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Abstract: Polyphenols are an important family of molecules of vegetal origin present in many
medicinal and edible plants, which represent important alimentary sources in the human diet.
Polyphenols are known for their beneficial health effects and have been investigated for their potential
protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular
diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect
on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical
models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical
studies, the polyphenolic compounds were effective also when administered after the stroke onset,
suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we
review the effects of the major polyphenols in cellular and in vivo models of both ischemic and
hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.

Keywords: polyphenols; flavonoids; stroke; brain ischemia; intracerebral hemorrhage; subarach-
noid hemorrhage

1. Introduction: The Burden of Stroke

Stroke is a cerebrovascular disease caused by the interruption of blood flow to the
brain due to the blockage or rupture of a vessel and can affect both immature and mature
brains.

Perinatal stroke occurs between the 20th week of gestation and the 28th day after birth
with an incidence between 1/2300 and 1/5000 live births [1,2]. Perinatal stroke is not only
a major cause of acute mortality in the early days of life, but newborn survivors may also
develop neurological disabilities including cerebral palsy, cognitive deficits and behavioral
disorders often lasting the entire lifetime [3,4].

Adult stroke is the second main cause of mortality and the third cause of disability
worldwide [5,6]. Typical symptoms of stroke include understanding and speech issues;
sudden unilateral weakness, numbness or loss of vision; ataxia; diplopia; dizziness; and
nausea [5]. Moreover, stroke survivors face a significantly increased risk of developing
depression and cognitive decline [7,8]. According to its etiology, stroke can be classified as
ischemic, hemorrhagic or caused by subarachnoid hemorrhage [9–11]. Ischemic stroke, or
brain ischemia, is the most frequent subtype of stroke, accounting for 85% of cases [9,10].
In ischemic stroke, the blood supply to part of the brain is reduced by the occlusion of a
blood vessel either by an embolus or by local thrombosis [12]. About 10% of strokes are
due to intracerebral hemorrhage (ICH), a severe neurological disorder associated with high
rates of mortality and disability [13–15]. ICH results from the rupture of cerebral blood
vessels that causes a rapidly expanding hematoma occurring within the brain parenchyma.
Subarachnoid hemorrhage (SAH) accounts for approximately 5% of all strokes and is
characterized by severe mortality and morbidity (more than 50%) [16,17]. In the major part
of cases, SAH is caused by the rupture of an intracranial aneurysm [17].
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Stroke in both immature and mature brains is a complex phenomenon that includes a
series of pathological processes such as excitotoxicity, oxidative damage, apoptosis and
inflammation, which eventually leads to cell death [18–20]. One of the main pathophysi-
ological features of ischemic stroke is the brain–blood barrier (BBB) disruption, an event
that occurs in almost two-thirds of patients in the first hours from the ischemia onset
and causes vasogenic edema, hemorrhagic transformation and increased mortality [21,22].
Cerebral hemorrhage leads to a primary brain injury caused by increased intracranial
pressure, followed by a secondary brain injury mediated by the physiological responses to
hematoma, including inflammation [23].

Treatment options for stroke are currently very limited. The only approved phar-
macological therapy for ischemic stroke is the recombinant tissue plasminogen activator
(rtPA) [24,25]. Unfortunately, administration of rtPA after 4.5 h from the ischemic event is
contraindicated for the risk of hemorrhagic conversion, limiting the use of this drug [25].
Neurosurgical interventions are performed to remove blood in ICH [26] or to treat brain
aneurysm in SAH [27].

In light of the above considerations, there is an urgent need for the development of
new therapies able to prevent or reduce stroke neuronal injury.

2. Polyphenols: Definition and Classification

Polyphenols are molecules chemically characterized by the presence of at least one
aromatic ring with one or more hydroxyl groups attached [28,29]. Polyphenols are plant
secondary metabolites that are thought to help plants to survive and proliferate, protect-
ing them against microbial infections or herbivorous animals, or luring pollinators [30].
Polyphenols are found in many medicinal and edible plants which represent important
alimentary sources, including fruits, vegetables, beverages (such as tea and red wine) and
extra virgin oil [31].

This group of natural products includes a broad number of different compounds,
ranging from simple molecules with low molecular weight to complex and large derived
polyphenols [28,29]. According to their chemical structure, polyphenols can be classi-
fied into various classes including flavonoids, phenolic acids, stilbenes, curcuminoids,
lignans, ellagitannins and ellagic acid and coumarins [28,29]. Flavonoids are structurally
based on a skeleton of fifteen carbons, with two aromatic rings connected by a three-
carbon bridge. They are the most numerous of polyphenols and are widely distributed
through the plant kingdom [28,29]. The main subclasses of dietary flavonoids include
flavonols, flavan-3-ols, flavanones, flavones, isoflavones, anthocyanins, dihydrochalcones
and proanthocyanidins [28,29]. Among the non-flavonoid polyphenols, phenolic acids can
be further divided into hydroxycinnamic acids and hydroxybenzoic acids [28,29]. Figure 1
depicts the classification of polyphenols and describes some known food sources for each
molecular class.

Among the many micronutrients present in plants, polyphenols are the most numer-
ous and particularly endowed with beneficial properties [32]. For these reasons, polyphe-
nols have been widely investigated for the prevention and treatment of several pathological
conditions, including cancer, neurodegenerative disorders, metabolic and cardiovascular
diseases and stroke [33–35].
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3. Polyphenol Metabolism: Role of Gut Microbiota

Polyphenol bioavailability is generally poor, and only 1–10% of total polyphenol
intake is detectable in blood and urine samples [33]. Bioavailability is particularly low for
flavones, stilbenes and curcumin and is slightly higher for tea flavan-3-ols, flavanones in
citrus fruits, soy isoflavones and red wine anthocyanidins [36–38]. However, maximum
polyphenol concentration in plasma remains extremely low and rarely exceeds 1 µM,
even in individuals consuming a polyphenol-rich diet [36]. How polyphenols exert their
beneficial actions despite their poor bioavailability is not clear yet. A possible explanation
may rely on the fact that many polyphenol metabolites exhibit a biological activity [39].

Polyphenols are generally consumed with the diet or as supplements. A proportion of
ingested polyphenolic compounds can be absorbed in the small intestine and metabolized
by phase II enzymes. However, the major part of polyphenols reach the large intestine
where they are degraded by intestinal microbiota. A large body of evidence indicates a
fundamental role of colonic microorganisms in determining the bioavailability and activity
of polyphenols by transforming them into readily absorbable molecules or biologically
active metabolites [32,40,41]. The relationship between polyphenols and microbiota is
bidirectional and, if the intestinal bacteria modulate polyphenol metabolism, polyphenolic
compounds can in their turn influence the composition of the microbial population [32,42].

Different findings suggest the gut microbiota could modulate the activity of polyphe-
nols potentially active against stroke. For example, flavan-3-ols, phenolic compounds
characterized by a generally low bioavailability, are extensively metabolized by host and
gut microbiota enzymes. Phenyl-γ-valerolactones and phenylvaleric acids, the main micro-
bial metabolites of flavan-3-ols, might be responsible for the beneficial effects attributed
to their parent compounds, including neuroprotection [43]. Daidzein, an isoflavone en-
dowed with beneficial properties enriched in soy food, is metabolized by gut microbiota
to equol, which possesses higher antioxidant activity and affinity for estrogen receptors
than the parent compound. The neuroprotective flavone glycoside baicalin (baicalein
7-O-glucuronide) can only be absorbed after hydrolysis by gut microbiota β-glucuronidase
to the aglycone form baicalein [44]. Similarly, the neuroprotective anthocyanin cyanidin-
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3-O-glucoside displays a poor bioavailability, while its microbiota degradation products
are more easily absorbable [45]. Ellagic acid and ellagitannins are degraded by intestinal
microorganisms to form urolithins, molecules characterized by higher bioavailability and
better anti-inflammatory and antioxidant properties than their compounds of origin [46].

4. Polyphenols: Mechanisms of Action

The major mechanism of natural polyphenols in preventing stroke relies on their
protective action on the cardiovascular system [34,47,48].

Many polyphenols are endowed with anticoagulant and antiplatelet activities, poten-
tially contributing to the prevention of thrombus formation, the main cause of ischemic
stroke [49,50]. For example, several coumarin derivatives exert anticoagulant properties
by inhibiting the vitamin K epoxide reductase complex and are widely used as clinical
anticoagulant agents [51]. Among the polyphenols endowed with antiplatelet activity,
the isoflavones genistein and daidzein possess a marked and physiologically relevant
cyclooxygenase-1 (COX-1) inhibitory activity [52]. Other flavonoids with antiaggregant
effects, including the isoflavone tectorigenin, have been reported to act as antagonists on
thromboxane receptors [52,53].

Hypertension, a long-term medical condition affecting millions of individuals world-
wide [54], is an important risk factor in particular for ICH and SAH subtypes of stroke [55,56].
Dietary intake of flavonoids belonging to anthocyanin, flavone and flavan-3-ol subclasses
may contribute to the prevention of hypertension [57,58]. The underlying biological
mechanisms by which polyphenols regulate blood pressure include vasodilation through
the regulation of nitric oxide (NO) and endothelium-derived hyperpolarizing factor
(EDHF) [47,57,58].

Besides the well-documented beneficial effects of polyphenols on cardio- and cere-
brovascular systems, a growing number of studies in cellular and animal stroke models
indicates a direct protective effect of many polyphenols on the brain. Notably, several
polyphenols exert neuroprotective actions in preclinical models even when administered
after stroke induction, indicating that these molecules may be useful not only in increasing
resilience to brain damage, but also for the recovery of patients suffering from stroke.
Moreover, the fact that different polyphenolic compounds act on the same molecular path-
ways raises the possibility that they may promote synergistic effects at very low doses.
Therefore, the possible synergistic effect between polyphenols with each other or with
other compounds may provide the rationale to overcome the limitations caused by the
poor bioavailability of these molecules.

At the mechanistic level, polyphenols exert their neuroprotective benefits by acting on
several targets simultaneously. These compounds are generally strong antioxidants, work-
ing as reactive oxygen species (ROS) scavengers and metal chelators due to the presence of
hydroxyl groups and neutrophilic centers [33]. Furthermore, many polyphenols are able to
activate transcription factors involved in antioxidant-responsive element pathways, such as
erythroid 2-related factor 2 (Nrf2), thus promoting the expression of antioxidant enzymes
including superoxide dismutase (SOD), heme oxygenase-1 (HO-1), catalase, glutathione
reductase and glutathione-S-transferase [59].

Apoptosis is a process that can play a primary role in various pathologies, including
cardiovascular diseases and stroke [60]. Many polyphenols are able to interact with proteins
regulating apoptosis, including proapoptotic (Bax, Bad) and antiapoptotic (Bcl-2, Bcl-XL)
members of Bcl-2 family, p53, mitogen-activated protein kinases (MAPKs) and protein
kinase B (AKT) [60]. These compounds can act as pro- or antiapoptotic agents, depending
on their concentrations, cellular system and stage of pathological process [60].

The polyphenol-mediated neuroprotection not only involves a direct effect on neu-
rons, but also modulatory effects on different inflammation players in the brain, including
microglia and mast cells (MCs) [61,62]. The anti-inflammatory properties of polyphenols
are based on their capability to interfere with immune cell regulation, inflammatory gene
expression and the synthesis of inflammatory mediators [63]. For example, a number of
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polyphenols have been shown to modulate nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB), toll-like receptor (TLR) and arachidonic acid pathways, suppress-
ing the production of tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, IL-1 and
IL-8, as well as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and nitric
oxide (NO) [63].

Epigenetic modifications, including DNA methylation, histone modifications and
RNA-based mechanisms, modify gene expression without altering the DNA sequence.
Epigenetic modifications regulate important physiological processes in living organisms,
but they have also been associated with the pathogenesis of various diseases, including
stroke [64]. Various polyphenols can influence epigenetic mechanisms underlying stroke
pathogenesis and progression by modulating DNA methylation and histone modifications
through the interaction with histone deacetylases (HDACs) and DNA methyltransferases
(DNMTs) [65].

The hypothesized mechanisms of action of individual polyphenols active in models
of stroke are discussed in the following section.

5. Polyphenols and Stroke: Results from Preclinical Stroke Models

Isolated polyphenols active in preclinical stroke models are described below. In this
review, polyphenols have been clustered according to their chemical structure. The major
part of polyphenols exists in plants as glycosides, where different sugars are bonded to the
polyphenolic structure in different positions. For simplicity, we have classified polyphenols
according to the chemical structures of the aglycones.

5.1. Flavonoids
5.1.1. Flavonols

Flavonols, the most ubiquitous class of flavonoids in foods, display antioxidant and
anti-inflammatory properties [66]. They are present mainly in onions, kale, leeks and
broccoli, but also in red wine, tea and fruits.

Quercetin is a plant flavonol widely distributed in nature; common sources of quercetin
are red onions and kale. The molecule is a strong antioxidant and anti-inflammatory agent
and displays potential protective properties against hypertension and ischemic heart dis-
ease in both animal models and humans [67,68]. Notably, quercetin and its glycosides
isoquercetin (3-O-glucoside) and rutin (3-O-rutinoside) have been found to promote ben-
eficial effects in various models of brain ischemia [69–74], ICH [75,76] and SAH [77,78].
The health effect of quercetin could be attributed to its antioxidant, antiapoptotic and
anti-inflammatory actions, combined with a protective effect on BBB through the inhibition
of metalloproteinase (MMP) activity [70,72–77]. It has been proposed that the antioxidant
and antiapoptotic activity of the molecule may be mediated by the activation of Nrf2
factor [69].

Myricetin can be found in various medicinal herbs, vegetables (tomatoes) and fruits.
The molecule has been extensively studied for its multiple pharmacological activities,
including antiapoptotic, anti-inflammatory and antioxidant properties [79]. Studies have
revealed that myricetin acts against ischemic damage in both oxygen–glucose deprivation
(OGD) cellular model [80] and in rats subjected to transient middle cerebral artery occlusion
(tMCAO) [80,81]. Moreover, myricetin reduced endothelial permeability in human brain
microvascular endothelial cells (BMVECs) subjected to OGD, suggesting a beneficial role
in maintaining BBB function [82]. Among the mechanisms proposed to explain myricetin-
induced protection, there are the inhibition of p38 MAPK and the activation of AKT and
Nrf2 factors [80–82].

Kaempferol is present in a variety of plants and fruits including Carthamus tinctorius
(safflower), beans and broccoli [83]. A protective effect of kaempferol or its glycosides
(kaempferol-3-O-rutinoside and kaempferol-3-O-glucoside) has been shown in tMCAO
rats [84–86]. These studies suggest that postischemic treatment with kaempferol prevents
neuroinflammation by decreasing activation of NF-kB/RelA and STAT3 [85,86].
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Fisetin is a flavonol found in various fruits and vegetables, including apple, strawberry,
persimmon and onion. The molecule has been reported to exert several beneficial effects,
including neuroprotective activities [87]. For example, fisetin improved outcomes in the
rabbit small clot embolism (SCE) model [88] or in rats subjected to permanent middle
cerebral artery occlusion (pMCAO) [71] when administered the first minutes following
ischemia. Notably, treatment of tMCAO mice with fisetin even 3 h after ischemia reduced
infarct size and immune cell activation and infiltration [89].

Morin, a natural flavonol found in the branches of Morus alba (white mulberry) and
other Chinese medicine plants, exhibits a wide spectrum of antioxidant and antiapoptotic
activities [90]. Pre- and poststroke treatment with morin ameliorated brain damage, BBB
leakage and neurological deficits in tMCAO rats by reducing oxidative stress, apoptosis
and inflammation [91,92].

5.1.2. Flavan-3-ols

Flavan-3-ols are particularly abundant in tea plants, as well as in cocoas and chocolates.
These polyphenols are considered primarily responsible for tea-promoted health benefits
thanks to their cardioprotective and neuroprotective activities [93,94]. Flavan-3-ols are
effective also in protecting against ischemic insults, as suggested by studies on green-tea-
based supplements in preclinical models of stroke [95–97]. There are also numerous pieces
of evidence indicating an antistroke activity for individual flavan-3-ols.

Epigallocatechin-3-gallate (EGCG), the predominant and most studied flavan-3-ol in
green tea, induced preconditioning against OGD in a cellular model of brain ischemia [97].
EGCG has been shown to ameliorate cerebral damage and neurological deficits in different
rodent species subjected to brain ischemia [98–106]. Notably, coadministration of EGCG
with rtPA reduced the side effects of delayed rtPA treatment in a rat tMACO model, sug-
gesting a potential clinical use of EGCG as an adjuvant in stroke therapies [107]. Multiple
mechanisms have been proposed as mediating the protective effect of the molecule, includ-
ing suppression of MMP activation [98], antioxidant effects [100,103,104] (possibly through
activation of Nrf2 [104]), attenuation of inflammation [102] and reduction of apoptosis via
modulation of phosphoinositide 3-kinase (PI3K)/Akt signaling [103]. Moreover, recent
findings pointed out a beneficial effect of EGCG in cellular and animal models of SAH by
targeting hemoglobin (Hb)-induced mitochondrial dysfunction [108–110].

The chemical structure of (-)-epicatechin-3-gallate (ECG) is similar to that of EGCG.
The protective effect of ECG on cells subjected to OGD was consistent with EGCG [97].
Moreover, ECG protected human BMVECs against ischemic insult by promoting neovascu-
larization and modulating apoptosis and autophagy [111].

(-)-Epicatechin (EC) is particularly abundant in cocoa, dark chocolate and green tea.
The molecule exerted protective effects in cellular and animal models of brain ischemia,
namely OGD-injured neurons and rats subjected to MCAO [112,113]. Similarly, EC was
effective in ICH models, protecting cultured astrocytes against Hb-induced damage and
mice from intracerebral hemorrhage [114,115]. The EC protection could be partly mediated
by the activation of Nrf2 signaling [112–115].

5.1.3. Flavanones

Flavanones are present in citrus fruits and tomatoes and their juices. Compared
to other flavonoids, flavanones show a weaker radical scavenging activity. However,
these molecules can reduce oxidative stress by targeting the Nrf2/HO-1 axis [116]. The
antioxidant and anti-inflammatory properties of the flavanones suggest a potential use of
these molecules for the prevention or treatment of cardiovascular diseases [117]. Various
studies also support a role of flavanones against stroke.

Eriodictyol is a compound isolated from the Chinese herb Dracocephalum rupestre and
citrus fruits [118]. The treatment of mice with eriodictyol prevented neuronal death, re-
duced infarct area and neuroinflammation and improved neurological and memory deficits
induced by ischemic insult [119]. Eriodictyol-7-O-glucoside was effective in protecting
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astrocytes against OGD-induced ischemia and in reducing brain damage and neurological
deficits in rats subjected to tMCAO by targeting Nrf2 signaling [120].

Naringenin is a natural flavanone endowed with neuroprotective properties [121].
The molecule protected culture neurons against hypoxic injury by reducing oxidative
stress and mitochondrial dysfunction via activation of Nrf2 signaling [122,123]. Inter-
estingly, naringenin nanoparticles rescued human mesenchymal stem cells (MSCs) from
OGD-mediated stress, suggesting a potential use of the molecule as a strategy to improve
MSC-based strategy against stroke [124]. Naringenin also showed a neuroprotective profile
in an animal model of brain ischemia, reducing apoptosis, inflammation, oxidative stress
and neurological deficits through the modulation of claudin-5, MMP9, Nrf2, nucleotide
oligomerization domain-like receptor 2 (NOD2) and NF-κB [123,125,126]. Finally, diet
supplementation of naringin, the naringenin-7-O-glycoside, prevented cerebral thromboge-
nesis in pial microvessels of stroke-prone spontaneously hypertensive rats [127].

Hesperetin and its glycoside hesperidin (hesperetin-7-O-glycoside) can be isolated
from the rinds of some citrus species. Preclinical studies have shown the potential of these
molecules in the treatment of neurological and cardiovascular pathologies [128]. Pretreat-
ment with hesperetin ameliorated functional and histological outcomes in an MCAO rat
model [129]. Similarly, hesperidin nanoparticles reduced infarct volume, inflammatory
cytokines and oxidative stress in rats subjected to two-vessel occlusion (2VO, also called
bilateral common carotid artery occlusion (BCCAO)) [130]. As observed for naringenin,
hesperidin consumption through the diet reduced thrombotic tendency in stroke-prone
spontaneously hypertensive rats [127], raising the possibility that daily ingestion of these
flavonoids could promote an antithrombotic effect. Hesperidin could also be useful in
treating cerebral vasospasm, as recently suggested by its beneficial effects on vessel walls
and luminal diameters in an SAH rat model [131].

In recent years, there has been a growing interest in the neuroprotective agent pinocem-
brin, a flavanone particularly abundant in propolis [132]. Pinocembrin promoted protec-
tion against ischemic stress in neurons, BMVECs or in a cellular BBB model subjected to
OGD [133–135]. The compound was effective also in different animal models of brain
ischemia [134,136–138]. Notably, pinocembrin pretreatment extended the therapeutic time
window of rtPA treatment in a rat model of brain ischemia [135]. Possible mechanisms for
pinocembrin activity in preclinical models of brain ischemia include inhibition of MMPs,
BBB protection, autophagy modulation, inhibition of apoptosis and inflammatory cas-
cade [133–138]. Additionally, pinocembrin improved early outcomes in an ICH mouse
model by inhibiting toll-like receptor 4 (TLR4) and modulating microglia activation [139].

5.1.4. Flavones

Flavones are a class of polyphenols widely distributed in the plant kingdom, including
several vegetables and fruits that are components of the human diet [140]. Different
flavones have been explored for neuroprotection in preclinical models.

Luteolin is a flavone found in different vegetables, fruits and medicinal herbs includ-
ing celery, carrots and broccoli [141]. Luteolin and its glycosides orientin (8-C-glucoside)
and luteoside (7-O-glucoside) have been reported to exert beneficial effects in cellular
and animal models of neonatal hypoxic–ischemic brain injury (NHIBI) [142], brain is-
chemia [143–147] and ICH [148,149]. The molecule engages several mechanisms of action
that could play a role in its antistroke action, including antiapoptotic activity, BBB sta-
bilization by claudin-5 upregulation and MMP9 inhibition, reduction of oxidative stress
and autophagy enhancement through the activation of Nr2 pathway, MCs modulation,
reduction of inflammation via activation of PPARγ and downregulation of TLR4/NF-κB
pathway [144–149].

Apigenin is a natural flavone present in vegetables and fruits such as celery, parsley,
tea, onion and grapefruit [150]. Recent findings suggested that the molecule could also
alleviate brain damage and ameliorate poststroke neurological and cognitive deficits in
brain ischemia [151,152] and SAH [153] models. Apigenin protective effects seem to rely
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on multiple mechanisms involving the promotion of angiogenesis via caveolin-1/vascular
endothelial growth factor (VEGF) pathway and reduction of TLR4-mediated inflamma-
tion [151,153,154]. The effect of apigenin in alleviating poststroke cognitive impairment
was found to involve the epigenetic induction of brain-derived neurotrophic factor (BDNF)
through HDAC inhibition [152].

Nobiletin is a flavone extracted from the peel of citrus fruits. The molecule is endowed
with several beneficial properties, including neuroprotective activities [155]. Nobiletin also
exerted neuroprotective action in animal models of stroke, reducing cerebral apoptosis and
inflammation and improving learning and memory deficits following ischemia [156,157].

Tangeretin is a citrus flavone endowed with neuroprotective properties [158]. The
molecule was able to protect against OGD insult by preventing activation of proapoptotic
c-Jun N-terminal kinase (JNK) signaling [159]. Both nobiletin and tangeretin improved
the viability of the human hepatocellular carcinoma cells (HepG2) under hypoxic con-
ditions [160]. The two molecules have been identified as the active compounds in the
extract of Pericarpium aurantii, the immature fruit of Citrus aurantium, able to attenuate
brain pathology in tMCAO rats [160].

Baicalein and its glycoside baicalin are flavones extracted from Scutellaria baicalensis,
a traditional Chinese herb. Over the years, a growing body of evidence has pointed out
the neuroprotective and antistroke activities of these molecules [161,162]. Baicalin reduced
OGD-mediated neurotoxicity in the human neuroblastoma cell line SH-SY5Y [163]. Injected
after the onset of stroke, this molecule reduced infarct size and improved neurological
deficits in tMCAO rats [163,164]. Additionally, poststroke baicalin administration alle-
viated brain damage in a gerbil model of global cerebral ischemia by antioxidative and
antiapoptotic mechanisms [165].

Acacetin is a naturally occurring flavone known for its numerous pharmacological ac-
tivities, including neuroprotective and anti-inflammatory properties [166]. Recent findings
indicate that acacetin administration to mice subjected to tMCAO promoted neuroprotec-
tion, possibly via inhibition of microglial activation and Nod-like receptor family, pyrin
domain containing 3 (NLRP3) inflammatory signaling [167].

5.1.5. Isoflavones

Isoflavones are found primarily in legumes, including soybeans and chickpeas, but
also in fruits such as raisins and currants. In the human diet, the main sources of isoflavones
are soybeans and soy food, which contain mainly genistein and daidzein [168,169]. For their
chemical properties, isoflavones have been investigated as a therapy for cardiovascular
and cerebrovascular pathologies [168,169].

A variety of preclinical studies support a beneficial role of the isoflavone genistein
in protecting the brain against stroke (for complete reviews, see [170,171]). Briefly, the
molecule promoted neuroprotection in cellular cultures subjected to OGD [172,173], in
global and focal in vivo models of brain ischemia [174–187] and in animal models of
SAH [188,189]. Genistein engages several mechanisms of action, including reduction of
oxidative stress, inflammation and apoptosis through the promotion of antiapoptotic and
growth factors such as Bcl2 and Nrf2 [170,171].

The isoflavone daidzein reduced injury and/or enhanced functional recovery in rats
or mice subjected to MCAO when administered not only before but also after stroke
onset [190–192]. It has been suggested that the beneficial effect of the molecule could rely
on its capability to decrease oxygen free radical production [192] and to promote cholesterol
homeostasis, a crucial process in injury-induced synaptic remodeling [191]. The daidzein
glycoside puerarin (daidzein-8-C-glucoside), the main active compound of Pueraria lobata,
has been extensively investigated for its beneficial pharmacological properties [193]. The
compound was found to express protective effects in different cellular and animal models of
stroke, including NHIB [194], brain ischemia [195–200] and SAH [201]. Puerarin protection
may be mediated by its antiapoptotic and antioxidant activity through the modulation of
factors and signaling pathways such as SOD, PI3K/Akt, MAPK and NF-κB [193].
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Biochanin A, a natural isoflavonoid phytoestrogen derived from red clover or chickpea,
displays a broad range of pharmacological functions, including neuroprotective activi-
ties [202]. The molecule was effective in alleviating brain damage and symptoms of rodents
subjected to tMCAO [203,204] and SAH [205]. The activation of the protective factors
glutamate oxaloacetate transaminase (GOT), SOD and Nrf2 and the inhibition of the NF-kB
pathway may contribute to the neuroprotective effects of biochanin A [203–205].

5.1.6. Anthocyanins

Anthocyanins are strongly pigmented compounds present in brightly colored fruits
and vegetables. For their multiple pharmacological properties, anthocyanins have been
investigated for the prevention or treatment of different diseases, including stroke [206].

The cyanidin glycoside cyanidin-3-O-glucoside is one of the most common antho-
cyanins and accounts for >95% of the total anthocyanin in Chinese bayberry
(Myrica rubra) [207]. Recent findings pointed out a protective activity of cyanidin-3-O-
glucoside in a mouse model of brain ischemia through the modulation of TLR4, NF-κB,
Nrf2 and NLPR3 [208]. Similarly, cyanidin-3-O-glycosides protected PC12 cells against
OGD-induced injury and provided beneficial effects in rodent models of brain ischemia by
modulating antioxidant factors such as HO-1 [209–211]. Furthermore, cyanidin promoted
protection in pial microcirculation of a rat model of global ischemia [212]. The protective
effects on BBB integrity were mediated by arteriolar vasodilation via NO release and
reduction of ROS levels [212].

5.1.7. Dihydrochalcones

A few dihydrochalcones, a family of bicyclic flavonoids, have shown antioxidant
properties [213]. In particular, phloretin, a dihydrochalcone abundant in apples and apple-
derived products, displayed a neuroprotective effect by activating the Nrf2 pathway in rats
subjected to tMCAO [214].

5.1.8. Proanthocyanidins

Proanthocyanidins are oligomers or polymers of monomeric flavan-3-ols, particularly
catechin and epicatechin. They are present in several plants, including apples, pine barks,
cinnamon, blueberry and green and black tea. Proanthocyanidins are known for their
cardioprotective and neuroprotective properties [215] and have also been investigated in
stroke models.

For example, grape seed proanthocyanidin extract (GSPE) pretreatment alleviated
brain damage in an NHIBI model, possibly through its antiapoptotic activity [216].

Procyanidins, composed of (-)-epicatechin units, significantly attenuated BBB disrup-
tion and neurological deficits in rodent brain ischemia models [217,218]. The neuropro-
tection was paralleled by a reduction of apoptosis and oxidative stress and an increase
in angiogenesis [217,218]. Of note, apple polyphenols, which contains approximately
64% of procyanidins, prevented the formation of cerebral vasospasm in a rabbit model of
SAH [219], suggesting a possible role for procyanidins in the treatment of this disease.

5.2. Phenolic Acids
5.2.1. Hydroxycinnamic Acids

Hydroxycinnamic acids are a group of dietary phenolic compounds derivatives of
cinnamic acid found abundant in cereals, legumes, oilseeds, vegetables and various bever-
ages. They are present as four basic molecules, namely caffeic acid, ferulic acid, sinapic
acid and p-coumaric acid [220].

Caffeic acid is found in thyme, sage, spearmint, sunflower seeds, yerba mate, coffee,
wine, olive oil and various spices. Its derivative caffeic acid phenethyl ester (CAPE) is an
active component of propolis. Thanks to their antioxidant, anti-inflammatory, cardioprotec-
tive and neuroprotective activities, these compounds have been investigated as antistroke
agents [221,222]. CAPE administered either before or after ischemia reduced neonatal
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brain injury in an NHIBI rat model by inhibiting apoptosis and inflammation [223]. Pre-
or postischemia administration of caffeic acid and CAPE also exerted protective effects in
mature brains, improving outcomes in various in vivo models of brain ischemia [224–228].
The neuroprotection provided by these molecules was likely to be mediated through their
antioxidant and anti-inflammatory actions and the inhibition of 5-lipoxygenase [224–228].

Ferulic acid is commonly present in the leaves, fruits and seeds of many plants such
as rice, wheat, oats and giant fennel. The molecule is known for its multiple biological ac-
tivities, including antioxidant, anti-inflammatory and antithrombotic actions [229]. Ferulic
acid exerted protective effects in a cellular model of brain ischemia as well as in animal
models of global and focal cerebral ischemia [230–234]. The neuroprotective effect of ferulic
acid could be mediated by the anti-inflammatory and neurotrophic actions promoted by
the reduction of intercellular adhesion molecule-1 (ICAM-1) and increase in brain levels of
erythropoietin (EPO) and granulocyte colony-stimulating factor (G-CSF) [232–234].

Sinapic acid and its derivatives are orally available compounds found in spices, citrus
and berry fruits, vegetables and cereals [235]. Postischemia sinapic acid treatment reduced
neuronal damage and memory deficits in the four-vessel occlusion (4VO) rat model of
global cerebral ischemia [236].

The main sources of p-coumaric acid are tea, coffee, wine, beer and various vegetables
and fruits. Many studies have shown the beneficial properties of p-coumaric acid, including
neuroprotective and anti-inflammatory effects [237]. The compound promoted neuropro-
tection in animal models of focal [238] and global brain ischemia [239] by hampering ROS
production and apoptosis.

Chlorogenic acid, a caffeic acid–quinate conjugate, is a major component of coffee, tea
and several fruits or vegetables. Studies on chlorogenic acid suggest that it may promote
neuroprotection against stroke through multiple effects [240]. Chlorogenic acid (and
its metabolite dihydrocaffeic acid) administered either before or after ischemia reduced
brain infarct volume, BBB damage and behavioral deficits in tMCAO rats by blunting
MMP activation and increasing brain levels of EPO, HIF-1a and nerve growth factor
(NGF) [240–242]. Moreover, the compound promoted neuroprotection in rats subjected to
2VO by regulating the Nrf2 pathway [243]. Of note, the combination of chlorogenic acid
with rtPA was effective in reducing behavioral deficits in the rabbit SCE model, extending
the therapeutic time window for rtPA administration [244].

Rosmarinic acid is a natural antioxidant hydroxycinnamate commonly found in
Lamiaceae and Boraginaceae plant families, including rosemary, sage, basil, thyme and
peppermint [245]. The compound protected SH-SY5Y cells against OGD-induced cell
death [246,247]. Pre- or postischemia administration of rosmarinic acid alleviated brain
injury and memory impairment in MCAO animal models through the modulation of
Nrf2, HO-1 and synaptophysin [248,249]. Moreover, rosmarinic acid protected diabetic
rats against ischemic assault by attenuating BBB breakdown even when administered
5 h after the stroke onset [247]. The protective effects of the molecule may involve an
anti-inflammatory action through the modulation of high-mobility group box1 (HMGB1)
and the NF-κB signaling pathway [247].

5.2.2. Hydroxybenzoic Acids

Recent findings suggest that gallic acid, a benzoic acid found in tea leaves and red
wine, could play a protective role against stroke [250]. Prestroke treatment with gallic acid
promoted neuroprotection in cellular and animal models of cerebral ischemia [251,252].
Interestingly, administration of the molecule before stroke onset mitigated brain injury
and behavioral deficits in a rat model of global brain ischemia exposed to particulate mat-
ter [253]. Furthermore, administration of gallic acid and its derivatives reduced depressive
symptoms and oxidative stress in a mouse model of poststroke depression [254].
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5.3. Stilbenes

Stilbenes are part of a vast group of natural defense compounds occurring in many
plants. These molecules are endowed with a wide range of beneficial activities, including
the capability to protect against oxidative stress [255].

Among stilbenes, resveratrol is by far the most widely studied for its beneficial prop-
erties [256,257]. Pre- or poststroke treatment with resveratrol or its glucoside derivative
polydatin showed beneficial effects in a large number of models of stroke (for complete
reviews, see [258,259]). Recent examples of stroke models that benefited from the ac-
tions of resveratrol include NHIBI models [260–262], cellular cultures challenged with
OGD [263–265], rodents subjected to MCAO [264,266–269] and ICH and SAH rodent mod-
els [270–274]. The potential mechanisms of action underlying the effects of resveratrol
against stroke are numerous since the molecule interacts with a wide range of enzymes
and receptors and promotes the expression of several factors devoted to enhancing cel-
lular stress resistance and reducing apoptosis [259]. It has been proposed that beneficial
properties of resveratrol could be mediated by its modulatory action on sirtuins and AMP-
activated kinase (AMPK), a serine/threonine kinase known to be a key metabolic and
stress sensor/effector [65,264,266,267].

5.4. Curcuminoids

Curcuminoids consist of curcumin and its derivatives, molecules found in the rhi-
zome of turmeric (Curcuma longa). Curcumin possesses several beneficial properties that
could make it a suitable candidate for stroke prevention or treatment, including anti-
inflammatory, antilipemic, antiaggregant, neuroprotective and epigenetic modulatory
activities [275]. Pre- and posthypoxia treatment with curcumin was found to effectively
promote neuroprotection in rat neurons challenged with OGD [276], in neonatal mice
subjected to hypoxic–ischemic brain injury [277], in MCAO rodents [278–284] and in
stroke-prone spontaneously hypertensive rats [285].

5.5. Lignans

Lignans are a large group of polyphenolic compounds present in good quantity in
various plants, including flax and sesame seeds, and whole bran cereals [286]. Some dietary
lignans have been suggested to have potential in the prevention of cardiovascular disease
and, possibly, stroke [287,288].

For example, administration of pinoresinol, a lignan found in sesame feed, Brassica
vegetables and olive oil, prevented pial circulation damage induced by 2VO in rats by
reducing oxidative stress [289].

5.6. Ellagitannins and Ellagic Acid

Ellagitannins and ellagic acid are polyphenols present in different fruits, including
pomegranates, strawberries, black raspberries, raspberries, walnuts and almonds. In vivo,
ellagitannins are hydrolyzed to ellagic acids which in turn are metabolized by intestinal
microbiota to different types of urolithins [46]. Some molecules of this polyphenol class
show neuroprotective properties against stroke.

Ellagic acid protected against ischemic injury in both cellular and in vivo models of
brain ischemia by regulating Bcl-2/Bax expression [290].

Among urolithins, urolithin A has been shown to mitigate OGD-induced damage in
N2a neuroblastoma cells and primary neurons and to reduce ischemic brain injury in mice
by inhibiting endoplasmic reticulum (ER) stress [291].

Punicalagin, a natural ellagitannin found at high concentration in pomegranates,
reduced infarct volume and neurological deficits in rats subjected to tMCAO through its
antioxidant, anti-inflammatory and antiapoptotic properties [292,293].
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5.7. Coumarins

Coumarin and coumarins, its derivatives, can be found in many plants, including
tonka beans (where they are present in high concentration), Cinnamon cassia and cherry
blossom of the genus Prunus [294]. The use of coumarins in the prevention of ischemic
stroke is based on the anticoagulant or antiplatelet effects exhibited by many of these
molecules [295–298]. Recent findings indicate that coumarins, besides their cardiovascular
effects, may promote neuroprotection in preclinical models of stroke.

For example, auraptene, a citrus coumarin endowed with anti-inflammatory prop-
erties [299], acts as neuroprotective agent in the 2VO mouse model of brain ischemia by
inhibiting inflammation [300,301].

Umbelliferone, a natural coumarin derivative with antioxidant and scavenging prop-
erties [302], ameliorated neurological outcomes and brain injury in tMCAO rats partly
through the inhibition of thioredoxin-interactive protein (TXNIP)/NLRP3 inflammasome
and activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) [303].

Esculetin, another natural coumarin compound studied for its antioxidant and anti-
inflammatory activities [304], promoted neuroprotection in mice subjected to tMCAO via
upregulation of Bcl-2 and downregulation of Bax, two proteins involved in apoptosis [305].

Imperatorin is a naturally occurring coumarin that over the years has gained increasing
interest for its health properties [306]. The compound exerted a protective activity in the SH-
SY5Y neuroblastoma cell line subjected to OGD and in a rat model of brain ischemia [307].
The beneficial effect of imperatorin was associated with a reduction of apoptosis and
upregulation of BDNF [307].

Scopoletin, a coumarin compound used in traditional Chinese medicine, has been
studied for its antioxidant and anti-inflammatory properties [308]. A recent study pointed
out a neuroprotective effect of scopoletin in a rat model of brain ischemia [309].

Osthole is a natural coumarin derivative isolated in several medicinal plants [310].
Various studies support the neuroprotective abilities of osthole in in vivo models of brain
ischemia by hampering apoptosis [311–313].

Similar to other coumarins, daphnetin, a natural compound extracted from medicinal
herbs, has been reported to show multiple beneficial properties [302]. Daphnetin provided
neuroprotection in animal models of cerebral ischemia in both immature and adult brains
by reducing inflammatory cytokine production and neuronal apoptosis [314,315].

The polyphenols active in preclinical models of stroke, whether the treatment was
started before, during or after stroke induction (pre, concomitant or post, respectively),
effective polyphenol concentration/dose and length of the treatment, and polyphenol
major effects are reported in Table 1.
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Table 1. Polyphenols active in preclinical stroke models.

Polyphenol Class Polyphenol Type of Stroke Experimental Model Effective Dose and Treatment Findings References

Flavonols Quercetin Ischemic Stroke tMCAO rat model Post; 20 mg/kg; daily for 3 days
Pre; 25 mg/kg; daily for 21 days

↓brain damage, oxidative stress,
apoptosis, neurological deficits [69,70]

Ischemic Stroke pMCAO rat model Post; 30 mg/kg; single administration ↓brain damage [71]

Ischemic Stroke Photothrombotic rat
model

Post; 25 µmol/kg; every 12 h for 3 days
Post; 50 mg/kg; every 12 h for 3 days ↓BBB damage, neurological deficits [72,73]

Ischemic Stroke 2VO mouse model Pre; 50 mg/kg; 30 min before and immediately
after stroke, then daily for 2 days ↓ brain damage, BBB damage [74]

ICH Collagenase infusion
rat model

Post; 30 mg/kg; single administration
Post; 50 mg/kg; single administration

↓brain damage, oxidative stress,
apoptosis, inflammation,

neurological deficits
[75,76]

SAH Blood infusion rat
model

Post; 10 mg/kg; every 8 h for 2 days
Post; 50 mg/kg; 30 min, 12 h and 24 h after SAH

↓brain damage, oxidative stress,
vasospasm, apoptosis,
neurological deficits

[77,78]

Myricetin Ischemic Stroke OGD SH-SY5Y cells Pre; 0.1 nM ↓toxicity [80]

Ischemic Stroke OGD human
BMVECs Pre; 30 µM ↓oxidative stress, inflammation,

endothelial permeability [82]

Ischemic Stroke tMCAO rat model
Pre; 20 mg/kg; 2 h before and daily for 2 days

after stroke
Pre; 25 mg/kg; daily for 7 days

↓brain damage, oxidative stress,
apoptosis, inflammation,

neurological deficits
[80,81]

Kaempferol Ischemic Stroke tMCAO rat model

Pre; 100 and 200 µM; 30 min before and
immediately after reperfusion

Post; 10 and 7.5 mg/kg; single administration
Post; 100 mg/kg; daily for 7 days

↓brain damage, oxidative stress,
apoptosis, inflammation, BBB damage,

neurological deficits
[84–86]

Fisetin Ischemic Stroke tMCAO mouse
model

Pre; 50 mg/kg; single administration
Post; 50 mg/kg; single administration ↓brain damage, inflammation [89]

Ischemic Stroke pMCAO rat model Post; 30 mg/kg; single administration ↓brain damage [71]

Ischemic Stroke SCE rabbit model Post; 50 mg/kg; single administration ↓ neurological deficits [88]
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Table 1. Cont.

Polyphenol Class Polyphenol Type of Stroke Experimental Model Effective Dose and Treatment Findings References

Morin Ischemic Stroke tMCAO rat model Post; 30 mg/kg; daily for 7 days
Post; 30 mg/kg; single administration

↓brain damage, BBB damage,
inflammation, oxidative stress,
apoptosis, neurological deficits

[91,92]

Flavan-3-ols EGCG Ischemic Stroke OGD PC12 cells Pre; 2 µM ↓toxicity, apoptosis [97]

Ischemic Stroke tMCAO mouse
model Post; 50 mg/kg; single administration ↓brain damage, MPPs [98]

Ischemic Stroke tMCAO rat model

Post; 50 mg/kg; single administration
Post; 50 mg/kg; single administration

Post; 50 mg/kg; daily for 3 days
Post; 50 mg/kg; single administration
Post; 20 mg/kg; single administration

Pre; 40 mg/kg; daily for 3 days

↓brain damage, oxidative stress,
apoptosis, inflammation, neurological

deficits
[99–104]

Ischemic Stroke 2VO gerbil model
Post; 25 and 30 mg/kg; single administration

Pre; 50 mg/kg; 30 min before and immediately
after stroke

↓brain damage, oxidative stress [105,106]

Ischemic Stroke tMCAO rat model
treated with rtPA Post; 20 mg/kg; single administration ↓brain damage, BBB damage,

neurological deficits [107]

SAH Hb PC12 cells
Pre; 1–50 µM
Pre; 1–50 µM

Pre, 50 µM
↓cell proliferation [108–110]

SAH Hb mouse model Pre; 50 mg/kg; daily for 14 days
Pre; 50 mg/kg; daily for 14 days

↓brain damage, oxidative stress,
mitochondrial dysfunction, apoptosis,

neurological deficits
[109,110]

ECG Ischemic Stroke OGD PC12 cells Pre; 2 µM ↓toxicity, apoptosis [97]

Ischemic Stroke OGD human
BMVECs Pre; 2 µM ↓oxidative stress, apoptosis [111]

EC Ischemic Stroke OGD mouse neurons Pre; 100 µM ↓toxicity, oxidative stress [113]

Ischemic Stroke tMCAO mouse
model

Pre; 30 mg/kg; single administration
Post; 30 mg/kg; single administration ↓brain damage, neurological deficits [112]
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Table 1. Cont.

Polyphenol Class Polyphenol Type of Stroke Experimental Model Effective Dose and Treatment Findings References

Ischemic Stroke pMCAO mouse
model Pre; 15 mg/kg; single administration ↓brain damage, inflammation [113]

ICH Hb mouse astrocytes Pre; 100 µM ↓oxidative stress [114]

ICH Collagenase infusion
mouse model

Post; 15 mg/kg; 3 h after ICH and daily for
3 days

↓brain damage, oxidative stress,
neurological deficits [115]

ICH Blood infusion
mouse model

Post; 15 mg/kg; 3 h after ICH and daily for
3 days

↓brain damage, oxidative stress,
neurological deficits [115]

ICH Thrombin infusion
mouse model

Post; 15 mg/kg; 3 h after ICH and daily for
3 days

↓brain damage, oxidative stress,
neurological deficits [115]

Flavanones Eriodictyol Ischemic Stroke OGD rat astrocytes Pre; 20–80 µM ↓toxicity [120]

Ischemic Stroke tMCAO rat model Pre; 30 mg/kg; daily for 5 days ↓brain damage, neurological deficits [120]

Ischemic Stroke pMCAO mouse
model

Pre; 4 mg/kg; 30 min before, 2 h and daily for
5 days after stroke

↓brain damage, inflammation,
neurological and memory deficits [119]

Naringenin Ischemic Stroke OGD rat neurons Pre; 80 µM
Post; 80 µM

↓toxicity, oxidative stress, apoptosis,
mitochondrial dysfunction [122,123]

Ischemic Stroke OGD human MSCs Post; 40 and 80 µM ↓ inflammation [124]

Ischemic Stroke pMACO rat model Pre; 100 mg/kg; daily for 4 days ↓brain damage, inflammation,
neurological deficits [126]

Ischemic Stroke tMCAO rat model Post; 80 µM; single administration
Pre; 50 mg/kg; daily for 21 days

↓brain damage, oxidative stress,
apoptosis, inflammation, neurological

deficits
[123,125]

Ischemic Stroke
Stroke-prone

spontaneously
hypertensive rats

9.0 and 17.7 mg/kg; daily for 4 weeks ↓blood pressure, thrombotic tendency,
oxidative stress [127]

Hesperetin Ischemic Stroke tMCAO rat model Pre; 50 mg/kg; daily for 15 days
↓brain damage, oxidative stress,
inflammation, neurological and

behavioral deficits
[129]

Ischemic Stroke 2VO rat model Pre; 20 mg/kg; daily for 14 days ↓brain damage, oxidative stress,
inflammation [130]
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Table 1. Cont.

Polyphenol Class Polyphenol Type of Stroke Experimental Model Effective Dose and Treatment Findings References

Ischemic Stroke
Stroke-prone

spontaneously
hypertensive rats

14.5 (hesperidin), 16.2 and 31.6 (glucosyl
hesperidin) mg/kg; daily for 4 weeks

↓blood pressure, thrombotic tendency,
oxidative stress [127]

SAH Blood infusion rat
model Post; 50 and 100 mg/kg; daily for 2 days ↓vessel wall thickness, ↑vessel luminal

diameter [131]

Pinocembrin Ischemic Stroke OGD rat neurons Post; 0.1, 1 and 10 µM ↓toxicity, oxidative stress, apoptosis [133]

Ischemic Stroke OGD rat BMVECs Post; 1 and 10 µM ↓toxicity [134]

Ischemic Stroke OGD human BMECs
and astrocytes Post; 1 µM ↓endothelial permeability [135]

Ischemic Stroke tMCAO rat model Post; 3–30 mg/kg; single administration
Post; 1–10 mg/kg; single administration

↓brain damage, oxidative stress,
apoptosis, neurological deficits [133,136]

Ischemic Stroke pMCAO rat model Post; 3, 10 and 30 mg/kg; single administration ↓brain damage, apoptosis,
inflammation, neurological deficits [137]

Ischemic Stroke 2VO rat model Pre; 10 mg/kg; daily for 7 days ↓brain damage, oxidative stress,
apoptosis, inflammation [138]

Ischemic Stroke 4VO rat model Post; 1–10 mg/kg; single administration ↓brain and BBB damage, neurological
deficits [134]

Ischemic Stroke
Thromboembolic rat
model treated with

rtPA

Post; 10 mg/kg; single administration or daily
for 7 days

↓brain and BBB damage, neurological
deficits [135]

ICH Collagenase infusion
mouse model

Post; 5 mg/kg; 2 h after ICH and every 12 h for
3 days

↓brain damage, inflammation,
neurological deficits [139]

Flavones Luteolin NHIB OGD rat neurons Pre; 10–30 µM ↓toxicity, oxidative stress, apoptosis [142]

Ischemic Stroke OGD mouse neurons Post; 0.1–1 µM ↓toxicity [143]

Ischemic Stroke OGD mouse MCs Pre; 10 and 100 nM ↓MC degranulation [143]

Ischemic Stroke OGD human
BMVECs Post; 90 µM ↓toxicity, apoptosis [144]
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Table 1. Cont.

Polyphenol Class Polyphenol Type of Stroke Experimental Model Effective Dose and Treatment Findings References

Ischemic Stroke tMCAO rat model Post; 20–80 mg/kg; 0 and 12 h after stroke ↓brain damage, inflammation,
neurological deficits [145]

Ischemic Stroke pMCAO rat model

Post; 10 and 25 mg/kg; single administration
Post; 10 and 25 mg/kg; single administration

Post; 10 and 25 mg/kg; 0 h and daily for 3 days
after stroke

↓brain damage, oxidative stress,
apoptosis, neurological deficits

[144,146,
147]

ICH Hb rat neurons Post; 10 µM ↓toxicity [148]

ICH Hb rat neurons and
microglia Post; 10 and 20 µM ↓microglia activation and induced

neurotoxicity [149]

ICH Blood infusion rat
model

Post; 10 and 20 mg/kg; single administration
Post; 10 and 20 mg/kg; 30 min, 12 h and 24 h

after ICH

↓brain damage, inflammation,
neurological and memory deficits [148,149]

Apigenin Ischemic Stroke OGD human
BMVECs Pre; 5 µM ↓toxicity, apoptosis, autophagy [151]

Ischemic Stroke tMCAO rat model Post; 25 mg/kg; daily for 7 or 14 days
Post; 20 and 40 mg/kg; daily for 28 days

↓brain damage, neurological and
memory deficits [151,152]

SAH Endovascular
perforation rat model Post; 20 mg/kg; single administration ↓brain and BBB damage, inflammation,

neurological deficits [153]

Nobiletin Ischemic Stroke Hypoxia HepG2 cells Post; 100 µg/mL ↓toxicity [160]

Ischemic Stroke tMCAO rat model Post; 15 mg/kg; 0 and 1 h after stroke ↓brain damage, apoptosis,
inflammation, neurological deficits [157,160]

Ischemic Stroke 2VO mouse model Pre; 50 mg/kg; daily for 7 days before and 7 days
after stroke ↓brain damage, memory deficits [156]

Tangeretin Ischemic Stroke OGD human
BMVECs Post; 2.5, 5 and 10 µM ↓toxicity, oxidative stress, apoptosis [159]

Ischemic Stroke Hypoxia HepG2 cells Post; 10 and 100 µg/mL ↓toxicity [160]

Baicalein Ischemic Stroke OGD SH-SY5Y cells Pre; 0.1, 1 and 10 µM ↓toxicity [163]

Ischemic Stroke tMCAO rat model
Post; 25 and 50 mg/kg; single administration

Post; 50, 100 and 200 mg/kg; single
administration

↓brain damage, oxidative stress,
apoptosis, neurological deficits [163,164]
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Table 1. Cont.

Polyphenol Class Polyphenol Type of Stroke Experimental Model Effective Dose and Treatment Findings References

Ischemic Stroke 2VO gerbil model Post; 100 and 200 mg/kg; single administration ↓brain damage, oxidative stress,
apoptosis [165]

Acacetin Ischemic Stroke tMCAO mouse
model Post; 25 mg/kg; single administration ↓brain damage, inflammation,

neurological deficits [167]

Isoflavone Genistein Ischemic Stroke OGD rat neurons Concomitant, 1 mM ↓toxicity, apoptosis [172]

Ischemic Stroke OGD PC12 cells Concomitant, 30 µM ↓toxicity, apoptosis [173]

Ischemic Stroke tMCAO mouse and
rat models

Pre; 5 and 10 mg/kg; daily for 14 days
Pre; 10 mg/kg; daily for 14 days

Pre; 500 mg/kg (genistein), 250 mg/kg (equol);
daily for 14 days

Pre; 500 mg/kg; daily for 28 days before and
1 day after stroke

Post; 10 mg/kg; daily for 3 days
Post; 1 and 2 mg/kg; single administration

Pre; 10 mg/kg; daily for 14 days

↓brain damage, oxidative stress,
apoptosis, neurological deficits

↑circulatory function
[174–180]

Ischemic Stroke pMCAO rat model Post; 10 mg/kg; single administration ↓brain damage, oxidative stress,
apoptosis, neurological deficits [181]

Ischemic Stroke Photothrombotic rat
model

Pre; 16 mg/kg; every 6 h from 24 h before to 24 h
after stroke ↓brain and BBB damage [182]

Ischemic Stroke
2VO mouse model

treated with
streptozotocin

Pre; 5 and 10 mg/kg; daily for 14 days before and
1 day after stroke

↓brain damage, oxidative stress,
apoptosis, neurological deficits [183]

Ischemic Stroke 4VO rat model

Pre; 0.1 mg/kg; daily for 7 days before and
7 days after stroke

Post; 1 mg/kg; single administration
Pre; 15 mg/kg; 30 min before and 24 h after

stroke

↓brain damage, oxidative stress,
apoptosis, neurological deficits [184–186]

Ischemic Stroke 2VO gerbil model Post; 3 and 10 mg/kg; single administration ↓brain damage, oxidative stress,
behavioral and memory deficits [187]

SAH Blood infusion rat
and dog models

Post; 10 µM; single administration
Post; 14.0 and 17.2 µM; single administration ↓vasospasm [188,189]



Nutrients 2021, 13, 85 19 of 40

Table 1. Cont.

Polyphenol Class Polyphenol Type of Stroke Experimental Model Effective Dose and Treatment Findings References

Daidzein NHIBI OD rat NSCs Pre; 20–100 µM ↓toxicity, apoptosis [194]

Ischemic Stroke OGD rat astrocytes Concomitant, 12 and 48 µg/mL ↓toxicity, apoptosis [195]

Ischemic Stroke tMCAO mouse and
rat models

Post; 10 mg/kg; daily for 7 days, then every other
day up to 1 month

Pre; 50 and 100 mg/kg; daily for 7 days
Pre; 36 and 54 mg/kg; daily for 5 days

Pre; 50 and 100 mg/kg; single administration
Post; 50 and 100 mg/kg; daily for 14 days

↑cholesterol homeostasis, ↓brain
damage, inflammation, neurological,

motor and memory deficits

[191,196–
199]

Ischemic Stroke pMCAO mouse and
rat models

Post; 0.10 mg/kg; daily for 14 days
Post; 10 mg/kg; single administration

↓brain damage, oxidative stress,
apoptosis, behavioral deficits [190,192]

Ischemic Stroke
Stroke-prone

spontaneously
hypertensive rats

100 mg/kg; daily for 14 days ↓arterial dysfunction, blood pressure [200]

SAH
Endovascular

perforation mouse
model

Pre; 100 mg/kg; single administration ↓brain and BBB damage, oxidative
stress, apoptosis, neurological deficits [201]

Biochanin
A Ischemic Stroke tMCAO mouse and

rat models
Pre; 5 and 10 mg/kg; daily for 4 weeks

Pre; 10, 20 and 40 mg/kg; daily for 14 days
↓brain damage, oxidative stress,

neurological deficits [203,204]

SAH Blood infusion rat
model Post; 20 and 40 mg/kg; single administration

↓brain damage, apoptosis,
inflammation, neurological and

memory deficits
[205]

Anthocyanins Cyanidin Ischemic Stroke OGD PC12 cells Concomitant, 10 µg/mL ↓toxicity [209]

Ischemic Stroke tMCAO mouse
model

Post; 150 and 300 mg/kg; daily for 7 days
Post; 10 mg/kg; single administration ↓brain damage, oxidative stress [208,209]

Ischemic Stroke 2VO rat model

Pre; 10 mg/kg; 1 h before stroke/post; 10 mg/kg;
0.5 h after reperfusion

Pre; 10 and 20 mg/kg; 10 min before stroke and
during reperfusion

↓brain damage, oxidative stress,
microvascular permeability [210,212]

Ischemic Stroke pMCAO mouse
model

Pre; 2 and 5 mg/kg; 1 h before stroke/post;
2 mg/kg; 3 h after stroke

↓brain damage, oxidative stress,
neurological deficits [211]
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Table 1. Cont.

Polyphenol Class Polyphenol Type of Stroke Experimental Model Effective Dose and Treatment Findings References

Phloretin Ischemic Stroke tMCAO rat model Pre; 40 and 80 mg/kg; daily for 14 days ↓brain damage, oxidative stress,
neurological deficits [214]

Dihydrochalcones GSPE NHIBI Carotid ligation
mouse model Pre; 30 mg/kg; single administration ↓brain damage, apoptosis, neurological

deficits [216]

Proanthocyanidins Procyanidins Ischemic Stroke tMCAO mouse, rat
models

Post; 20 and 40 mg/kg; daily for 2–14 days
Pre; 50 mg/kg; daily for 14 days

↓brain and BBB damage, oxidative
stress, apoptosis, neurological deficits [217,218]

SAH Blood infusion rabbit
model Post; 10 and 50 mg/kg; daily for 3 days ↓vasospasm [219]

Hydroxycinnamic
acids

Caffeic
acid NHIBI Carotid ligation

mouse model

Pre; 40 mg/kg; 30 min before and daily for
7 days after stroke/post; 40 mg/kg; single

administration

↓brain damage, apoptosis,
inflammation [223]

Ischemic Stroke tMCAO rat model
Pre; 50 mg/kg; 30 min before, 0 h, 1 h and 2 h

after stroke, then every 12 h for 4 days
Pre; 0.1–10 µg/kg; single administration

↓brain damage, inflammation,
neurological deficits [224,227]

Ischemic Stroke pMCAO rabbit
model Pre; 10 µmol/kg; daily for 7 days ↓brain damage, oxidative stress,

neurological deficits [226]

Ischemic Stroke Photothrombotic
mouse model Post; 2 and 5 mg/kg; 1 and 6 h after stroke ↓brain damage, inflammation [225]

Ischemic Stroke 2VO rat model with
hypotension Post; 10, 30 and 50 mg/kg; single administration ↓brain damage, oxidative stress,

memory deficits [228]

Ferulic
acid Ischemic Stroke OGD PC12 cells Pre; 80 and 100 µM ↓toxicity, oxidative stress [230]

Ischemic Stroke tMCAO rat model

Post; 28, 56 and 112 mg/kg; daily for 5 days
Post; 100 and 200 mg/kg; daily for 7 days

Concomitant; 100 mg/kg; single administration
Concomitant, 80 and 100 mg/kg/post;

100 mg/kg; single administrations

↓brain damage, oxidative stress,
apoptosis, inflammation, neurological

and memory deficits
[231–234]

Ischemic Stroke 4VO rat model Pre; 20 and 25 mg/kg; daily 4 days before,
immediately after stroke and during reperfusion

↓brain damage, oxidative stress,
neurological and memory deficits [230]

Sinapic
acid Ischemic Stroke 4VO rat model Post; 3 and 10 mg/kg; 0 and 90 min after stroke

or daily for 14 days ↓brain damage, memory deficits [236]
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p-Coumaric
acid Ischemic Stroke pMCAO rat model Post; 100 mg/kg; single administration ↓brain damage, oxidative stress,

apoptosis, neurological deficits [238]

Ischemic Stroke 2VO mouse model Pre; 100 mg/kg; daily for 14 days ↓brain damage, oxidative stress [239]

Chlorogenic
acid Ischemic Stroke tMCAO rat model

Post; 30 mg/kg; 0 and 2 h after stroke
Post; 30 mg/kg; 0 and 2 h after stroke

Pre; 15, 30 and 60 mg/kg; daily for 7 days

↓brain and BBB damage, oxidative
stress, MMPs level, behavioral deficits [240–242]

Ischemic Stroke 2VO rat model Post, 100 and 500 mg/kg ↓brain damage, oxidative stress,
apoptosis, MMPs level, memory deficits [243]

Ischemic Stroke SCE rabbit model
treated with rtPA Post; 50 mg/kg; single administration ↓behavioral deficits [244]

Rosmarinic
acid Ischemic Stroke OGD SH-SY5Y cells Pre; 1 and 10 µM

Post; 3–81 µM ↓toxicity, apoptosis [246,247]

Ischemic Stroke tMCAO mouse
model Post; 20 and 40 mg/kg; single administration ↓brain damage, oxidative stress,

apoptosis [248]

Ischemic Stroke
tMCAO rat model

treated with
streptozotocin

Post; 50 mg/kg; single administration ↓brain and BBB damage, neurological
deficits [247]

Ischemic Stroke pMCAO mouse
model

Pre; 1 and 20 mg/kg; 30 min before, 1 h after
stroke and then daily for 5 days

↓brain damage, inflammation,
neurological and memory deficits [249]

Hydroxybenzoicacids Gallic acid Ischemic Stroke OGD rat neurons Concomitant, 50 µM ↓toxicity [251]

Ischemic Stroke tMCAO rat model Pre; 50 mg/kg; daily for 7 days
Pre; 50 mg/kg; single administration

↓brain damage, oxidative stress,
apoptosis, inflammation, mitochondrial

dysfunction, neurological deficits
[251,252]

Ischemic Stroke
4VO rat model

exposed to
particulate matter

Pre; 100 mg/kg; daily for 10 days ↓BBB damage, oxidative stress,
behavioral deficits [253]

Ischemic Stroke 2VO mouse model Post; 25 and 50 mg/kg; daily for 7 days ↓oxidative stress, depressive symptoms [254]
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Stilbenes Resveratrol NHIBI
Carotid ligation
mouse and rat

models

Post; 100 mg/kg; 0, 8 and 18 h after stroke
Pre; 0.2 and 20 mg/kg; single administration/post;

20 mg/kg; single administration
Pre; 20 mg/kg; single administration

↓brain damage, apoptosis,
inflammation, behavioral deficits [260–262]

Ischemic Stroke OGD mouse and rat
neurons, PC12 cells

Pre, post, pre and post; 5–25 µM
Post; 30 µM

Pre and post, post; 10–80 µM
Pre; 40 µM

↓toxicity, oxidative stress, apoptosis [263–265,268]

Ischemic Stroke tMCAO mouse, rat
models

Post; 6.8 mg/kg; single administration
Post; 6.8 mg/kg; single administration
Pre; 20 and 30 mg/kg; daily for 5 days

Pre; 30 mg/kg; daily for 7 days and 30 min before
stroke

Post; 1.9 mg/kg; single administration

↓brain and BBB damage, apoptosis,
neurological deficits [264,266–269]

ICH Collagenase infusion
mouse model Post; 10 mg/kg; single administration ↓brain damage, apoptosis,

inflammation, neurological deficits [270]

SAH Blood infusion rat
model

Post; 10 mg/kg; daily for 3 days
Post; 60 mg/kg; 2 and 24 h after SAH ↓vasospasm, apoptosis [271,272]

SAH Endovascular
perforation rat model

Post; 30 mg/kg; 0 and 6 h after SAH
Pre; 100 mg/kg; single administration

↓brain and BBB damage, apoptosis,
neurological deficits [273,274]

Curcuminoids Curcumin NHIBI Carotid ligation
mouse model

Pre; 100 µg/kg; single administration/post;
50–200 µg/kg; single administration

↓ brain damage, oxidative stress,
apoptosis, inflammation [277]

Ischemic Stroke OGD rat neurons Pre; 0.5–8 µM ↓toxicity, apoptosis, inflammation [276]

Ischemic Stroke tMCAO rat model

Post; 100 and 300 mg/kg; single administration
Post; 300 mg/kg; single administration
Post; 300 mg/kg; single administration

Post; 300 mg/kg; daily for 7 days
Post; 100, 300 and 500 mg/kg; single administration

↓brain damage, oxidative stress,
apoptosis, inflammation,

neurological deficits
[278–282]

Ischemic Stroke pMCAO mouse and
rat models

Post; 50 mg/kg; single administration
Post; 150 mg/kg; 0 and 24 h after stroke

↓brain damage, inflammation,
neurological and behavioral deficits [283,284]
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Ischemic Stroke
Stroke-prone

spontaneously
hypertensive rats

100 mg/kg; daily for 4 weeks ↓arterial dysfunction, oxidative stress,
↑survival [285]

Lignans Pinoresinol Ischemic Stroke 2VO rat model Pre; 1 and 2 mg/kg; 10 min before stroke and
during reperfusion

↓microvascular damage, oxidative
stress [289]

Ellagitannins and
ellagic acid

Ellagic
acid Ischemic Stroke OGD rat neurons Post; 10 and 30 µM ↓ toxicity, apoptosis [290]

Ischemic Stroke Photothrombotic rat
model

Pre; 10 and 30 mg/kg; 24 h before and
immediately after stroke ↓neurological deficits [290]

Urolithin
A Ischemic Stroke OGD mouse neurons

and N2a cells Pre; 3–30 µM ↓ toxicity [291]

Ischemic Stroke tMCAO mouse
model Pre; 2.5 and 5.0 mg/kg; 24 and 1 h before stroke ↓ brain damage, neurological deficits [291]

Punicalagin Ischemic Stroke tMCAO rat model Pre; 15 and 30 mg/kg; daily for 7 days
Pre; 15 and 30 mg/kg; daily for 7 days

↓brain damage, oxidative stress,
apoptosis, inflammation, neurological

deficits
[292,293]

Coumarins Auraptene Ischemic Stroke 2VO mouse model Post; 25 mg/kg; daily for 8 days
Pre; 10 and 25 mg/kg; daily for 5 days ↓brain damage, inflammation [300,301]

Umbelliferone Ischemic Stroke tMCAO rat model Pre; 15 and 30 mg/kg; daily for 7 days ↓brain damage, oxidative stress,
inflammation, neurological deficits [303]

Esculetin Ischemic Stroke tMCAO mouse
model

Pre; 50 and 100 mg/kg;
single administration/post; 100 mg/kg; single

administration

↓brain damage, apoptosis, neurological
deficits [305]

Imperatorin Ischemic Stroke OGD SH-SY5Y cells Concomitant, 2.56 µM ↓apoptosis [307]

Ischemic Stroke tMCAO rat model Pre; 10 mg/kg; single administration ↓brain damage, neurological deficits [307]

Scopoletin Ischemic Stroke tMCAO rat model Pre; 1 mg/kg; single administration ↓brain damage [309]

Osthole Ischemic Stroke tMCAO rat model

Pre; 100 mg/kg; 30 min before stroke and
immediately after reperfusion

Pre; 40 mg/kg; single administration
Pre; 20 and 40 mg/kg; single administration

↓brain damage, oxidative stress,
apoptosis, MMPs levels, neurological

deficits
[311–313]
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Daphnetin NHIBI Carotid ligation rat
model

Pre; 10 mg/kg; single administration/post;
10 mg/kg; single administration ↓brain damage [314]

Ischemic Stroke tMCAO mouse
model Pre; 1 mg/kg; single administration ↓brain damage, apoptosis,

inflammation, neurological deficits [314,315]

BMVECs: brain microvascular endothelial cells; EC: (−)-epicatechin; ECG: (−)-epicatechin-3-gallate; EGCG: epigallocatechin-3-gallate; GSPE: grape seed proanthocyanidin extract; Hb: hemoglobin; ICH:
intracerebral hemorrhage; MCs: mast cells; MMPs: metalloproteinases; MSCs: mesenchymal stem cells; NHIBI: neonatal hypoxic–ischemic brain injury; NSCs: neural stem cells; OD: oxygen deprivation; OGD:
oxygen and glucose deprivation; pMCAO: permanent middle cerebral artery occlusion; rtPA: recombinant tissue plasminogen activator; SAH: subarachnoid hemorrhage; SCE: small clot embolism; tMCAO:
middle cerebral artery occlusion; 2VO: two-vessel occlusion; 4VO: four-vessel occlusion.
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6. Polyphenols and Stroke: Results from Human Studies

Clues about the relationship between dietary consumption of polyphenols and benefi-
cial effects on human health come from epidemiological studies.

In general, the inverse association between intake of high-polyphenol content food
(e.g., fruits and vegetables) and risk of stroke appears clear, even though the role of
polyphenols in this protection is still debated [316]. Moreover, fruit-derived polyphenol
supplementation has been shown to improve cognitive and functional recovery of ischemic
stroke patients [317].

The association between the consumption of beverages rich in polyphenols (i.e., wine,
beer, coffee and tea) and stroke has been investigated. Although alcohol consumption at
high intakes is detrimental even when occasionally consumed, a moderate intake of wine
and beer has been associated with a lower risk of cardiovascular disease and ischemic
stroke (for a review, see [318]). The protective effects related to wine and beer consumption
have been attributed not only to ethanol itself but also to nonalcoholic components, mainly
polyphenols [319,320]. Moreover, moderate consumption of coffee has been suggested to
reduce the incidence of cardiovascular diseases [321]. Conversely, the association between
coffee intake and stroke is under debate, with some studies indicating the beneficial effect
of this beverage and others showing positive or no associations [322]. Dose–response
analyses of tea intake indicate that high consumption of green tea was related to a reduced
risk of both ischemic and hemorrhagic stroke [323].

Another typically polyphenol-rich food is cocoa, mostly consumed as chocolate in
Western countries. Although few prospective studies on chocolate and stroke exist, the
available data suggest that chocolate consumption could reduce the risk of coronary heart
disease and stroke [324].

An important source of polyphenols is represented by culinary spices and herbs
that, besides their use in cooking to add flavor to food dishes, are also employed in
traditional medicines to prevent or treat different conditions. The effectiveness of traditional
herbal medicine in stroke prevention and treatment has been reported in a variety of
preclinical and clinical studies. However, solid conclusions about the relationship between
spices/herbs and the risk of stroke cannot be made due to the methodological gaps of
many investigations [325].

Scientific evidence about the antistroke role of food containing specific polyphenol
classes or isolated polyphenolic compounds is still scarce, although the results from the
available studies are generally promising.

Results from a meta-analysis considering 11 prospective cohort studies suggested that
high dietary intake of flavonoids may moderately reduce the risk of stroke [326].

Different prospective studies also examined the relationship between dietary flavonoid
subclasses and stroke. Higher dietary flavonol intake has been associated with a reduced
risk for stroke [327,328]. In a cohort study, the consumption of food rich in quercetin
was associated with a decreased risk of thrombotic stroke [329]. The quercetin metabolite
4-methylcatechol displayed a relevant antiplatelet activity in human blood, supporting
a possible use of this molecule in the prevention of thrombotic stroke [330]. Moreover, a
meta-analysis of randomized controlled trials indicated a significant effect of quercetin
supplementation in reducing blood pressure [331]. In a double-blind randomized clinical
trial among stroke patients, fisetin was found to prolong the therapy window of rtPA
treatment, likely by reducing levels of MMPs and C-reactive protein (CRP) [332].

A similar effect in extending the rtPA therapy window was observed in a clinical trial
involving the use of EGCG [333]. In this study, the beneficial effect of the polyphenolic
compound could also be attributed to the reduction of plasma levels of MMPs [333]. The
finding that pyrogallol, a human metabolite of EGCG from green tea, inhibited platelet
aggregation in human blood [330] suggests that inhibition of platelet formation could play
a role in the protective effect of green tea against brain ischemia.

The increased intake of flavanones has been associated with diminished risk of brain
ischemia in women [334]. The flavanone pinocembrin has been approved by the China
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Food and Drug Administration for the treatment of ischemic stroke, and it is currently
under phase II clinical trial [132].

In an observational study, administration of luteolin in combination with the lipid
amide palmitoylethanolamide (PEA) promoted clinical improvement in stroke patients,
when compared with literature data of patients with similar pathological conditions that
did not receive pharmacological treatment [335].

The frequent intake of soybeans and soy food like soymilk or tofu, containing high
levels of genistein and other isoflavones, has been associated with a reduced risk of
stroke in Japanese and Chinese populations [336,337]. The antiplatelet potential of many
isoflavones might contribute to the cerebrovascular protection provided by a soy-rich diet.
In support of this, the isoflavones genistein and tectorigenin showed a strong antiplatelet
effect when tested in human blood [53]. The isoflavone puerarin is an important component
of traditional Chinese medicine. A recent meta-analysis of 35 randomized controlled trials
on the effect of puerarin injections in acute cerebral ischemia suggests a possible clinical use
of the compound against stroke [338]. However, due to the poor methodological quality of
some of the studies, further clinical trials are needed to verify the safety of the drug [338].

Different clinical studies have indicated that consumption of food rich in anthocyanins,
including blueberries and cranberries, improves cerebral blood flow in healthy adults (for
a review, see [206]). However, a recent meta-study on 19 prospective cohorts demonstrated
that there was no relationship between consumption of anthocyanins and different types
of strokes, although that dietary intake of anthocyanins was inversely correlated with the
risk of cardiovascular diseases [339].

Some recent cohort studies indicated an inverse association between phenolic acids
(hydroxybenzoic and hydroxycinnamic acids in particular) and cardiovascular diseases and
hypertension (for a recent review, see [340]). Different clinical trials confirmed a moderate
effect of chlorogenic acid in reducing blood pressure in mild hypertensive adults [341]. To
our knowledge, no clinical studies are available on the correlation between phenolic acids
and stroke.

Long-term resveratrol supplementation in patients who suffered a stroke in the previ-
ous 12 months promoted a beneficial effect on blood pressure, body mass index and lipid
profile, indicating a possible role of resveratrol as an adjuvant in the secondary prevention
of stroke [342]. Moreover, resveratrol administration improved the outcomes of stroke
patients receiving rtPA, suggesting that this polyphenol could serve as a potential adjuvant
of rtPA therapies [343]. A positive correlation between resveratrol-promoted outcomes and
reduction of plasma levels of MMPs was observed [343].

7. Conclusions

The incomplete list of polyphenols active in cellular and animal models presented here
strongly supports the potential role of many classes of polyphenols against different types
of stroke. Interestingly, many molecules also exert beneficial effects when administered
after the stroke onset, suggesting that they could be exploited in the treatment of this
pathology. Of note, some compounds were able to synergize with rtPA, indicating a
possible use as coadjuvant in the current treatment of stroke.

Notwithstanding the body of positive preclinical findings, conclusive evidence from
human studies is still lacking. Although the consumption of food rich in polyphenols is
generally associated with positive health effects, including a lower incidence of cardiovas-
cular disease and stroke, the effectiveness of isolated polyphenols in stroke treatment is
still under debate.

Individuals consume polyphenols not as isolated compounds but rather as compo-
nents of their overall daily diet. The variability in food composition and the difficulty in
determining the accurate quantity of polyphenols in food, the potential modulation by
food matrices and culinary techniques, the possible interactions between polyphenols with
each other or with other food components and the effect of gut microbiota metabolism
on the bioavailability of polyphenols, make studies in human population extremely chal-
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lenging. In the future, long-term, large-scale and well-designed clinical trials are required
to establish the effectiveness of the most promising polyphenols that have emerged from
studies on preclinical models of stroke.

Finally, it will be important to further characterize the molecular targets of polypheno-
lic compounds potentially active against stroke. The identification of common molecular
pathways targeted by different bioactive components may lead to the formulation of novel
nutritional supplements, where different polyphenols could synergize at doses much lower
than those of active individual compounds.
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61. Silva, R.F.M.; Pogačnik, L. Polyphenols from Food and Natural Products: Neuroprotection and Safety. Antioxidants 2020, 9, 61.

[CrossRef] [PubMed]
62. Parrella, E.; Porrini, V.; Benarese, M.; Pizzi, M. The Role of Mast Cells in Stroke. Cells 2019, 8, 437. [CrossRef] [PubMed]
63. Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients

2018, 10, 1618. [CrossRef] [PubMed]
64. Stanzione, R.; Cotugno, M.; Bianchi, F.; Marchitti, S.; Forte, M.; Volpe, M.; Rubattu, S. Pathogenesis of Ischemic Stroke: Role of

Epigenetic Mechanisms. Genes 2020, 11, 89. [CrossRef] [PubMed]
65. Pan, M.H.; Lai, C.S.; Wu, J.C.; Ho, C.T. Epigenetic and disease targets by polyphenols. Curr. Pharm. Des. 2013, 19, 6156–6185.

[CrossRef] [PubMed]
66. Wang, L.; Tu, Y.C.; Lian, T.W.; Hung, J.T.; Yen, J.H.; Wu, M.J. Distinctive antioxidant and antiinflammatory effects of flavonols. J.

Agric. Food Chem. 2006, 54, 9798–9804. [CrossRef]
67. Batiha, G.E.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The

Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin.
Foods 2020, 9, 374. [CrossRef]
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