Skip to main content
. 2020 Dec 23;9(1):27. doi: 10.3390/microorganisms9010027

Table 3.

Competition studies in medical devices.

Antibiofilm Substances and Probiotic Strains Abiotic Surface Biofilm Forming Pathogens Percentages of Reduction Ref. Major Conclusions
Biosurfactants L. acidophilus
L. brevis
L. helveticus
L. jensenii
L. paracasei
L. reuteri
L. rhamnosus
Medical grade silicone tubes
Polystyrene
Polystyrene pre-coated with human plasma
Silicone elastomeric discs
Saliva-conditioned titanium discs
Ac. Baumannii
Bac. cereus
C. albicans
E. coli
P. aeruginosa
Ser. marcescens
S. aureus
Strep. mutans
Strep. oralis
76%
100%
90%–100%
79%–100%
100%
73%
88%–100%
99%
99%
[27]
[81]
[57,81]
[27,81]
[81]
[102]
[27,81]
[64]
[64]
Biosurfactants displayed high anti-adhesive activity and reduced biofilm biomass by 60%–100% and culturable cells by 90%–99%.
The inhibitory effect was dose-dependent.
Bacteriocins L. fermentum
L. plantarum
Polystyrene P. aeruginosa
S. aureus
56%–93%
62%
[59,103]
[59]
Co-incubation with bacteriocins reduced the number of P. aeruginosa culturable cells by 93% and biofilm formation of pathogens by 56%–62%.
EPS L. delbrueckii ssp. bulgaricus
L. fermentum
L. rhamnosus
Polystyrene Bac. cereus
Ent. faecalis
Lis. monocytogenes
P. aeruginosa
90%
87%
88%
88%–97%
[108]
[108]
[108]
[103,108]
Co-incubation with EPS reduced the number of P. aeruginosa culturable cells by 97% and inhibited biofilm formation between 74% and 90%, depending on the species, in a dose-dependent manner.
Cell-free supernatants Bac. subtilis
L. acidophilus
L. fermentum
L. gasseri
L. helveticus
L. paracasei
L. plantarum
L. rhamnosus
Strep. salivarius
Glass
Polystyrene
Polyurethane
PVC
Saliva-conditioned titanium discs
Silicone
C. albicans
C. krusei
C. parapsilosis
C. tropicalis
Ent. faecalis
E. coli
K. pneumoniae
P. aeruginosa
S. aureus
Strep. mutans
Strep. oralis
90%
71%
41%
67%
61%
63%
99%
57%
57%–99%
53%–99%
99%
[87]
[88]
[88]
[88]
[109]
[109]
[110]
[91]
[91,111]
[96,98,112]
[96]
CFS were able to reduce the number of biofilm cells by more than 81% and inhibit the ability of pathogens to adhere to the different surfaces by 39–99%.
Neutralized supernatants had less effect on biofilm formation.
Cells E. coli Nissle 1917
L. acidophilus
L. casei
L. casei rhamnosus
L. fermentum
L. helveticus
L. paracasei
L. plantarum
L. rhamnosus
L. rhamnosus GG
L. salivarius
Lact. lactis ssp. lactis
Strep. thermophilus
Bovine enamel saliva-coated
Glass
Polystyrene
Polyurethane
Polypropylene
Saliva-coated hydroxyapatite discs
Saliva-conditioned titanium discs
Silicone latex
Silicone rubber
A. naeslundii
C. albicans
E. coli
F. nucleatum
K. pneumoniae
Non-mutans streptococci strains
P. aeruginosa
S. aureus
S. epidermidis
Strep. mutans
Strep. oralis
Strep. sanguinisStrep. sobrinus
V. díspar
22%
53%–72%
82%–93%
55%
99%
11%

N.A.
99%
99%
9%–99%
65%–99%
N.A.
76%
32%
[104]
[63,87]
[93,113,114]
[104]
[110]
[106]

[113]
[94,113]
[113]
[63,95,96,106,112]
[96,104]
[63]
[104]
[104]
The adhesion of pathogens was reduced by the presence of probiotic cells (11%–93%), and their culturability decreased up to 7.2 Log CFU.
L. rhamnosus microcapsules reduced biofilm formation up to 82% in a dose-dependent manner.
Lactobacillus strains inhibited the growth of an uropathogenic biofilm on silicone rubber for at least 8 days.
EcN was able to outcompete pathogenic strains during biofilm formation, reducing culturability up to 4 Log.
Lipoteichoic acid (LTA) L. plantarum Glass
Human dentin slices
Polystyrene
Saliva-coated hydroxyapatite discs
A. naeslundii
Ent. faecalis
L. salivarius
Strep. mutans
57%
57%
57%
57%–75%
[97]
[97]
[97]
[97,98]
LTA inhibited single- and multi-species biofilm formation by 75% and 57%, respectively.

Abbreviations: CFS, Cell-Free Supernatant; CFU, Colony-Forming Units; EcN, E. coli Nissle 1917; EPS, Exopolysaccharides; PVC, Polyvinyl Chloride; N.A., Not Available. Ac., Acinetobacter; A., Actinomyces; Bac., Bacillus; C., Candida; Ent., Enterococcus; E., Escherichia; F., Fusobacterium; K., Klebsiella; L., Lactobacillus; Lact., Lactococcus; Lis., Listeria; P., Pseudomonas; Ser., Serratia; S., Staphylococcus; Strep., Streptococcus; V., Veillonella.