mb and contains a single gene, Pyruvate dehydrogenase 
E1 Alpha 2 subunit (Pdha2). This gene is involved in pyruvate metabolism and the Hif-1 signaling pathway 
(www.genec​ards.com), although no work has previously linked it to kidney disease. Although Pdha2 possesses 
a cis-eQTL in the chromosome 2 region, it is expressed at very low levels in the kidney. Furthermore, there is no 
correlation between Pdha2 expression levels and urinary protein, and the gene is not supported using mediation 
analysis. None of the genes in the surrounding region (Bmpr1b, Pdlim5, Stpg2, and Unc5c) possess cis-eQTLs, are 
correlated with urinary protein levels, or have highly conserved potentially damaging variants within the WKY 
founder strain. Together, these data indicate that a variant within this region may be driving a gene or genes 
that fall outside of the chromosome 2 locus or falls within an unknown genetic element (eg, miRNA). Further 
analysis, such as global gene expression to identify trans-eQTLs and/or chromosome confirmation capture58, 
will be needed to determine genes driving the phenotype at this locus.

In addition to identification of Sept8 as the likely causal gene within the chromosome 10 UPE locus, Foxp1 
(Forkhead Box P1) was identified as a candidate within the glucose locus on rat chromosome 4 and Afm (Afamin 
of Alpha-albumin) as a candidate within the albumin locus on rat chromosome 14. Both glucose and albumin 
may serve as important intermediate traits for CKD. Diabetes is the leading cause of CKD59 and serum albumin 
is associated with higher risk of incident end stage renal disease (ESRD) independent of baseline urine albumin 
to creatinine ratio and other ESRD risk factors60. We found that Afm contains a highly conserved variant that 
is predicted to be damaging in the founder strains with the allelic effect on the phenotype. Although no vari-
ants were found in Foxp1, this gene falls directly under the peak marker and Foxp1 has been shown to regulate 
hepatic glucose homeostasis45 and insulin stimulated glucose uptake46. Both Gpr2747,48 and Prok249, which fall 
within the wider confidence interval are also potential candidates within this region. No significant associations 
were observed for serum creatinine and BUN. This is expected given the relatively modest level of renal injury 
(eg, few rats with pathological levels of proteinuria) which is likely not sufficient to reflect significant changes 
in renal function.

Because the current GWAS was conducted using only 245 HS male rats, we were surprised at the high level 
of success in identifying genetic loci. This success is likely attributed to the fact that the QTL identified explain 
a large percentage of the variance (~ 20%) of each trait. Previous work in our laboratory has demonstrated that 
a sample size of 700 is sufficient to identify QTL that explain ~ 10% of the variance21. Other studies, however, 
have used over 1000 HS animals, and this tends to be sufficient to identify QTL that explain less than 10% of the 
variance61,62. Simulations by our group have demonstrated that increased sample size leads to an exponential 
increase in the number of QTL identified (unpublished), indicating that increasing sample size will likely lead 
to additional loci for urinary protein and serum biochemistries in the HS rat.

The current work has used HS rats and a novel human tubule hypoxia induced damage cell culture model to 
identify Sept8 as the likely causal gene underlying a locus for UPE. We demonstrate a role of Sept8/SEPTIN8 in 
cell structure and integrity and demonstrate changes in the gene in response to environmental perturbation. This 
work validates, for the first time, an in vitro model of kidney tubule damage and highlights the utility of this, in 
combination with genetic mapping in HS rats, for identifying novel gene regulators that drive kidney disease.
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