Skip to main content
. 2020 Dec 29;23(1):37. doi: 10.3390/e23010037
Algorithm 3 Train HSVR

Input: (xi,yi),i=0,n1

scales (output of Algorithm 1)

1: ϵ=0.01(maxi(yi)mini(yi))

2: r0=y=[y0,,yn1]

3: model = [] # comment: empty list to hold the SVR model at each layer

4: m=len(scales) # comment: number of HSVR layers

5: for i in range(0, m):

6:    σi = scales[i]

7:    Ci=5(max(ri)min(ri))

8:    svri = fitted SVR on (x,ri) with parameters σi, Ci and tolerance ϵ

9:    predictions = svri.predict(x)

10:    ri+1=ripredictions

11:    model.append(svri)

12: return: model