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Patients with schizophrenia have a lower than average 
life span, largely due to the increased prevalence of 
cardiometabolic comorbidities. There is an unmet public 
health need to identify individuals with psychotic dis-
orders who have a high risk of rapid weight gain and 
who are at risk of developing metabolic complications. 
Here, we applied mass spectrometry-based lipidomics 
in a prospective study comprising 48 healthy controls 
(CTR), 44 first-episode psychosis (FEP) patients, and 
22 individuals at clinical high risk (CHR) for psychosis, 
from 2 study centers (Turku, Finland and London, UK). 
Baseline serum samples were analyzed using lipidomics, 
and body mass index (BMI) was assessed at baseline and 
after 12 months. We found that baseline triacylglycerols 
(TGs) with low double-bond counts and carbon numbers 
were positively associated with the change in BMI at fol-
low-up. In addition, a molecular signature comprised of 
2 TGs (TG[48:0] and TG[45:0]) was predictive of weight 
gain in individuals with a psychotic disorder, with an 
area under the receiver operating characteristic curve 
(AUROC) of 0.74 (95% CI: 0.60–0.85). When independ-
ently tested in the CHR group, this molecular signature 
predicted said weight change with AUROC = 0.73 (95% 
CI: 0.61–0.83). We conclude that molecular lipids may 
serve as a predictor of weight gain in psychotic disorders 
in at-risk individuals and may thus provide a useful 
marker for identifying individuals who are most prone to 
developing cardiometabolic comorbidities.
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Introduction

Psychotic disorders are associated with a life expectancy 
reduction of 15–20 years,1,2 mostly due to the high preva-
lence of cardiovascular disease, type 2 diabetes (T2DM), 
and metabolic syndrome.3–5 Metabolic comorbidities, 
including impaired glucose tolerance, weight gain, and 
obesity, often co-occur in first-episode psychosis (FEP) 
patients,6–8 and this increases the risk of cardiovascular 
disease in these individuals.9,10 Un-medicated FEP pa-
tients report a high intake of saturated fat and low levels 
of high-intensity exercise.11 Although unhealthy life-
styles and antipsychotic medication are associated with 
the development of metabolic comorbidities in psychosis 
patients, the underlying mechanisms remain poorly un-
derstood.3,12 Drug-induced metabolic dysregulation ap-
pears heterogeneously,13,14 while metabolic comorbidities 
can also occur in drug-naïve FEP patients.6,15

Metabolomics, that is, a global study of small mol-
ecules (<1500  Da) and their associated biochemical 
processes, is a powerful emerging tool in psychiatric re-
search, enabling the investigation of disease etiology 
and treatment response from metabolic perspectives.8,16 
Lipidomics is a subfield of metabolomics, which focuses 
on the study of lipids. By applying a lipidomics approach, 
we previously found that FEP patients who rapidly gain 
weight at follow-up have increased serum lipids at base-
line; lipids which are also known to be associated with 
nonalcoholic fatty liver disease (NAFLD) and increased 
risk of T2DM.8,17 However, it is currently unclear if  these 
lipids could be used to predict weight gain and the asso-
ciated metabolic comorbidities in FEP patients. Here, we 
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report a lipidomics study in a prospective series of plasma 
samples from healthy controls (CTR), FEP patients, and 
individuals at clinical high risk (CHR) for psychosis. The 
aim of the study was to investigate whether lipid profiles 
can identify FEP patients or CHR individuals, who are at 
the highest risk of rapid weight gain and occurrence of 
metabolic comorbidities.

Methods

Study Design and Participants

We collected plasma samples from 2 cohorts of patients 
receiving psychiatric early intervention services in Turku, 
Finland or London, UK. Ethical approval was obtained 
from the respective study sites in Finland (ETMK 
98/180/2013) and United Kingdom (14/LO/1289). 
Capacity for consent was assessed and informed written 
consent was obtained from all volunteers. In total, 114 
non-fasting blood samples were collected for this study. 
Plasma was separated immediately after the blood col-
lection by centrifugation at 3000g for 10 minutes at room 
temperature. The plasma samples were shipped and 
stored at −80°C until analyzed. This case-control study 
included 48 healthy CTR (CTR group), 44 FEP patients 
(FEP group), and 22 individuals who were at CHR for 
psychosis (CHR group). The demographic characteristics 
of the study subjects are shown in table 1.
Inclusion and Exclusion Criteria. FEP patients met the 
following inclusion criteria: (1) DSM-IV diagnosis of a 
psychotic disorder, determined by the Structured Clinical 
Interview for DSM Disorders (SCID)-I/P and (2) illness 
duration of less than 5 years. In the Turku, Finland study, 
FEP volunteers were taking antipsychotic medication 
and had diagnoses of affective or non-affective psychosis. 
In the London, UK cohort, FEP arm of the study, vo-
lunteers were medication-free from all pharmacological 

treatments for at least 6  months and had diagnoses of 
schizophrenia or schizoaffective disorder. In the London, 
UK cohort, FEP volunteers were recruited from early 
intervention teams in South and West London. Healthy 
volunteers had no current/lifetime history of an Axis-I 
disorder as determined by the SCID-I/P and were 
matched by age (age +/− 3 years).

CHR patients were identified from the clinical popula-
tion of psychiatric services using structured interviews to 
ensure that they met criteria for an at-risk mental state and 
to exclude current or past psychotic disorder.18,19 Patients 
with brief, intermittent psychotic symptom syndrome, at-
tenuated positive symptom syndrome or genetic risk, or 
deterioration syndrome were classified as CHR for psy-
chosis patients, consistent with the standardized criteria.18

The study setting for the Finnish Institute for Health 
and Welfare (THL), Finland dataset, which was used as 
an additional dataset to build the statistical model, was 
described in detail previously.20

Measures. Age, sex, weight, and height were recorded. 
BMI was calculated as weight in kilograms divided 
by height in meters squared, as described previously.11 
Diagnoses were recorded using the SCID-I/P. Current 
and previous medication histories were recorded. 
Chlorpromazine equivalent (CPZE) doses were calcu-
lated for current antipsychotic exposure using previously 
defined methods.21 Symptom severity was assessed using 
the Positive and Negative Syndrome Scale.22 Social and 
occupational functioning were assessed using the Global 
Assessment of Functioning scale.23

Analysis of Molecular Lipids

A total of 114 plasma samples were randomized 
and extracted using a modified version of the Folch 
procedure.24 Promptly before extraction, 10  µl of  
0.9% NaCl and 120  µl of CHCl3: MeOH (2:1, v/v) 

Table 1. Clinical Characteristics of Study Population at the Baselinea

CTR FEP CHR

N (total) 48 44 22
N (Turku, Finland) 31 30 22
N (London, UK) 17 14 N/A
Sex (male, female) 31, 17 26, 18 11, 11
BMI (± SD) 24.5 (3.8) 24.3 (4.2) 25.5 (5.7)
Age (± SD) (n) 27.5 (5.9) (48) 26.9 (6.3) (42) 26.2 (5.0) (9)
GAF score (± SD) (n) 92.0 (3.8) (36) 46.6 (16.0) (39) 53.0 (1) (10)
PANSS TOT (± SD) (n) 30.4 (0.9) (30) 70.9 (24.6) (40) 55.8 (15.1) (10)
Antipsychotic CPZE (± SD)
Turku, Finland  
(n = 23 FEP, n = 9 CHR)

N/A 221.8 (± 115.0) 207.91(± 102.2)

London, UK  
(n = 2 FEP)

N/A 60 (N/A) N/A

Note: CTR, healthy controls; FEP, first-episode psychosis group; CHR, clinical high-risk for psychosis group; SD, standard deviation; 
CPZE, chlorpromazine equivalence.
aStudy populations are from Turku, Finland and London, UK. 
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containing 2.5  µg ml−1 internal standard solution 
(for quality control [QC] and normalization pur-
poses) were added to 10 µl of  each plasma sample. The 
standard solution contained the following compounds: 
1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine 
(PE [17:0/17:0]), N-heptadecanoyl-d-erythrosph
ingosylphosphorylcholine (sphingomyelins, SM 
[d18:1/17:0]), N-heptadecanoyl-d-erythro-sphingosine 
(ceramides, Cer [d18:1/17:0]), 1,2-diheptadecanoyl-sn-
glycero-3-phosphocholine (phosphatidylcholines, PC 
[17:0/17:0]), 1-heptadecanoyl-2-hydroxy-sn-glycero-
3-phosphocholine (lysophosphatidylcholines, LPC 
[17:0]), and 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-
phosphocholine (PC [16:0/d31/18:1]) that were pur-
chased from Avanti Polar Lipids, Inc. (Alabaster), as 
well as 3β-hydroxy-5-cholestene 3-heptadecanoate 
(cholesterol esters, CE [17:0]) and tripalmitin-
triheptadecanoylglycerol (TG [17:0/17:0/17:0]) (Larodan 
AB). The samples were vortexed and incubated on ice 
for 30 minutes after which they were centrifuged (9400g, 
3 min, 4°C); 60 µl from the lower layer of each sample was 
then transferred to a glass vial with an insert, and 60 µl 
of  CHCl3: MeOH (2:1, v/v) was added to each sample. 
The samples were re-randomized and stored at −80°C 
until analysis. Calibration curves using 1-hexadecyl-2-
(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (PC 
[16:0/18:1(9Z)]), 1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-
sn-glycero-3-phosphocholine (PC [16:0/16:0]), 
1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (PC 
[18:0/18:0], 1-octadecanoyl-sn-glycero-3-phosphocholine 
(LPC [18:0]), 1-(11Z-octadecadienoyl)-sn-glycero-3-
phosphocholine (LPC [18:1]), 1-(9Z-octadecenoyl)-
2-hexadecanoyl-sn-glycero-3-phosphoethanolamine 
(PE [16:0/18:1]), (2-aminoethoxy)[(2R)-3-hydroxy-2-
[(11Z)-octadec-11-enoyloxy]propoxy]phosphinic acid 
(LysoPE [18:1]), N-(9Z-octadecenoyl)-sphinganine (Cer 
[d18:0/18:1(9Z)]), 1-hexadecyl-2-(9Z-octadecenoyl)-
sn-glycero-3-phosphoethanolamine (PE [16:0/18:1]) 
(Avanti Polar Lipids, Inc.), 1-palmitoyl-2-hydroxy-
sn-glycero-3-phosphatidylcholine (LPC [16:0]) and 
1,2,3-trihexadecanoalglycerol (TG [16:0/16:0/16:0]), 
1,2,3-trioctadecanoylglycerol (TG [18:0/18:0/18:0]) and 
ChoE (18:0), and 3β-hydroxy-5-cholestene 3-linoleate 
(ChoE [18:2]) (Larodan AB) were prepared at the fol-
lowing concentrations: 100, 500, 1000, 1500, 2000, and 
2500  ng ml−1 (in CHCl3:MeOH, 2:1, v/v) including 
1250 ng ml−1 of each internal standard. The samples were 
analyzed using an established ultra-high-performance 
liquid chromatography quadrupole time-of-flight mass 
spectrometry method (UHPLC-QTOFMS). The UHPLC 
system used in this work was a 1290 Infinity system from 
Agilent Technologies. The system was equipped with a 
multi sampler (maintained at 10°C), a quaternary sol-
vent manager, and a column thermostat (maintained 7 
at 50°C). Separations were performed on an ACQUITY 

UPLC BEH C18 column (2.1  × 100  mm, particle size 
1.7 µm) by Waters. The mass spectrometer coupled to the 
UHPLC was a 6545 quadrupole time of flight (QTOF) 
from Agilent Technologies interfaced with a dual jet 
stream electrospray ion (dual ESI) source. All analyses 
were performed in positive ion mode and MassHunter 
B.06.01 (Agilent Technologies) was used for all data ac-
quisition. QC was performed throughout the sample run 
by including blanks, pure standard samples, extracted 
standard samples, and control plasma samples. An ali-
quot of each sample was collected and pooled and used 
as a QC sample, together with NIST SRM 1950 refer-
ence plasma sample,25 an in-house pooled serum sample. 
Relative standard deviations (% RSDs) for lipid internal 
standards representing each lipid class in the samples 
(raw variation) were below 11%. The lipid concentra-
tions in the pooled control samples were, on average, 
16.4% (King's College London) and 11.4% (University 
of Turku). This shows that the method is reliable and re-
producible throughout the sample set. 

The identification was carried out in a pooled serum 
sample, and with this information, an in-house database 
was created with m/z and retention time for each lipid. 
Identification of lipids was carried out by combining 
mass spectrometry (MS) and retention time, MS/MS in-
formation, and a search of the LIPID MAPS spectral 
database,26 and in some cases by using authentic lipid 
standards. MS/MS data were acquired in both negative 
and positive ion modes in order to maximize identifica-
tion coverage. The confirmation of a lipid’s structure re-
quires the identification of hydrocarbon chains bound to 
its polar moieties, and this was possible in some cases.

Data Preprocessing

MS data processing was performed using the open-source 
software, MZmine 2.18.27 The following steps were ap-
plied in the processing: (1) Crop filtering with a m/z 
range of 350 to 1200 m/z and a retention time (RT) range 
of 2.0 to 15.0 minutes; (2) Mass detection with a noise 
level of  1000; (3) Chromatogram builder with a min-
imum time span of 0.08 minutes, minimum height of 
1200, and a m/z tolerance of 0.006 m/z or 10.0 ppm; (4) 
Chromatogram deconvolution using the local minimum 
search algorithm with a 70% chromatographic threshold, 
0.05 minutes minimum RT range, 5% minimum relative 
height, 1200 minimum absolute height, a minimum ra-
tion of peak top/edge of 1.2, and a peak duration range 
of 0.08–5.0; (5) Isotopic peak grouper with a m/z tol-
erance of 5.0 ppm, RT tolerance of 0.05 minutes, max-
imum charge of 2, and with the most intense isotope 
set as the representative isotope; (6) Peak list row filter 
keeping only peaks with a minimum of 10 peaks in a row; 
(7) Join aligner with a m/z tolerance of 0.009 or 10.0 ppm 
and a weight of  2 and a RT tolerance of 0.1 minute and 
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a weight of  1, with no requirement of charge state or 
ID and no comparison of isotope pattern; (8) Peak list 
row filter with a minimum of 53 peak in a row (10% of 
the samples); (9) Gap-filling using the same RT and m/z 
range gap filler algorithm with an m/z tolerance of 0.009 
m/z or 11.0  ppm; (10) Identification of lipids using a 
custom database search with an m/z tolerance of 0.009 
m/z or 10.0  ppm and a RT tolerance of 0.1 minutes; 
(11) Normalization using internal class-specific stand-
ards (PE [17:0/17:0], SM [d18:1/17:0], Cer [d18:1/17:0], 
LPC [17:0], TG [17:0/17:0/17:0], and PC [16:0/d30/18:1]) 
for identified lipids and closest internal standard for the 
unknown lipids, followed by the calculation of the esti-
mated concentrations based on lipid-class calibration 
curves; and (12) Imputation of missing values was calcu-
lated as half  of  the lipid’s minimum observed value.

Data Analysis

Mann-Whitney U test was applied to compare the differ-
ences in weight gain between the study groups (eg, CTR 
vs FEP) and performed using GraphPad Prism v.  7.04 
(GraphPad Software Inc.). In order to visualize the 
changes in BMI between the study groups, we created a 
violin plot using the ggplot2 package (version 3.2.1) in the 
R statistical software.28 Spearman correlation coefficients 
were calculated using the statistical toolbox in MATLAB 
2017b (Mathworks Inc.) and P-values < .05 (2-tailed) 
were considered significant for these correlations. All sta-
tistical analyses involving lipid concentrations were per-
formed on log2-transformed data. The mclust R package 
(version 5.4.1) was used to build lipid clusters (LCs) from 
the lipidomics dataset. mclust permits the modeling of 
data as a Gaussian finite mixture, it attempts to fit var-
ious model types, and it assesses their performance using 
the Bayesian Information Criterion (BIC). The highest 
BIC achieved by mclust form the lipidomics dataset in 
control subjects was used to determine both the model 
type and the number of clusters into which the variables 
should be divided.

Logistic ridge regression (LRR) models were devel-
oped to predict and stratify weight gain in FEP patients. 
The matched TGs with a regression coefficient (r ≥ .4) 
in Turku, Finland and London, UK cohorts, between 
high- vs low-weight gain subjects (ie, change in the BMIs 
binarized around the median), were used either singly or in 
combination for LR modeling. A recursive feature elimi-
nation scheme was implemented for the optimal selection 
of the lipids. The lipids in the LR models were incorpo-
rated or removed in an iterative manner, starting with all 
9 TGs. The models were adjusted for sex and assessed by 
area under the receiver operating characteristic curves 
(AUROCs). The mean AUROC of a model was estimated 
by bootstrapping, ie, 1000 times re-sampling without re-
placement and partitioning (70% training and 30% test 
sets) of the lipidomic dataset using createDataPartition 

function coded in the caret (v. 6.0.84) R package. The 
model with the highest mean AUROC was considered 
to be the best model, which was assessed by their ROC 
curves using pROC 1.15.3 R package. LR and regular-
ized LR modeling were performed using glmnet package 
in R. LR modeling requires a hyper-parameter “λ.” Here, 
the λ minimum that corresponds to the minimum cross-
validation (CV) error was determined by 10-fold CV 
using cv.glmnet. The LR model with the highest mean 
AUROC was named FEP-LR model. This model was 
also used to predict weight gain (change in BMI from the 
baseline), when applied to an independent dataset (the 
CHR subjects).

Results

Lipidome in FEP Patients

We measured circulating molecular lipids using UHPLC-
QTOFMS from the 3 study groups (figure  1), together 
comprising 48 healthy CTR, 44 FEP patients, and 22 
CHR individuals, from 2 study centers (Turku, Finland 
and London, UK), at baseline as well as at 1-year fol-
low-up (CTR, n = 21; FEP n = 13; CHR, n = 9). The dem-
ographic characteristics of the 3 study groups are shown 
in table 1. The lipidomics dataset included in the analysis 
comprised 265 identified lipids from the following lipid 
classes: CE, Cer, LPC, PC, PE, SM, and TGs.

In order to summarize the data, we first performed 
clustering using the Gaussian mixture models,29 reducing 
the data into 22 distinct LCs (supplementary table S1). 
As expected, the lipids were clustered according to the 
main functional lipid classes. For example, PCs and SMs 
predominated in LCs LC3 and LC6, while LPCs and 
Cers had distinct clusters (LC4 and LC5, respectively). 
These clusters also revealed sub-grouping according to 
the acyl chain carbon number and double-bond count in 
TGs (LC13 and LC14).

Associations Between Lipidome and Weight Gain

We then examined the differences in weight gain between 
the study groups (CTR [n = 29] vs FEP [n = 17], CTR 
[n  =  29] vs CHR [n  =  13], and CHR [n  =  13] vs FEP 
[n  =  17]). FEP patients gained weight when compared 
with the CTR group (figure  2A; P  =  .004) over 1-year 
period. No significant differences were observed when 
comparing CHR vs FEP and CTR vs CHR (P = .3851 
for CHR vs FEP and P = .0561 for CHR vs CTR).

Next, we analyzed the association between the mean 
levels of  the lipids in the baseline LCs and weight gain 
in CTR and FEP groups. Among the 22 LCs, the base-
line level of  cluster LC13 was associated with changes in 
BMI in the FEP group at the 12-month follow-up visit 
(Spearman correlation coefficient R  =  .53, P  =  .0291). 
The cluster LC13 contains TGs with a low double-bond 
count, indicating that the change of BMI in FEP patients 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa087#supplementary-data
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was specifically associated with a structurally distinct 
subgroup of lipids. Interestingly, we observed trends of 
a positive association (r > .3) between weight gain and 
other LCs containing mainly TGs (L14, L16, and L20; 

figure 2B). Thus, we sought to determine the association 
between baseline TG composition and change of BMI 
(12-month follow-up vs baseline) at the molecular lipid 
level. The baseline levels of  TGs with low carbon number 

Fig. 1. Study setting. A total of 114 plasma samples were from 48 healthy controls (CTR), 44 first-episode psychosis patients (FEP), and 
22 individuals at clinical-high-risk for psychosis (CHR). Molecular lipids were analyzed using an established ultra-high-performance 
liquid chromatography quadrupole time-of-flight mass spectrometry method (UHPLC-QTOFMS). We analyzed lipids from baseline 
samples, from 2 study centers (Turku, Finland and London, UK). Body mass index (BMI) and other metabolic measures were assessed at 
baseline and at 12-month follow-up. Both univariate and multivariate data analyses were performed to associate the circulating lipids and 
future weight gain in psychosis patients and in individuals at high risk for psychosis. 

Fig. 2. Associations between lipidome and weight gain. (a) Difference in BMI change (12-month follow-up vs baseline) between the 
study groups (CTR vs FEP, CTR vs CHR, and CHR vs FEP). (b) Association between baseline lipid clusters and weight gain in the FEP 
group. *P < .05.
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and double-bond count showed positive associations with 
the change in BMI among the FEP patients, while the 
association in the CTR group remained weak (figure 3). 
Nine of 109 TGs at baseline, including TG (47:0), TG 
(47:1), TG (48:0), TG (48:0), TG (48:1), TG (48:1), TG 
(49:0), TG (14:0/16:0/18:1), and TG (16:0/16:0/16:0), 
were positively associated with the change in BMI (P < 
.05, supplementary table S2). Similarly, we performed 
correlation analysis between changes in BMI and base-
line TG composition in CHR individuals; 32 out of  109 
TGs remained correlated with the change in the BMI (P 
< .05, supplementary table S3). Baseline TGs with low 
carbon numbers and double-bond count showed a strong 
positive association with the change in BMI (figure 3C).

Prediction of Weight Gain in FEP Patients and CHR 
Individuals Using Circulating Lipids

Next, we sought to determine if baseline TG concentra-
tions predicted the risk of weight gain in FEP patients, 
utilizing the regularized logistic regression (LR) model. We 
examined the predictor model combining the data from 3 
centers, including Turku, Finland, London, UK, and the 
matched TGs from the THL, Finland dataset. The matched 
TGs with regression coefficient (r ≥ .4) in Turku, Finland 
and London, UK cohorts were used as input to build the 
LR models between the high- and low-weight gain groups 
(binarized at their median change of BMIs from the base-
line, see Methods) in FEP cases. The recursive scheme for 
feature selection and model reduction showed that TG 
(48:0) together with TG (45:0) were the best predictors for 
high change in BMI, with AUROC = 0.74 (figure 4A, 95% 
confidence interval, CI: 0.60–0.85).

We then independently tested the potential of the 
FEP-LR model to predict weight gain (change in BMI) 
in CHR individuals. The FEP-LR model was indeed able 

to predict the outcome with AUROC = 0.73 (figure 4B, 
95% CI: 0.61–0.83). In addition, we developed a regu-
larized LR model to evaluate the effect of antipsychotic 
medication and 9 selected baseline TG concentrations on 
the weight gain in FEP patients. Based on the ridge coeffi-
cients, the regression model suggests that the dose of anti-
psychotics (converted into CPZE dose) medication is least 
contributing than the selected TGs toward the weight gain 
(median change in the BMI, supplementary figure S1). 
Moreover, this finding is consistent across the samples 
from Turku, /Finland, London, UK, and THL/Finland.

Discussion

Our study demonstrates, for the first time as far as we 
are aware, that circulating lipids predict the risk of future 
weight gain in both CHR and FEP patients. We found that 
plasma lipids, specifically TGs, may be a useful molecular 
biomarker for identifying individuals who are vulnerable 
to rapid weight gain. This finding is in line with and builds 
on our previous study, which showed that weight gain in 
FEP patients was positively associated with elevated TGs, 
containing low acyl carbon numbers and double-bond 
counts, independently of obesity at baseline.17,30

Glutamate and dopamine are vital neurotransmitters 
that are associated with the etiology of schizophrenia.31 
Altered dopamine and glutamate adaptation affects the 
reward circuitry of the brain leading to excessive food 
intake, which possibly leads to weight gain.32 TGs with 
low double-bond count and carbon numbers, which are, 
in part, generated by de novo lipogenesis,33,34 are known 
to be elevated in NAFLD35–37 and associated with an in-
creased risk of T2DM.38,39 Our findings thus strongly sug-
gest that the FEP patients who go on to gain weight in the 
future are those who have elevated levels of liver fat but 
not the dietary lipids.

Fig. 3. Correlation of individual TGs with change in BMI (12-month follow-up vs baseline). The x-axis is the acyl carbon number and 
the y-axis is the acyl double-bond count. (a) CTR, (b) FEP, and (c) CHR. The Spearman correlation coefficient (R) is used for the color 
code. 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa087#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa087#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa087#supplementary-data
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There is evidence that those presenting with FEP ac-
tually have a slightly lower and\or no BMI different 
compared with a healthy population.17 However, rapid 
weight gain and metabolic comorbidities are typically 
evident within the first year following FEP.12,40 Different 
antipsychotics can vary considerably in the propensity of 
side-effects, including weight gain.41–43 In addition, there 
is also considerable variability in weight gain and lipid 
changes among the FEP individuals with respect to an-
tipsychotic drugs.42,44,45 However, earlier analyses suggest 
that the NAFLD lipid signature associates with weight 
gain, independent of  antipsychotic medication.17 In line 
with this, and as a novel finding, we have here also dem-
onstrated that the same lipid signature, predictive of 
weight-gain in FEP patients, is also predictive of  weight 
gain in CHR individuals. This suggests that specific lipid 
disturbances in early psychosis may also contribute to 
the development of metabolic comorbidities, poten-
tially independent of  antipsychotic medication. Since a 
fraction of CHR individuals in our study received low-
dose antipsychotic medication, one also cannot exclude 
the possibility that the metabolic consequences in some 
CHR individuals may have been influenced by the use of 
antipsychotics.46

The specific mechanisms linking psychosis, NAFLD, 
and increased risk of metabolic comorbidities are cur-
rently unknown. Previous work in the cohort has shown 
that the unmedicated FEP patients consume greater 

quantities of saturated fat and undertake less high-
intensity exercise.11 There is a large body of literature 
suggesting that the endocannabinoid modulates energy 
intake47 and that it may be involved in the development 
of NAFLD.48 In line with this, Borgan et  al previously 
showed that 2 independent cohorts of unmedicated pa-
tients49 and medicated patients50 show reductions in can-
nabinoid 1 receptor levels. Moreover, greater reductions 
in receptor levels were linked to greater total symptom 
severity and cognitive impairments.49 Cannabinoid re-
ceptor type 1 availability may also associate with changes 
in peripheral endocannabinoid levels in medicated pa-
tients.51 Furthermore, there is a large body of literature 
suggesting that the ECS modulates energy intake,47 and 
that the development of NAFLD is promoted by pe-
ripheral activation of the ECS.48 More studies are clearly 
needed if  one is to elucidate the hypothetical role of ECS 
as a link between psychosis and the development of met-
abolic comorbidities.

This study had some limitations. First, the measure-
ment of BMI may not correspond to the visceral fat accu-
mulation,52 thus it may be an inaccurate assessment of the 
comorbidities associated with obesity. Notwithstanding 
this, BMI is a widely accepted measurement of the met-
abolic complications of obesity at the population level, 
and the lipidomic signature reported in our study was 
previously observed in patients with NAFLD. Next, the 
shortcoming is the limited small sample size, which did 

Fig. 4. Predictive models of weight gain (BMI change in the 12-month follow-up) in the FEP and CHR group. Logistic ridge regression 
(LRR) models showing triacylglycerols (TGs) as predictive markers to stratify patient groups into high and low BMI changes. (a) 
Receiver-operating characteristic (ROC) curves, showing the performance of the LR models with highest mean AUROCs in the FEP 
patients, discriminating high vs low BMI changes in the 12-month follow-up. The light green shaded area denotes the 95% confidence 
intervals (CI), as calculated by using bootstrapping. (b) ROC curves showing the prediction performance of the FEP-LR models with the 
highest mean AUROCs in the CHR individuals, discriminating high vs low BMI changes in the 12-month follow-up.
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not allow us to systematically understand the metabolic 
outcomes of types of antipsychotics according to their 
propensity. However, the reported antipsychotic asso-
ciations in the current study provide evidence that spe-
cific TGs signatures still remain the strong predictors of 
weight gain in the FEP subjects. Even though this study 
had a relatively small sample size, our results provide po-
tentially clinically important findings, which need valida-
tion from larger studies.

Taken together, our study independently confirms that 
the lipidomic signature of NAFLD may serve as a pre-
dictor of future weight gain in FEP patients as well as in 
CHR individuals. This lipid signature may be used for the 
identification of at-risk individuals and patients who are 
at increased risk of developing metabolic comorbidities in 
psychosis. Such knowledge may be useful in targeting pri-
mary prevention of metabolic comorbidities and the iden-
tification of optimal treatment strategies for each patient.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin.
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