Skip to main content
. 2021 Jan 23;10(1):giaa162. doi: 10.1093/gigascience/giaa162

Table 1:

Performance of classification models on training and reserved test dataset. Boldface signifies that DL method is statistically significantly better in the metric, compared to other methods.

Dataset Algorithm Accuracy SENS SPEC F1 Statistic Balanced accuracy Computing time/run (sec)
Training DL 0.909 0.978 0.747 0.952 0.777 570.68
GBM 0.906 0.600 0.945 0.666 0.772 8.291
LDA 0.700 0.583 0.718 0.478 0.651 3.118
LOG 0.906 0.608 0.946 0.681 0.777 5.394
RF 0.892 0.568 0.946 0.648 0.757 21.340
RPART 0.801 0.605 0.895 0.620 0.750 3.525
SVM 0.905 0.663 0.920 0.688 0.791 4.941
Testing DL 0.912 0.954 0.688 0.930 0.747 1.844
GBM 0.878 0.560 0.939 0.639 0.749 0.0152
LDA 0.745 0.627 0.754 0.527 0.691 0.0149
LOG 0.873 0.550 0.943 0.634 0.747 0.0184
RF 0.870 0.578 0.938 0.643 0.758 0.0181
RPART 0.767 0.609 0.861 0.589 0.735 0.0257
SVM 0.883 0.653 0.927 0.693 0.790 0.0218