A RTl C L E W) Check for updates

Fetuin-A is a HIF target that safeguards tissue
integrity during hypoxic stress
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Intrauterine growth restriction (IUGR) is associated with reduced kidney size at birth,
accelerated renal function decline, and increased risk for chronic kidney and cardiovascular
diseases in adults. Precise mechanisms underlying fetal programming of adult diseases
remain largely elusive and warrant extensive investigation. Setting up a mouse model of
hypoxia-induced IUGR, fetal adaptations at mRNA, protein and cellular levels, and their long-
term functional consequences are characterized, using the kidney as a readout. Here, we
identify fetuin-A as an evolutionary conserved HIF target gene, and further investigate its role
using fetuin-A KO animals and an adult model of ischemia-reperfusion injury. Beyond its role
as systemic calcification inhibitor, fetuin-A emerges as a multifaceted protective factor that
locally counteracts calcification, modulates macrophage polarization, and attenuates
inflammation and fibrosis, thus preserving kidney function. Our study paves the way to
therapeutic approaches mitigating mineral stress-induced inflammation and damage, prin-
cipally applicable to all soft tissues.
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ore than 30 years ago, Barker and colleagues! intro-

duced the fetal origin of adult disease theory, proposing

that adverse events during pregnancy result in low
birthweight (LBW) and increase the risk of ischemic heart dis-
ease, stroke, or hypertension in adulthood. Over the last decades,
this paradigm has been extended to various disorders, including
schizophrenia, diabetes mellitus, obstructive pulmonary disease,
or chronic kidney diseases (CKD)2.

LBW, defined by the WHO as a birthweight below 2500 g
regardless of gestational age, is either caused by being small for
gestational age (SGA), preterm birth, or a combination thereof.
SGA, most commonly a consequence of intrauterine growth
restriction (IUGR), is a condition in which a fetus does not reach
its genetically pre-determined growth potential. It is defined as a
birthweight below the 10th percentile, or more stringent as a
weight 2SD below the mean3. TUGR is associated with numerous
unfavorable gestational conditions, including sociodemographic,
genetic, and environmental factors®. Among the latter, intrau-
terine hypoxia plays a prominent role that can stem from mul-
tiple aetiologies ranging from umbilical cord obstruction,
smoking to preeclampsia, or placental insufficiency”®. Hypoxia
activates a tightly controlled signaling cascade by stabilization of
the hypoxia-inducible transcription factor (HIF) alpha and
transactivation of target genes. HIF targets include metabolic
enzymes and cell cycle regulators involved in hypoxia adaptation,
as well as excreted proteins, including growth factors, immuno-
modulators, or extracellular matrix components.

In this study, we set up and validated a mouse model of IUGR
by exposing gravid mice to normobaric hypoxia, mimicking high
elevation. We chose this approach, because high altitude (HA;
>2500 m), at which >2% of the world’s population reside, is itself
inversely correlated with birthweight”=°. This makes pregnancies
at high altitude the most important cause of maternofetal hypoxia
and TUGR worldwide!®. The prevailing chronic hypoxic condi-
tions at HA begin to negatively affect intrauterine growth of the
human fetus at the end of the second trimester!?, a time window
overlapping with the main phase of nephrogenesis. The kidneys
of such SGA infants are characterized by a lower number of
nephrons at birth. Furthermore, population studies conducted
among highland residents of various ethnicities found a sig-
nificant correlation between high altitude and incidence of renal
disease!!, making long-term hypoxia an important factor impli-
cated in CKD and end-stage renal disease!?13. Although many
theories have been proposed!4, the exact mechanisms whereby
reduced nephron endowment drives the onset and progression of
CKD remain to be defined.

Here, we show that fetal hypoxia induces an ectopic expression
profile of liver-specific genes in fetal kidneys. Of these, we iden-
tified the plasma glycoprotein fetuin-A (Ahsg) as an evolutionary
conserved HIF target gene, and further investigated its role in
hypoxic fetal kidneys using fetuin-A KO mice. Beyond its
recognized role as systemic calcification inhibitor, our findings
establish fetuin-A as a local calcium mineral scavenger, not only
counteracting intrarenal calcification, but also attenuating renal
fibrosis and inflammation through TGF-p1 antagonization and
regulation of macrophage polarization. Our results provide robust
mechanistic evidence to support Barker’s hypothesis and high-
light potential molecular mechanisms that link prenatal hypoxia-
induced IUGR to accelerated renal fibrosis and function decline
in the adult. This role of fetuin-A paves the way for therapeutic
strategies for mineral stress-induced damage in soft tissues.

Results
Chronic fetal hypoxia induces IUGR in mice. To model chronic
fetal hypoxia, timed-mated pregnant mice were exposed to 10%

oxygen from E14.5 to E18.5 (Fig. 1a). We observed that dams in
hypoxia ate 8.6% less throughout the whole gestation compared
to dams under ambient conditions (Fig. 1b). For a better visua-
lization, we plotted the differential food intake between these two
groups as percent body weight and calculated the total amount of
consumed food as area under the curve (AUC). The reduced food
intake took place within the first 48 h of hypoxia, the time period
the mice seemed to need to adapt to hypoxia. Thereafter, on
hypoxia day 3 and 4, food intake was back at 84% (p = 0.04) and
93% (no significant difference), respectively. Since caloric
restriction itself is a known inducer of IUGR?, we included an
additional control group in our analysis, this is the “caloric
control” (Cc) group, to rule out the possibility that our findings
might not be due to hypoxia, but rather to reduced ingested
calories. In the Cc group, normoxic dams were fed with an
amount of food matching the amount of food consumed by the
hypoxic mice (Fig. 1b). Thus, throughout gravidity hypoxic and
Cc dams consumed 91.4% of the food eaten by normoxic dams,
which is a very mild food restriction compared to the majority of
other published protocols!>~17. During gestation, normoxic dams
gained 56% of body weight, while the weight increase for Cc or
hypoxic dams was 49% or 33%, respectively (Fig. 1c). In more
detail, the 7% difference between normoxic and Cc dams was due
to a zero net weight gain of Cc mice during the first 24 h of food
restriction, thereafter weight gain normalized or was even higher
than for normoxic dams. On the contrary, hypoxic dams lost
9.1% of body weight during the initial 24 h of hypoxia and it took
72 h before their weight gain was back to control levels. Despite
these differences, placental mass and the number of E18.5 fetuses
per litter were indistinguishable among the three groups (Sup-
plementary Fig. 1a, b). However and importantly, only hypoxic
E18.5 fetuses showed LBW, fulfilling small for gestational age
(SGA) criterial8, whereas Cc fetuses did not (Fig. 1d). Calculating
the E18.5 fetal weight/maternal weight ratio revealed no sig-
nificant difference among the groups (Supplementary Fig. 1c).
Kidneys of hypoxic fetuses were smaller with significantly fewer
nephrons compared to controls (Fig. le, Supplementary Fig. 2
and Supplementary Movies 1 (normoxia) and 2 (hypoxia)).
Moreover, the number of nephrons/E18.5 fetal weight ratio was
1411 in normoxic vs. 1300 in hypoxic fetuses, which further
illustrates that nephrogenesis was severely disturbed in SGA
fetuses exposed to chronic hypoxia. Tracking the litter size of
hypoxic and normoxic dams confirmed that the numbers of pups
per litter were comparable and remained constant throughout the
suckling phase (Supplementary Fig. 1d). Cannibalism of pups was
an exception in our study. If it occurred, it usually affected only
the weakest pup in the afflicted litters in the first few days after
birth, regardless of the experimental condition. Thus, no differ-
ence was evident in survival assessments (Fig. 1f). Importantly,
we found striking differences in the postnatal growth of the off-
spring in relation to sex, genotype, and experimental condition,
including a pronounced catch-up growth of hypoxic pups (Fig. 1g
and Supplementary Fig. 1e, f).

Hypoxic fetal kidneys adopt a hepatic gene expression pattern.
To determine whether our approach indeed induced hypoxic
conditions in the fetus, we assessed the mRNA expression level of
the classic hypoxia-induced target gene Epo in fetal liver samples.
We found that its transcription was almost fourfold higher in
hypoxic samples than in normoxic controls (Supplementary
Fig. 3a), thus confirming that exposure of dams to chronic
hypoxia truly activates the transcription of HIF target genes in the
fetus. Next, we examined whole genome expression in fetal
hypoxic kidneys using gene arrays. We identified 62 induced and
28 repressed genes compared to both control groups (Fig. 2a and
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Fig. 1 Chronic fetal hypoxia induces intrauterine growth restriction in mice. a Experimental setup and time points of analysis. b Mean relative daily food
intake shown for all dams until start of hypoxia (arrow), thereafter normoxic dams (black dotted line) or hypoxic dams (bold dark gray line) are separated.
During whole gestation, normoxic dams consumed 292.2% of their body weight, while hypoxic mice ate 267%. This corresponds to 91.4% of the food
consumed by normoxic mice. Asterisks denote significance (day 16 and 17 P< 0.0001, day 18 P=0.0398). ¢ Mean relative daily maternal weight gain
shown for all dams until the start of intervention (arrow), thereafter normoxic dams (black dotted line), hypoxic dams (bold dark gray line), or Cc dams
(dashed light gray line) are separated. Significance is denoted by large asterisks (normoxia vs. hypoxia: day 16 and 17 P < 0.0001), small asterisks
(normoxia vs. Cc: day 16 P=0.0002, day 17 P=0.0012, day 18 P=0.0082) or # (hypoxia vs. Cc: day 16 P<0.0001, day 18 P=0.0007). d Fetal mass
shown as mean + SEM. N = fetuses. Ordinary one-way ANOVA with Tukey's multiple comparison test. @ Number of nephrons per E18.5 kidney determined
by staining for the glomerular marker nephrin shown as mean =+ SEM. N = fetal kidneys. Unpaired 2-sided t-test with Welch's correction. f Survival of
normoxic and hypoxic pups. Mantel-Cox log-rank test. g Mean postnatal weight of hypoxic offspring (Ahsg KO—bold gray line, wild-type-thin gray line)
and normoxic offspring (Ahsg KO—bold black dotted line, wild-type—thin black dotted line). KOs weighed less than wild-types, catch-up growth was
observed for hypoxic offspring during the third week after birth. Gray circles denote significance between hypoxic offspring, white circles between
normoxic offspring, large asterisks between KOs, and small asterisks between wild-types. P-values are listed in Supplementary Table 8. Individual P-values
are denoted above the comparison lines (d, e). N =dams (b, ¢) or pups (f, g) can be derived from Source Data. Multiple 2-sided t-tests (b, ¢, g). (****P<
0.0001). Source data are provided as a Source Data file.
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Fig. 2 Hypoxia-induced gene expression in the kidney. a Hierarchical clustering of cDNA microarray data comparing the renal gene expression profiles of
hypoxic (Hy), normoxic (No), and caloric control (Cc) group E18.5 fetuses (N = 3 per experimental condition). Orange indicates induction, blue repression.
Clustering was performed for genes with at least 1.3-fold regulation of hypoxic vs. both normoxic controls; Tway ANOVA; P<0.05. b, ¢ Relative mRNA
values of Ahsg (b) or Apoc2 (c) in E18.5 kidneys (circles) or liver samples (squares) shown as mean + SEM. N = fetal organs. Kidney and liver samples are
analyzed separately. Note the logarithmic scale on the y-axis. d, e Serum fetuin-A levels assessed by ELISA are presented as mean and + SEM. N = serum
samples. No significant changes were observed among normoxic (No), hypoxic (Hy), or caloric control (Cc) E18.5 fetuses (d), nor for their mothers (e).
Ordinary one-way ANOVA with Tukey’'s multiple comparison test (b-e). Individual P-values are denoted above the comparison lines (b-e). (***P < 0.007;

**P < 0.01). Source data are provided as a Source Data file.

Supplementary Tables 1 and 2). Of the induced genes, 17 are
known to be regulated by hypoxia, including the bona fide HIF
target genes transferrin, trefoil factor 3, neuritin, alpha-1-
antitrypsin (Serpinald) and alpha-1-antichymotrypsin (Serpi-
na3n)19-22 (Supplementary Table 1). Furthermore, we found
more than 20% of the induced genes to be frequently purified
from calciprotein particles (CPPs), comprising the major CPP
components fetuin-A (Ahsg), albumin, Apo-Al and thrombin
(F2)2324 (Supplementary Table 1). Functional annotation clus-
tering of the induced genes revealed in hypoxic kidneys an
enrichment of secreted plasma proteins that are normally tran-
scribed exclusively in the liver. These genes included complement
and coagulation factors, proteins involved in lipid metabolism
and transport, as well as components of acute phase and acute
inflammatory responses (Supplementary Table 3). Validation of
the microarray data by quantitative reverse transcription PCR
(RT-qPCR) of select genes confirmed a more than fourfold
induction in hypoxic fetal kidneys only, but not in control group
kidneys nor in the liver (Fig. 2b, ¢ and Supplementary Fig. 3b-f;
note the logarithmic scale on the y-axis). Interestingly, Ahsg, the
gene with the highest induction (> tenfold), was found in 7 of the
10 annotation groups listed in Supplementary Table 3 (asterisks).
Ahsg belongs to the cystatin superfamily of cysteine protease
inhibitors, encoding for the negative acute phase glycoprotein
fetuin-A, whose main function concerns mineralized matrix
metabolism?>. Despite its strong induction in hypoxic fetal kid-
neys, we did not detect a significant rise in serum fetuin-A levels
in hypoxic fetuses (68.7+4.3 ug/ml) compared to normoxic
controls (70.5 + 3.8 ug/ml) (Fig. 2d), nor in their mothers (Fig. 2e:
normoxia: 190.0 + 14.1 pg/ml vs. hypoxia: 172.1 + 14.8 pg/ml).
This is not surprising as under normal conditions the liver is the
main source of circulating fetuin-A (600-fold higher than in the
fetal kidney), whereas in our model, fetal hypoxia-induced local,
“ectopic” fetuin-A expression in the kidney, at a level which is still
60-fold lower than in the liver (Fig. 2b: note that the expression
levels of fetuin-A in kidney and liver are shown on a logarithmic
scale). These findings provide evidence that the induction of

fetuin-A in hypoxic fetal kidneys does not have a systemic
functional relevance, but rather a local, important protective role
in the developing kidney.

Fetuin-A is produced locally in the proximal tubulus under
hypoxic conditions. To further address the functional relevance
of Ahsg expression in fetal hypoxic kidneys, we determined its
precise localization. Whole-mount in situ hybridization disclosed
fetuin-A mRNA synthesis in cortical regions of hypoxic fetal
kidneys, but not in normoxic kidneys (Supplementary Fig. 4a, b).
Immunofluorescent staining for fetuin-A protein pinpointed its
location more precisely to the outer renal cortex, just below the
nephrogenic zone (Supplementary Fig. 4c). No signal was
detected in the inner cortex or medulla. Close up, Fig. 3 shows
immunohistochemistry of fetal kidney proximal tubules (PT)
(Fig. 3a, ¢, e, g) or tubule lumen (Fig. 3b, d, f, h). Strong fetuin-A
staining demarcated PT cells regardless of the oxygen conditions
(Fig. 3a, ¢). This is due to filtration and uptake of systemic fetuin-
A into the PT via megalin-dependent endocytosis2%, masking any
fetuin-A locally produced in the hypoxic fetal kidney. To selec-
tively visualize fetuin-A protein of renal origin, we employed a
genetic approach to block endocytosis into the PT, an alternative
method to the pharmacological inhibition of megalin-dependent
endoycytosis using His-sRAP (histidine-tagged soluble receptor-
associated protein)2°. Clen5 knock-out (KO) mice?’ show
severely impaired endocytosis of low molecular weight proteins in
the PT, mimicking Dent’s disease?8. Normoxic Clen5 KO kidneys
lacked the prominent fetuin-A staining in PT cells (Fig. 3e).
Instead, a strong intraluminal signal was detected (Fig. 3f), which
was not present in wild-type (wt) samples (Fig. 3b), highlighting
the impaired endocytic phenotype of Clcn5 KO mice. However,
hypoxic Clecn5 KO kidneys showed strong fetuin-A staining in the
PT (Fig. 3g) in addition to the luminal signal (Fig. 3h), providing
evidence that the observed cellular fetuin-A staining genuinely
originated in the PT. Double immunofluorescence staining
for fetuin-A and different renal segment markers (Fig. 3i-x)
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Fig. 3 Fetal hypoxia induces fetuin-A expression in the proximal tubulus. a-h Fetuin-A staining on E18.5 kidney sections of normoxic (a, b, e, f) or hypoxic
(¢, d, g h), wild type (a-d) or Clcn5 KO (e-h) fetuses. Arrowheads indicate intraluminal fetuin-A staining that results from the impaired endocytosis of low
molecular weight proteins in the PT of Clcn5 KO mice (f, h). i-x Immunofluorescence staining of the indicated nephron segment marker proteins (red) and
fetuin-A (green) on E18.5 kidney sections. PT, proximal tubulus (i-D; TAL, thick ascending limb (m-p); DCT, distal convoluted tubulus (g-t); CD, collecting
duct (u-x). Images are representative of at least three independent antibody stainings (a-x). Scale bar = 50 um (a-x), except overview images for which

the scale bar =300 um.

confirmed that fetuin-A was expressed only in the PT of hypoxic
fetal kidneys.

Ahsg harbors putative HIF-binding sites overlapping with
enhancer regions. Having shown that fetuin-A is locally pro-
duced in hypoxic fetal kidneys, we assessed whether the expres-
sion of Ahsg was directly activated by hypoxia. To check for
potential HIF-binding sites (hypoxia response elements-HRE) in
the human AHSG locus, we made use of HIF-1-alpha and HIF-2-
alpha ChIP-seq data sets derived from hypoxic MCF7 cells?°. We
identified a cluster of potential HREs near exon 4 of human
AHSG that overlapped with H3K27Ac and H3K4Mel (chromatin
marks of active enhancer elements3?) and DNasel hypersensi-
tivity (Supplementary Fig. 5a). Another putative HRE was located
in intron 1. Screening Ahsg genes of 15 species for the presence of
the consensus HIF-binding sites (RCGTG) 10kb up- and

downstream of the ATG revealed a peak 1-5kb downstream of
the ATG with an average number of 2 HREs per 1kb window
(Supplementary Fig. 5b). Notably, not only the annotated human
ChIP-seq HIF sites localized within this peak, but also four
potential mouse HREs. Alignment of the latter with enhancer
marks revealed a close association with H3K27Ac, H3K4Mel and
DNasel hypersensitivity (Supplementary Fig. 5¢). A complete list
of the identified sites can be found in Supplementary Table 5.

Hypoxia activates fetuin-A transcription in vitro and promotes
the expression of fibrotic marker genes in fetal organs. Five
putative HREs of mouse Ahsg and their surrounding DNA,
alongside with nonsense mutations of these sites, were cloned
into luciferase reporter plasmids (Fig. 4a; DNA sequences in
Supplementary Table 6). Normal rat kidney epithelial (NRK) cells
transfected with reporter plasmids containing only the putative
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Fig. 4 Hypoxia activates fetuin-A expression in vitro. a Depiction of the potential HREs of mouse Ahsg that were used to generate the luciferase reporter
gene constructs (1) to (8). Mutated HREs are shown in blue. b Mean + SEM of luciferase activity in NRK cells individually transfected with the reporter
constructs depicted in a, showing the fold-change in light emission between hypoxic and normoxic culture conditions. Each transfection condition is
compared to the empty vector control (pGL3). N = independent experiments. Ordinary one-way ANOVA with Dunnett’'s multiple comparisons test.

¢ Expression of fetuin-A and vimentin in primary mouse proximal tubular cells (pPTCs) isolated from four different mice cultured under normoxic or
hypoxic conditions. Images are representative of two independent Western blots. Uncropped blots in Source Data. d Relative mRNA expression levels of
collagens (Collal, Col3al, and Col6al), a-smooth muscle actin (Acta2), fibronectin (Fn7), and vimentin (Vim) in kidneys from normoxic (white circles) or
hypoxic fetuses (gray circles). Data is shown as mean = SEM. N = fetal kidneys. Unpaired 2-sided t-test (with Welch's correction for Collal and FnT).
Individual P-values are denoted above the comparison lines. (****P < 0.0001; **P < 0.07). Source data are provided as a Source Data file.

—2kb HRE did not show increased luciferase activity under
hypoxic conditions (Fig. 4b). Conversely, NRK cells carrying
reporter plasmids containing the downstream HREs significantly
increased luminescence in hypoxia. No increased luciferase
activity was detected when these HREs were mutated (Fig. 4b).
Furthermore, there was no enhanced luciferase activity when up-
and downstream HREs were combined. Thus, only the HREs
located downstream of the ATG conferred hypoxia inducibility to
the mouse Ahsg gene. Besides the activation of luciferase from
reporter constructs, hypoxia also triggered the production of
fetuin-A protein in primary mouse PT cells (pPTCs), NRK cells
and in the human kidney cell line HK-2 (Fig. 4c and Supple-
mentary Fig. 6a, b, respectively). Taken together, these findings
identified fetuin-A as an evolutionary conserved HIF-dependent
target gene. Moreover, hypoxia not only promoted the expression
of fetuin-A, but also stimulated the expression of several fibrotic
marker genes in pPTCs (Fig. 4¢), fetal kidneys (Fig. 4d), and fetal
lungs and hearts (Supplementary Fig. 6c, d). However, whereas as
the epithelial organs (lung and kidney) showed a broad activation
of fibrotic genes, the response in the heart was more blunted and
did not include an enhanced transcription of collagens.

Fetuin-A deficiency aggravates CKD progression in hypoxic
IUGR Kkidneys. To investigate how the induction of fetuin-A in
fetal hypoxic IUGR kidneys affects renal function in the long-
term, we measured urinary protein levels and determined the
glomerular filtration rate (GFR) in adult wild-type (wt) and
fetuin-A (Ahsg) KO mice3! (Fig. 5a, b). GFR was reduced,
whereas proteinuria was severely increased in both sexes of 9-
week-old Ahsg KO animals and in mice exposed to fetal hypoxia
compared to normoxic controls. While the GFR reduction was
comparable between the sexes, the degree of proteinuria was
much higher in males than in females. Furthermore, assessment
of fibrotic tissue remodeling revealed enhanced expression of
collagens, showing the highest expression levels in kidneys of
hypoxic Ahsg KO mice (Fig. 5c—e), which in histological exam-
inations showed a broader staining pattern with multiple collagen
bundles extending deeper into subcortical regions (Fig. 5f-i).
Besides these genes, we also found non-collagenous fibrosis
markers to be significantly induced in adult hypoxic KO kidneys
(Supplementary Fig. 7), but also in Ahsg KO-derived pPTCs
cultured under hypoxic conditions (Figs. 4c and 5j). Importantly,
these results clearly show that renal function was most affected in
Ahsg KO mice, showing an additive effect of hypoxia and fetuin-
A deficiency.

Fetuin-A attenuates the hypoxia-induced expression of fibrosis
markers by antagonizing TGF-p signaling. The additional
increase in the expression levels of fibrotic markers in the kidneys
of hypoxic Ahsg KO mice compared to hypoxia alone (Fig. 5 and
Supplementary Fig. 7) occurred despite similar mRNA levels in
these two groups of transforming growth factor beta-1 (TgfbI), a
potent inducer of fibrosis (Fig. 6f). We elucidated this finding
in vitro, using freshly isolated pPTCs, and found that the sup-
plementation of fetuin-A to the culture medium blunted the
hypoxia-induced increased gene expression levels of fibrotic
markers (downward pointing triangles in Fig. 6a-d and in Sup-
plementary Fig. 8a-f). Moreover, this diminishing effect was also
observed at the protein level (Fig. 6e). However, when a similar
amount of BSA was applied instead of fetuin-A, the expression of
fibrotic markers was not reduced (upward pointing triangles in
Fig. 6¢, d and in Supplementary Fig. 8d-f). Stimulation of pPTCs
with recombinant TGF-f1 resulted in robust phosphorylation of
its intracellular signal transducer Smad3 (Fig. 6g and Supple-
mentary Fig. 8g). This activation was more than three times
stronger in Ahsg KO pPTCs compared to wt cells (Fig. 6h),
showing that Ahsg KO cells responded more vividly to TGF-p1.
In contrast, adding fetuin-A before TGF-P1 treatment decreased
Smad3 phosphorylation (Supplementary Fig. 8g). These findings
are in line with previous reports, describing fetuin-A as a soluble
decoy receptor protein mimicking TGF-B type II receptor and
cytokine antagonist3233. Collectively, our results suggest that
fetuin-A reduces hypoxia-induced renal fibrosis by direct antag-
onization of TGF-P1 signaling.

Renal infiltration and polarization of pro-inflammatory M1
macrophages during fetal hypoxia is mitigated by fetuin-A.
Another important cell type that contributes to the progression of
renal injury are macrophages343>. During its development, the
kidney 1is first Eopulated by embryo-derived, long-lived, self-
renewing F4/80MCD11bl°" cells, which maintain a resident
population of macrophages3®. This group is complemented by
bone-marrow derived circulatory F4/801°WCD11bM macrophages,
which infiltrate and patrol, but rarely colonize the kidney except
during renal injury?”. Besides this classification, macrophages can
be further categorized according to their polarization into pro-
inflammatory M1 or anti-inflammatory M2 cells. We used a
FACS approach to characterize the macrophage populations in
E18.5 hypoxic or normoxic fetal kidneys. Strikingly, in hypoxia
the composition of renal macrophages was shifted towards
infiltrating F4/801°WCD11bb cells, partially replacing the resident
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Fig. 5 Fetuin-A deficiency aggravates CKD progression in hypoxic IUGR kidneys. a, b Decline of renal function in adult hypoxic offspring showed additive
effects of hypoxia and fetuin-A deficiency. The decline in GFR was indistinguishable between the sexes with the greatest functional reduction in hypoxic
Ahsg KO animals (a). The incline in proteinuria (protein/creatinine ratio) was more pronounced in males than in females. For both sexes, hypoxic Ahsg KO
animals had the highest ratios (b). Male and female samples are analyzed separately. c-e Relative mRNA expression levels of Collal (¢), Col3al (d), and
Col6al (e) were markedly enhanced in kidneys of hypoxic Ahsg KO offspring. f-i Histological depiction of collagen using picrosirius red (f, h) or Masson's
trichrome staining (g, i) showed a stronger, more intricate pattern on kidney sections of hypoxic Ahsg KO offprings compared to controls. Images are

representative of at least three independent experiments. Scale bar =100 um. j Primary proximal tubular cells (pPTCs) isolated from two different wt or
Ahsg KO mice exhibit enhanced expression of fibronectin and a-smooth muscle actin (a-SMA) protein upon culture in hypoxic conditions. Images are

representative of three independent Western blots. Uncropped blots in Source Data. Data were analyzed from N = hypoxic or normoxic offspring and are
presented as mean = SEM (a-e). Ordinary one-way ANOVA with Dunnett's multiple comparisons test (a-b) or Ordinary one-way ANOVA with Tukey's
multiple comparisons test (c-e). Individual P-values are denoted above the comparison lines (b, ¢, e). (****P <0.0007; ***P < 0.001; **P < 0.01). Source
data are provided as a Source Data file.
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Fig. 6 Fetuin-A attenuates hypoxia-induced expression of fibrotic markers. a, b Fetuin-A supplementation (downward pointing triangles) attenuated the
hypoxia-induced expression of the fibrotic markers Acta2 (a) or Col3al (b) in pPTCs. Wt and Ahsg KO samples are analyzed separately. Unpaired two-tailed
t-test with Welch's correction (only for comparison of normoxic wt and normoxic Ahsg KO samples). ¢, d BSA supplementation (upward pointing
triangles), did not reduce the expression of Acta2 (c) or Col3al (d) in pPTCs. e Fetuin-A supplementation also reduced the expression of fibronectin and
collagen type | (Col1al) protein in pPTCs. Images are representative of two Western blots. Uncropped blots in Source Data. f Relative mRNA expression
levels of Tgfbl shown as mean = SEM were markedly enhanced in kidneys of hypoxic offspring, regardless of genotype. N = hypoxic or normoxic offspring.
g TGF-B1 treatment and hypoxia had an additive effect on the phosphorylation of Smad3 in pPTCs. Images are representative of three Western blots.
Uncropped blots in Source Data. h Quantification of Smad3 activation shown in g. N =three independent Western blots. Ordinary one-way ANOVA
(Fisher's LSD test). Data were analyzed from N = pPTCs derived from kidneys of wt or Ahsg KO mice and are presented as mean + SEM (a-d). Ordinary
one-way ANOVA with Tukey's multiple comparisons test (a-d, f). Individual P-values are denoted above the comparison lines (a-d, f, h). (****P < 0.0007;

***P<0.001; **P<0.01). Source data are provided as a Source Data file.

population (Fig. 7a—f). Furthermore, whereas most macrophages
were M2 polarized (CD206™) in normoxic kidneys, the majority
of macrophages isolated from hypoxic kidneys had adapted a M1,
pro-inflammatory phenotype (Fig. 7g-k and Supplementary
Fig. 9). Importantly, the fraction of M1 polarized macrophages
was even more prominent in hypoxic Ahsg KO samples (Table 1).
Taken together, we show that hypoxia promotes the infiltration
and polarization of pro-inflammatory M1 macrophages
(CD2067) in the kidney, suggesting that fetuin-A was associated
with an overall anti-inflammatory milieu.

Calcium mineral particles accumulate in hypoxic ITUGR kid-
neys of Ahsg KO mice. One cause for the enhanced inflammatory
phenotype in hypoxic Ahsg KO kidneys could be renal calcifica-
tion, since fetuin-A KO mice are prone to soft tissue calcifica-
tion38, However, we did not detect overt calcification in the fetal
kidneys of hypoxic Ahsg KO mice with classic methods such as
von-Kossa staining. We therefore applied a more sensitive
method to test whether the expression of fetuin-A in fetal hypoxic
kidneys affected mineralized matrix handling, and probed for the
presence of calcium containing microparticles by incubating
freshly cut kidney sections of E18.5 embryos with ATTO 488
fluorescently labeled fetuin-A (488-FA)3%40, Owing to the high-
affinity binding of fetuin-A to calcium phosphate*!, 488-FA
staining is more sensitive to detect calcium containing matrix and
cell remnants than the commonly used mineral staining proto-
cols. Thus, positive 488-FA staining in the absence of von-Kossa
or Alizarin-Red staining also highlights structures merely enri-
ched with calcium, including amorphous calcium-phosphate
aggregates that often precede overt calcifications*2. 488-FA
staining revealed in normoxic wt kidneys intense labeling of the

PT, a site of major calcium resorption®? and thus also of
mineralized matrix handling (Fig. 8a). PT staining intensity was
reduced in hypoxic wt and increased in hypoxic Ahsg KO (Fig. 8b,
¢). Only hypoxic Ahsg KO kidneys also showed a granular
staining pattern in the papillary region and less frequently in the
nephrogenic region of the outer cortex (arrowheads in Fig. 8f, i),
indicating bulk mineral deposition in the absence of endogenous
fetuin-A. Excess bulk mineral or cellular debris is often found at
sites of enhanced cell death**. Indeed, TUNEL staining confirmed
apoptosis in hypoxic Ahsg KO kidneys, but not in hypoxic wt
kidneys or normoxia (Supplementary Fig. 10a-c). Cleaved
caspase-3 immunostaining in hypoxic Ahsg KO kidneys further
corroborated cell death in these kidneys (Supplementary
Fig. 10d-f). Collectively, these data illustrate the role of fetuin-A
in binding and clearance of mineralized matrix in the kidney.

Fetuin-A supplementation reduces the expression of fibrotic
markers upon ischemia-reperfusion injury. In the previous
sections we have presented results that describe fetuin-A as an
important player in Barker’s hypothesis, counteracting multiple
disadvantageous processes in the fetal kidney. Because of the
underlying pathophysiological mechanisms we anticipated that
the protective role of fetuin-A is not restricted to the fetus, but
can be extended to offset similar harmful processes in hypoxia-
related injury in adult animals. Thus, in a final step, we performed
an interventional study using a mouse model of ischemia-
reperfusion injury (IRI)*°. Here, renal blood flow is transiently
stopped to induce hypoxic damage in the kidney (ischemia),
which is further exacerbated upon the restoration of renal cir-
culation (reperfusion). Similar to our fetal model, we showed that
tissue damage in IRI kidneys was associated with the deposition
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Fig. 7 Fetuin-A mitigates infiltration and polarization of pro-inflammatory M1 macrophages. a-d Under normoxic conditions (a, b), the majority of renal
macrophages exhibits a F4/80MCD11blo% phenotype, indicating resident macrophages. The number of these cells was generally reduced under hypoxic
conditions. Under hypoxic conditions (¢, d), the cell count of infiltrating macrophages (F4/80!°WCd11bhi) was increased. Lack of fetuin-A even more
stimulated the infiltration of macrophages into hypoxic fetal kidneys (d). Images are representative of 3 (b-d) or 4 (a) sorted kidneys. e Quantification of
resident macrophages shown in a-d. Unpaired two-tailed t-test (for comparison of normoxic and hypoxic condition). f Quantification of infiltrating
macrophages shown in a-d. Unpaired two-tailed t-test with Welch's correction (for comparison of normoxic and hypoxic condition). g-j Under normoxic
conditions (g, h), the majority of renal macrophages exhibits a M2 CD206% anti-inflammatory phenotype (depicted in the upper two quadrants). Hypoxic
conditions (i, j) promoted the polarization of M1 CD206~ pro-inflammatory macrophages (depicted in the lower two quadrants). This polarization is even
more pronounced in fetal kidneys of Ahsg KO mice (j). Images are representative of three (h-j) or four (g) sorted kidneys. k Quantification of the lower two
quadrants (CD206~ macrophages) of the FACS blots shown in g-j. Unpaired two-tailed t-test with Welch's correction (for comparison of normoxic and
hypoxic condition). Data were analyzed from N = fetal kidneys and are presented as mean = SEM (e, f, k). Ordinary one-way ANOVA with Tukey's multiple
comparisons test (e, f, k). Individual P-values are denoted above the comparison lines (e, f, k). (****P < 0.0001; ***P < 0.001; **P < 0.01). Source data are
provided as a Source Data file.

Table 1 Number of macrophages expressing markers of M1 polarization per 500,000 cells.

Markers Normoxia Hypoxia

wt KO P-Value wt KO P-Value
CDMct 1256 £ 214 1589 £ 201 0.138 2209 +325 2988 £208 0.046
CD68* 48 £11 58+4 0.245 12121 1679 0.047
CD80* 265+ 61 357 £51 0.132 442 £42 674 + 31 0.003
CD86™* 796 £113 1037 £ 93 0.052 2044 + 387 2503219 0.218

Data were analyzed from N =3 or 4 fetal kidneys and are presented as mean + SEM. Unpaired two-tailed t-test.

of calcium containing microparticles (Fig. 8k), which were not
found in controls (Fig. 8j). The presence of these deposits in IRI
kidneys not only validated the superiority of the 488-FA staining
approach to detect early calcium biominerals, but also corrobo-
rated our findings in fetal hypoxia, revealing an imbalance
between calcium mineral release and clearance upon hypoxic
tissue damage. Furthermore, daily administration of fetuin-A for

4 days, starting immediately after IRI surgery, resulted in a
marked decrease of Collal and Col3al expression compared to
mice treated with physiological saline solution (Fig. 81, m). In this
regard, it was reported in rats that peripheral fetuin-A adminis-
tration could prevent excessive cerebral ischemic tissue injury*°.
Our results provide strong evidence that fetuin-A supplementa-
tion at the time of injury (e.g., ischemia-reperfusion injury in
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Fig. 8 Fetuin-A supplementation reduces the expression of fibrotic markers upon hypoxia-related injury. a-i Fetuin-A deficiency promotes accumulation
of calcium mineral particles in hypoxic fetal kidneys. Calcium biominerals were detected by ATTO 488 fluorescently labeled fetuin-A (488-FA). Compared
to normoxic or hypoxic wt mice, hypoxic Ahsg KO mice exhibited the strongest 488-FA staining intensity in the proximal tubulus (PT), indicative of an
increased mineralized matrix turnover (a-c). Arrowheads in f and i point towards granular staining pattern in the papilla and cortex, respectively, reflecting
bulk accumulation of 488-FA in kidneys of hypoxic Ahsg KOs. Such granules were not detectable in wt samples (d, e, g, h). j, k Ischemia-reperfusion injury
(IRD) induces calcium mineral particles in adult kidneys. A granular staining pattern indicative of bulk accumulation of 488-FA at sites of calcium deposits
was only present in IRl kidneys (k), but not in controls (j). I, m Fetuin-A supplementation reduced the expression of the fibrotic markers Collal (I) and
Col3a1 (m) in IRI kidneys 5 days after injury. No effect is seen in mice treated with physiological saline solution (NaCl). Data were analyzed from N =

kidneys and are presented as mean + SEM. Ordinary one-way ANOVA with Dunnett's multiple comparisons test. Individual P-values are denoted above the
comparison lines. (****P <0.0001; ***P < 0.001). Images are representative of at least three independent experiments (a-k). Scale bar =100 um (a-k).

Source data are provided as a Source Data file.

diverse organ systems) could be a promising therapeutic
approach against hypoxia-induced mineral stress and fibrotic
tissue remodeling, particularly in conditions associated with
fetuin-A depletion, such as CKD or acute inflammation.

Discussion

In the present study, we employed a comprehensive array of
in vitro, in vivo and in silico methods to characterize IUGR
secondary to chronic fetal hypoxia. Using the kidney as readout,
we determined the short and long-term consequences on renal
development and function, and elucidated molecular mechanisms
linking fetal hypoxia and progression to renal fibrosis in adults.
Importantly, we identified fetuin-A (Ahsg) as an evolutionary
conserved HIF target gene, protecting the kidney from hypoxia-
induced renal damage by counteracting not only cellular debris-
mediated mineralization, but also macrophage polarization and
fibrotic remodeling.

Several groups including ours have established hypoxic IUGR
models in rodents either by partial ligation of the uterine
artery?7-48, or by exposure to a low-oxygen atmosphere?->1. Yet,
although all studies found nephron numbers reduced by 25-30%,
the reported adult phenotypes differed, comprising reduced
GFRY, aberrant expression of angiotensin II receptors, or urine
concentration defects”>1, The variability is most likely caused by
the specific hypoxia protocols employed, especially differences in
exposure time, developmental stage at start of exposure, or the
severity of hypoxia. Mechanistically, two studies proposed that
fetal hypoxia altered canonical Wnt signaling, thus impairing
nephrogenesis*®!. Besides the kidney, late gestational hypoxia in
combination with high-salt diet was also shown to promote
arterial stiffness due to increased deposition of collagen in the
vessel walls of mice®2. In contrast to some of the models men-
tioned above, which in some instances needed a second hit to
promote a phenotype, we established and validated a robust
murine model of chronic fetal hypoxia-induced IUGR, where late

10

gestational hypoxia alone was sufficient to reduce GFR and to
induce proteinuria in adult IUGR mice. Under these circum-
stances, lack of fetuin-A further aggravated the chronic damage
due to fetal hypoxia. If these findings were to be translated into a
clinical perspective, then hypoxic or Ahsg KO animals would have
a moderate to high risk for CKD (Supplementary Fig. 11), thus
substantiating and giving a mechanistic insight into Barker’s
hypothesis.

In our microarray, Ahsg showed the highest induction and we
further revealed that the most relevant HIF-binding sites are
located downstream of the ATG. This is in line with a previous
genome-wide mapping of HIF-binding sites, describing a broad
peak of enrichment downstream of the transcriptional start site>3.
Taken together with this finding, our results provide strong evi-
dence that Ahsg is a HIF target gene.

Hypoxia-induced expression of fetuin-A might represent a
general reactive mechanism of extra-hepatic tissues involved in
mass transport of solutes across an epithelium to safeguard the
proper handling of calcium and phosphate locally, at sites of
increased mineral stress®*. It would be interesting to assess other
non-renal epithelia (e.g., choroid plexus, intestine, salivary
glands) for their response to hypoxia. The liver on the other hand,
might not equally respond to reduced oxygen levels, since con-
stitutive hepatic fetuin-A synthesis is regulated by a strong pro-
moter driving high systemic levels®. A reason for the specific
induction of fetuin-A expression in fetal hypoxic kidneys might
be the fetal circulation with its extra- and intracardiac shunt
mechanisms, delivering the most highly oxygenated blood to the
brain and myocardium. This further reduces the oxygenation of
more peripheral organs including the developing kidney already
at normoxic conditions. Thus, in the hypoxic group, the fetal
kidney is exposed to much more stringent hypoxic conditions,
which then responds to this severe hypoxic environment with the
induction of fetuin-A. Unlike mRNA, exact quantification of
fetuin-A protein produced locally in the kidney is not trivial due
to the uptake of filtered hepatic fetuin-A into the cells of the
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proximal tubules, which cannot be easily distinguished from
fetuin-A of renal origin. However, given the fourfold size differ-
ence between liver and kidneys and the roles that these two
organs play in fetuin-A distribution (the liver is releasing fetuin-A
into the circulation for systemic use, whereas the fetuin-A pro-
duced in the kidneys upon hypoxic injury plays a local role with
no systemic relevance), we believe that the concentration of
locally produced fetuin-A in the kidneys is sufficiently high to
produce a significant renal protection.

488-FA staining revealed the presence of bulk mineral particles
in the kidney of hypoxic fetuses. These granules most likely
represent deposits of mineralized debris commonly detected by
electron microscopy at sites of excessive tissue damage or
remodeling?2. In this regard, it has been suggested that fetuin-A
plays a role in tissue remodeling during embryogenesis, its
expression peaking during the transition from organogenesis and
histogenesis, when cells acquire their final phenotype, but is lost
thereafter>®>7, Yet, recent evidence shows that fetuin-A expres-
sion is reactivated upon ischemic brain damage, aiding tissue
repair>8. In the developing kidney, prenatal hypoxia induces
apoptosis®® and was reported to cause renal vascular
dysfunction®1-92, giving rise to excess amounts of cellular debris
that could serve as mineralization foci. Damaged or dying cells
suffer calcium overload, which is characterized by calcium
accumulation in mitochondria or apoptotic bodies, respec-
tively®3-65, Concomitant low levels of ATP (malfunctioning
mitochondria) and pyrophosphate levels (an important inhibitor
of calcification®) increases the calcification propensity of these
organelles. The formation and local deposition of solid mineral
from saturated mineral solutions is regulated by mineral binding
proteins like fetuin-A, which stabilize mineral as colloidal com-
plexes and mediate their clearance and recycling®’. Thus, a lack of
fetuin-A increases the risk of mineral debris deposition and cal-
cification. In addition, fetuin-A was also shown to inhibit apop-
tosis and to augment phagocytosis of apoptotic cells®®6%,
reducing the amount of mineral debris generated and enhancing
its removal, respectively. Uptake of fetuin-A containing calci-
protein particles (CPPs) from the circulation depends on their
maturation state3>. Whereas early amorphous CPPs are pre-
ferentially cleared by endothelial cells, crystalline CPPs are taken
up predominantly by macrophages through a scavenger receptor-
A (SR-A) mediated pathway’0. Interestingly, apart from fetuin-A,
also about one third of the proteins constituting CPPs?>24 were
induced in our fetal hypoxic kidneys, including Apo-Al, Apo-A2
and transferrin. The latter was also shown to promote the
expression of multiple pro-inflammatory chemokines in human
proximal tubular epithelial cells’!. Thus, hypoxic fetal kidneys
seem to employ a mechanism that enhances the stabilization and
clearance of mineral debris.

Chronic hypoxia, inflammation, and fibrotic tissue remodeling
are tightly interwoven processes. Cells of the PT are especially
vulnerable to stress due to their immense energy consumption
required for the reabsorption of filtered molecules and ions. Thus,
it is not surprising that these cells are the most preferred site of
crystallization in the kidney’? and that they respond with the
release of cytokines (e.g., MCP1, TNFa, or TGF-B) during pro-
longed episodes of cellular stress’>74 Our GO biological path-
ways suggested the presence of immune cells, known to be
universally recruited in tissue damage response and repair’>. We
further show that hypoxia induced a shift from anti-inflammatory
M2 to pro-inflammatory M1 macrophages, which was even more
prominent in fetuin-A KO mice. The polarization from M2 to M1
could be directly mediated by the low availability of oxygen
during fetal hypoxia, since M1 macrophages rely on glycolysis to
obtain energy, whereas M2 macrophages make use of oxidative
metabolic processes’®. The reduction in M2 macrophages might

also directly impair nephrogenesis in hypoxia, given the trophic
function of tissue resident F4/80MCD206" M2 macrophages in
the developing kidney’”78. These findings are in line with pre-
vious studies, reporting that fetuin-A dampens the pro-
inflammatory phenotype of macrophages®+7°. Here, the NLRP3
inflammasome is increasingly recognized to promote renal
inflammation and fibrosis, contributing to the progression to
CKD through enhanced secretion of the pro-inflammatory
cytokines IL-1B and IL-18%081. Although its main molecular
components (NLRP3, ASC, and Caspase-1) are also expressed in
renal tubular epithelial cells, macrophages are the main cell type
sustaining an inflammatory reaction towards a multitude of
endogenous, cell damage-associated molecular patterns, including
basic calcium-phosphate crystals®2:83, Excessive phagocytosis of
these biominerals leads to calcium overload, lysosomal damage
and the release of lysosomal enzymes, which sustains a vicious
auto-amplification loop of necroinflammation’2. In epithelial
cells, NLRP3 was also described to augment TGF-f signaling
independently of its function in inflammasomes8. These findings
are in agreement with our observations showing that only kidneys
from hypoxic Ahsg KO fetuses exhibited cell death and enhanced
polarization of M1 macrophages, and that fetuin-A supple-
mentation diminished the expression of fibrotic markers in
pPTCs as well as upon IRL

A previous study by Chatterjee and colleagues® has shown
that fetuin-A promoted the polarization of M1 pro-inflammatory
macrophages in adipose tissue, whereas we report here that
fetuin-A reduces macrophage infiltration and M2 to M1 polar-
ization. Our results do not invalidate in any way these previous
findings, but on the contrary, strengthen the hypothesis that
fetuin-A plays an important role in modulating macrophage
responses. Both observations reflect the two sides of the same
coin, the already known Janus nature of this protein, highlighting
similarities: the ectopic (non-hepatic) expression of fetuin-A, but
also disparities, namely different subsequent signaling events and
phenotypic outcomes. On the one hand, excess lipids in adipose
tissue due to obesity stimulate the local production of fetuin-A via
the TLR4 and Nf-kB signaling cascade, creating a local micro-
environment that stimulates M1 polarization and the release of
pro-inflammatory cytokines along the same signaling axis®-87.
Yet, such interactions have only been reported to take place in the
adipose tissue®®. On the other hand, in our case ectopic fetuin-A
expression is downstream of HIF signaling triggered by severe
hypoxia, for which the kidney is especially vulnerable. The
downstream role of fetuin-A here is also very different: by
binding excess calcium that is released from damaged or apop-
totic cells and the formation of CPPs, fetuin-A reduces mineral
stress in macrophages, thus protecting against some of the pro-
inflammatory and harmful effects that are emanating from
calcium-phosphate nanocrystals®. This function of fetuin-A does
not seem to be mediated via TLR4, but involves the SR-A
system>%70,

In conclusion, we identified Ahsg as a hypoxia target gene that
locally protects IUGR kidneys from chronic, progressive renal
damage induced by prenatal hypoxia, and furthermore demon-
strated the therapeutic potential of fetuin-A supplementation in
acute ischemia-reperfusion injury. In Fig. 9, we propose a model
in which the systemic function of liver-derived fetuin-A (green
circles) can be locally enhanced upon hypoxic cellular stress. This
locally produced, renal fetuin-A (yellow circles) provides a boost
mechanism that augments the capacity in the kidney to clear the
increased release of calcium minerals from stressed cells and to
suppress inflammation. This in turn protects the kidney from
further mineral stress by keeping the renal damage in check. An
inability to activate the local fetuin-A response leads to an
enhanced infiltration and polarization of pro-inflammatory M1
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Fig. 9 Proposed model. Fetuin-A (Ahsg) is a HIF target gene that locally protects the kidney from hypoxia-induced renal damage and functional
deterioration. It is implicated in the clearance of calcifying nanoparticles, mitigation of inflammation, attenuation of fibrotic tissue remodeling, and
polarization of macrophages. (1) In normoxia, liver-derived fetuin-A (green) locally binds calcium in mineral particles (light gray), inhibits their maturation
and accumulation (dark gray). Macrophages exhibit an M2 anti-inflammatory phenotype (M2 M®, blue). (II) The relatively low abundance of fetuin-A-free
calcium biominerals (dark red) in normoxic conditions is not sufficient to elicit a noticeable inflammatory response. The majority of macrophages is M2
polarized, only a small fraction shows a M1 pro-inflammatory phenotype (M1 M®, magenta). (Ill) In hypoxia, increased tissue damage leads to calcium
mineral overload and a polarization shift towards M1 M®. However, local induction of fetuin-A (yellow) augments the clearance of calcium biominerals and
keeps the polarization of M1 M® in check, thus preventing inflammation and fibrotic remodeling. (IV) Fetuin-A deficiency in an hypoxic environment leads
to an unbalanced accumulation of calcium biominerals and their unchecked maturation (orange), which overwhelms the intrinsic clearing capacity of the
tissue. This further promotes the polarization of pro-inflammatory M1 M®, and culminates in inflammation (red) and fibrotic tissue remodeling.

macrophages (magenta), inflammation, and TGF-p mediated
fibrotic tissue remodeling, which, in the long-term, promotes
proteinuria and decreased GFR in adult offspring. This model
principally also applies to IRI in adult kidneys, with the difference
that the renally produced fetuin-A is substituted by externally
administered fetuin-A.

Beyond its established role as a calcification inhibitor in the
serum phase, we propose a broader view of fetuin-A: as a potent
calcium mineral scavenger, it counteracts ectopic pathological
tissue calcification, especially during hypoxic stress, emerging
thus as an important “gate keeper” of tissue integrity. In the
developing organism, it plays an important role in fetal pro-
gramming according to Barker’s hypothesis; in adults, it is a
potential therapeutic modality counteracting renal tissue remo-
deling upon ischemic reperfusion injury. These properties of
fetuin-A have a high translational potential in human medicine,
as it is not restricted to the treatment of hypoxia/ischemia-related
injury, but could also be applicable as a replacement therapy in
conditions associated with fetuin-A depletion such as CKD or
acute inflammation.

Methods
Animals. Breeding, genotyping and all animal experiments were conducted
according to the Swiss law for the welfare of animals and were approved by the
local authorities (Canton of Bern BE96/11, BE105/14, and BE105/17). All mice,
including Ahsg"™IMY mice and Clen5™1Gug mice (kindly provided by Prof. Olivier
Devuyst, University of Zurich) were maintained on a C57BL/6 background. All
mice were housed in IVC cages with free access to chow and water and a 12 h day/
night cycle, 23 °C ambient temperature and 40-60% humidity.

For timed matings, females in breeding were checked for vaginal plugs every
morning, and if present the time point was set to gestational day (E) 0.5. Ahsg KO

mice were obtained from heterozygous breeding pairs, also giving rise to
heterozygous and wt littermates that were used as controls. For induction of
hypoxia, E13.5 pregnant mice were transferred into a hypoxic glove box (Coy
Laboratory Products, Grass Lake, USA). The next day, the oxygen content was
gradually lowered to 10% within 6-8 h with intermittent pauses at 16% and 12.5%
to acclimatize the animals to the increasing hypoxic conditions. An electric fan
inside the chamber maintained adequate air circulation. The CO, level was kept
low by chelating excess CO, in soda lime (Sigma, 72073) filled cartridges connected
to the air circulation system. Excess humidity was absorbed by silica gel orange
granulate (Sigma, 1.01969), changed every day. Daily food consumption (weight of
food initially provided minus the weight of food remaining after 24 h) and
maternal weight were recorded from E0.5 to E18.5 for each mouse. From these
data, the average daily food consumption was calculated as a fraction of body
weight. Furthermore, to calculate the total amount of consumed food, the area
under the curve (AUC) was determined. Until E14.5, all dams had free access to
food. From E14.5 to E18.5, dams of the caloric control group received an
constrained diet, which was the same fraction of food that was consumed by the
animals in the hypoxic group. Pregnant hypoxic or control mice were euthanized
on E18.5 and fetuses and placentas were collected, weighed and prepared for
further analysis. Fetal kidneys were dissected in PBS using a Leica

MBS0 stereoscope. Assessment of renal functions (GFR and proteinuria)

were performed in 9 weeks old fetal hypoxic or normoxic mice.

For ischemia-reperfusion injury (IRI), surgery was performed in 10-12-week-
old wt mice Briefly, IRI was induced in the left kidney by clamping the renal vessels
for 30 min, the right kidney served as a control. Immediately after surgery, mice
received the first treatment of either physiological NaCl solution or bovine Fetuin-
A (100 ug/g body weight) via intraperitoneal injection. Injections were repeated
daily for four days. Kidneys were isolated on day 5 and analyzed.

Transcutaneous assessment of glomerular filtration. The glomerular filtration
rate (GFR) was determined in conscious animals as previously described®. Briefly,
the plasma clearance of FITC-sinistrin (Fresenius-Kabi, L19830076) is measured
across the skin using light-emitting diodes with an emission maximum for FITC at
470 nm and a photodiode detecting the fluorescent light with a maximum sensi-
tivity at 525 nm. The decrease in fluorescence intensity over time is then converted
into GFR.
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Proteinuria. Urine protein content was determined using the Bradford Assay.
Three microliters of urine and 150 pl of 1x Bradford reagent were mixed, incubated
at RT for 5 min and absorbance was measured at 595 nm. (5x Bradford reagent was
prepared by dissolving 50 mg Brilliant Blue G-250 (Sigma, B-1131) in 24 ml
ethanol and 50 ml 85% phosphoric acid, the adjusting the total volume to 100 ml
with ultra-pure water). Urine creatinine content was determined using the Jaffe
method. 10 ul of 1:10 diluted urine was mixed with 100 ul Creatinine reagent,
incubated at RT for 10 min and absorbance was measured at 510 nm. (Creatinine
reagent consisted of 10 mM picric acid and 250 mM NaOH, pH 13). Finally, the
protein creatinine ratio was calculated for each sample.

Glomerular count. One-hundred micrometers Z-stack images of whole-mount
E18.5 kidneys stained for nephrin (R&D AF3159) were analyzed with the open
source image processing software Fiji (Image]J, version 2.0.0-rc69/1.52i, https://
imagej.net/Fiji). In the TrackMate v3.8.0 plugin, the Downsample LoG detector
was set to 80.0 pixel for the estimated blob diameter with a 16-pixel threshold and
downsampling factor 2. The number of spots per frame were added to calculate the
number of glomeruli per kidney. A 100 um distance between frames was chosen to
avoid double counting of identical glomeruli in consecutive images, given an
average glomerular diameter of 80 um.

Flow cytometry. Fetal kidneys were dissociated with collagenase I (2 mg/ml in 1%
BSA/PBS; C9891, Sigma) for 20 min at 37 °C. The cell suspension was filtered
through a 40 pm pore size filter, washed and then stained using a panel of anti-
bodies for 30 min at 4 °C. Cells were sorted on a SORP LSRII using FACSDiva and
analyzed with FlowJo 10.6.1. Antibodies are provided in Supplementary Table 7.

Microarray analysis. Total RNA from male hypoxic, normoxic, and caloric
control group E18.5 kidneys was isolated using the RNeasy Mini Kit (Qiagen,
74104). Only high-quality RNA (RIN > 8, 260/280 ratio > 2, 260/230 ratio > 1.8)
was used for further analysis. One-hundred nanograms of total RNA samples were
processed with the Ambion® WT Expression Kit (4411973, life technologies). In all,
5.5 pg of the complementary DNA (cDNA) was fragmented and labeled with
GeneChip® WT Terminal Labeling kit (901525, Affymetrix). In all, 2.3 pg bioti-
nylated fragments were hybridized to Affymetrix Mouse Gene 1.0 ST arrays at
45°C for 16 h, washed and stained according to the protocol described in Affy-
metrix GeneChip® Expression Analysis Manual (Fluidics protocol FS450_0007).
The arrays were scanned with Affymetrix GeneChip® Scanner 3000 7G and raw
data was extracted from the scanned images and analyzed with the Affymetrix
Power Tools software package. Hybridization quality was assessed using Affymetrix
Expression Console software (version 1.1.2800.28061). Normalized expression
signals were calculated from Affymetrix CEL files by the Robust Multi-array
Average algorithm (RMA). Differential hybridized features were identified using
the R Bioconductor package “limma” that implements linear models for microarray
data®. P-values were adjusted for multiple testing with Benjamini and Hochberg’s
method®! to control the false-discovery rate (FDR). Probe sets showing at least 1.3-
fold-change and a FDR < 0.05 were considered significant. Differential expression
values between hypoxic, normoxic, and caloric control group E18.5 kidneys were
mapped with Heatmapper®? (http://www.heatmapper.ca) using average linkage
and Euclidean distance measurement. For functional annotation, GO-term analysis
was performed using the DAVID platform”? (https://david.ncifcrf.gov).

RT-qPCR. Total RNA was isolated using TRIzol® reagent (Invitrogen 15596026)
according to the manufacturer’s protocol. RNA concentration and quality was
determined with a Nanodrop 1000 spectrophotometer (ThermoFisher Scientific,
Switzerland) and 1000 ng were transcribed into cDNA using PrimeScript RT
Reagent Kit (Takara, RR037A). cDNA was diluted to 2 ng/pl and qPCR was per-
formed with either TagMan Gene Expression Assays (ThermoFisher) or FAM-
labeled UPL probe (Roche) plus corresponding gene-specific primers and TagMan
Fast Universal PCR Master mix (Applied Biosystems, 4352042) on a 7500 Fast
Real-Time PCR System (Applied Biosystems). Data analysis was performed with
Microsoft Excel. The 2(~2CY method was used to calculate the relative expression
levels for RT-qPCR. Primer and probe sequences or Assay IDs are listed in Sup-
plementary Table 4.

Identification of HIF-binding sites. For the identification of putative HIF-binding
sites, the 20 kb genomic region overlapping with the Ahsg locus (10 kb up- and
downstream of the start codon) of 15 different species (cat, chicken, chimp, cow,
dog, ghost shark, horse, human, mouse, pig, rabbit, rat, sheep, xenopus, zebrafish)
was analyzed with the JASPAR database® (http://jaspar.genereg.net). The relative
profile score threshold was set to 90%. For enrichment analysis, putative sites of all
species were clustered in 1kb windows. The identified sites are listed in Supple-
mentary Table 5. HREs with a relative score >0.9 are shown in red, >0.93 in orange
and >0.97 in yellow.

For the alignment of human HIF alpha sites identified by ChIP-seq of hypoxic
MCEF7 cells?® (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28352)
with active regulatory marks of the AHSG locus, the HIF-1-alpha and HIF-2-alpha
data sets encompassing chr3: 180,000,000-190,000,000 (including the AHSG
locus) were converted into BAM files using the web-based Galaxy platform®>

(https://usegalaxy.org) and uploaded to the human assembly GRCh37/hg19 on the
USCS genome browser” (https://genome.ucsc.edu). To this alignment, the
following data sets were added: layered chromatin marks often found near active
regulatory elements of seven cell lines (H3K27Ac and H3K4Mel, ENCODE) and
open chromatin of hypoxic MCF7 cells (DNasel HS, ENCODE). For the mouse
Ahsg locus, the potential HIF-binding sites identified with JASPAR were aligned
with data sets (DNasel HS, ENCODE/UW; H3K27Ac and H3K4Mel, ENCODE/
LICR) derived from 8 weeks mouse liver, heart and kidney, showing the mean
signal intensity (bar graphs, auto-scaled, log-transformed, smoothened (16 pixels)).

Molecular cloning. For luciferase assays, the 2.5kb promoter fragment upstream
of the mouse Ahsg ATG was amplified from genomic DNA (C57BL/6) using
specific primers and PrimeSTAR® GXL DNA Polymerase (Takara, R0O50A). The
500 bp promoter fragments (wt and mutant) and the 500 bp fragment of intronic
sequences (wt and mutant) were synthesized by IDTDNA (https://eu.idtdna.com/
pages). The promoter fragments were inserted into the pGL3-basic-P2P-607
plasmid (kind gift of Prof. Wenger, Zurich) with Ncol and SacI restriction enzymes
(both NEB, R3193S, and R31568). Intronic fragments were inserted into the pGL3-
basic vector or the pGL3-basic vector carrying the promoter fragments using
BamHI and Sall restriction enzymes (both NEB, R3136S and R3138S). Primer and
fragment sequences are listed in Supplementary Table 6.

For in situ hybridization, the cDNA of exons 2-5 of mouse Ahsg was obtained
from IDTDNA and cloned into pBluescriptII KS- using Spel and EcoRI restriction
enzymes (both NEB, R3133S and R3101S).

Luciferase assay. Twenty-four hours after transfection, cells were washed twice
with PBS, lysed (250 mM KCl, 50 mM Tris/H;PO4 pH7.8, 10% glycerol, 0.1%
NP40) on ice for 20 min and centrifuged at full speed (17,000 x g) at 4 °C for 10
min. Of the supernatant, 10 pl were used for each reaction. Injection of reaction
solutions (Luciferase: 100 pl of 25 mM Tris/H;PO, pH7.8, 10 mM MgSO,, 2 mM
ATP pH7.5, 50 uM luciferin; Renilla: 100 pl of 50 mM Tris/HCI pH7.6, 100 mM
NaCl, 1 mM EDTA, 0.5 uM coelenterazine) and activity measurement was per-
formed with a Fluoroskan Ascent FL (ThermoFisher). Each sample was measured
in duplicates and luciferase activity was normalized by renilla activity.

Whole-mount in situ hybridization. E18.5 kidneys were fixed in 4% PFA,
dehydrated and stored in methanol at —20 °C. In situ hybridization using a
digoxigenin-labeled riboprobe was performed as described”’. Probes were gener-
ated using the DIG RNA Labeling Mix (Roche, 11175025910) and T3 or T7 RNA
polymerase (both Roche, 11031163001 or 10881767001). An alkaline phosphatase-
conjugated antibody was used to detect the DIG-labeled probes (Roche,
11093274910).

TUNEL staining. Fragmented DNA in apoptotic cells was detected using the
Promega DeadEnd Colorimetric TUNEL System (G7360) according to the
manufacturer.

Histochemistry. For immunohistochemistry, PFA-fixed, paraffin-embedded tissue
sections were rehydrated and endogenous peroxidase was blocked by incubating
the slides in 1.5% H,O, solution (0.02 M citric acid, 0.06 M Na,HPO,) at RT for 15
min in the dark. Antigen retrieval was performed by boiling in Tris-EDTA buffer
pH 9 for 20 min followed by slow cool down to RT. After blocking in 2% BSA in
PBS at RT for 1 h, the sections were incubated with primary antibodies in blocking
solution o/n at 4 °C. Antibodies were diluted according to the recommendation of
the manufacturer. Following three washing steps in PBS, the sections were incu-
bated with HRP-conjugated secondary antibodies (mouse or rabbit: Dako
EnVision+ System from Agilent (K4001 or K4003), ready-made solution, no
dilution required; goat: SCBT, sc-2304 1:5000) for 1h at RT. After three washing
steps in PBS, the signal was developed with DAB (Agilent, K3468). The sections
were counterstained with Harris haematoxylin solution (Sigma, HHS16), dehy-
drated and mounted using Eukitt medium (Sigma, 03989).

For Picrosirius red staining of collagen, de-waxed, rehydrated tissue sections
were incubated in staining solution (0.5 g Direct Red 80 in saturated aqueous
solution of picric acid (both Sigma, 365548 and P6744)) for 1h at RT. After
washing twice in acidified water (0.5% glacial acetic acid), the sections were
dehydrated and mounted using Eukitt.

Immunofluorescent staining. Cryosections were fixed in 4% PFA at RT for 10
min, washed twice in PBS and permeabilised by incubation in PBST (0.1% Triton
X-100 in PBS) at RT for 10 min. After blocking in 10% FCS, 0.5% Tween-20 in PBS
at RT for 1h, the sections were incubated with primary antibodies in blocking
solution o/n at 4 °C. Following three washing steps in PBS, the sections were
incubated with fluorescence-conjugated secondary antibodies in blocking solution
in the dark for 1h at RT. Antibodies were diluted according to the recommen-
dation of the manufacturer. DNA was stained with DAPI 1:5000 in PBS. Sections
were mounted in MOWIOL solution (2.4 g MOWIOL 4-88 reagent (Merck,
475904) in 6 g glycerol and 18 ml 0.13 M Tris pH 8.5). Primary and secondary
antibodies are provided in Supplementary Table 7.
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For whole-mount immunofluorescence staining of E18.5 kidneys, the iDisco
staining protocol®® (https:/idisco.info/idisco-protocol/) with methanol pre-
treatment was applied. An incubation time n =1 day and a solution volume of
1.6 ml was used for the relevant steps. The kidneys were mounted in 8-well glass
chamber slides (ThermoFisher, 154534) and imaged immediately.

Fluorescent detection of calcium. Thick cryosections (30 um) were incubated
with 10 ng/ml ATTO 488 fluorescently labeled fetuin-A (in calcium-free PBS) in
the dark at RT for 60 min, rinsed three times with PBS and mounted with
MOWIOL solution. Nuclei were counterstained with DAPI.

Imaging. Fluorescence imaging was performed on a IMIC digital microscope (FEI,
Type 4001) using the Polychrome V light source, an Orca-R2 camera controller
from Hamamatsu (C10600) and Live Acquisition software (FEI, version 2.6.0.14).
Image analysis was performed using Offline Analysis software (FEI). Bright-field
imaging was performed on a Nikon E600 microscope equipped with Nikon
objectives (Plan Fluor ELWD 20x/0.45, Plan Apo 40x/1.0 Oil and 60x/1.40 Oil)
using a Digital Sight DS-UE camera controller and DS-Ril camera (both Nikon).
Image analysis was performed using Nikon software NIS Elements 4.0.

Enzyme-linked immunosorbent assay (ELISA). Plasma fetuin-A levels of E18.5
fetuses were determined using the Mouse Fetuin-A/AHSG Quantikine ELISA Kit
(R&D, MFTA00) according to the manufacturer.

Cell culture. The normal rat kidney (NRK) cell line was cultured in Dulbecco’s
modified Eagle medium ((DMEM) (Gibco, 41965-039)) and 10% fetal bovine
serum (FBS). The human kidney (HK-2) cell line was cultured in Keratinocyte-
SFM medium (Gibco, 17005-075). For luciferase assays, NRK cells were transfected
with luciferase reporter plasmids and pCMV-Renilla (10% of total transfected
DNA, used for normalization) using jetPrime® reagent (Polyplus, 114-07), sti-
mulated with 1 mM DMOG (Echelon Biosciences, F-0010) 6 h after and harvested
24 h after transfection. For hypoxia, cell culture was performed at 0.2% oxygen
for 48 h.

Primary proximal tubular cells (pPTC) were isolated from 3-4-week-old
kidneys as previously described®. Briefly, proximal tubular fragments were
obtained by digesting cortical kidney tissue with collagenase and
subsequent filtration through a 250 um followed by an 80 um pore size membrane.
pPTCs were cultured in DMEM/F12 (Gibco, 21041-025) supplemented with
15mM HEPES, 0.55 mM NaPyruvate, 1% NEAA and renal epithelial cell growth
medium (REGM) supplements (Lonza, CC-4127). Instead of FBS, serum from Ahsg
KO mice was used. Upon confluency, pPTCs were split using Accutase solution
(Sigma, A6964) and replated once. For hypoxia, cell culture was performed at 0.2%
oxygen for 48 h. For treatment, 100 pg/ml Fetuin-A (Sigma, F3385) or bovine
serum albumin (BSA, Sigma, A3059) was added to the culture medium 48 h before
the end of the experiment. Before treatment with 5 ng/ml rmTGE-B1 (R&D, 7666-
MB) for 5 min, cells were starved for 24 h.

Western blot analysis. Total protein lysates were obtained using RIPA buffer
(Sigma, R0278) supplemented with protease inhibitors (Roche, 11836153001).
Proteins were separated by sodium dodecyl sulfate polyacrylamide gel electro-
phoresis and blotted onto polyvinylidene fluoride membranes (ThermoFisher,
88518). Upon blocking with 5% milk in TBST, the membranes were incubated with
primary antibodies at 4 °C o/n. Antibodies were diluted according to the recom-
mendation of the manufacturer. Incubation with HRP-conjugated secondary
antibodies (dilution 1:5000) was performed at RT for 1 h. The signal was detected
with ECL (GE Healthcare, RPN2106) or SuperSignal (ThermoFisher, 34076)
depending on signal intensity. Densiometric analysis was performed with the open
source image processing software Fiji (Image], version 2.0.0-rc69/1.52i, https://
imagej.net/Fiji). Antibodies are listed in Supplementary Table 7.

Data analysis. Statistical analysis and graphs were performed with Prism 8
(https://www.graphpad.com). If not specified otherwise, two groups were com-
pared by unpaired 2-sided ¢-tests, multiple groups by ordinary one-way ANOVA
with Tukey’s multiple comparisons test. ****P <0.0001; ***P <0.001; **P < 0.01;
*P < 0.05; ns, not significant; Data are presented as mean + SEM, unless specified
otherwise.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Microarray raw data were deposited at the GEO genomics data repository under the
accession code GSE148778. HIF ChIP-seq data sets are accessible under GSE28352.
Other genome-wide dataset were obtained from UCSC Genome Browser at https://
genome.ucsc.edu (for human: H3K27Ac, H3K4Mel, DNasel HS (ENCODE); for mouse
DNasel HS (ENCODE/UW),H3K27Ac and H3K4Mel (ENCODE/LICR)) or JASPAR
database at http://jaspar.genereg.net (for potential mouse HIF-binding sites). All other

data supporting the findings of this study are available from the corresponding author on
request. Source data are provided with this paper.
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