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The cardiovascular and haematopoietic systems have fundamental inter-relationships during development, as well as in health and disease
of the adult organism. Although haematopoietic stem cells (HSCs) emerge from a specialized haemogenic endothelium in the embryo,
persistence of haemangioblasts in adulthood is debated. Rather, the vast majority of circulating stem cells (CSCs) is composed of bone
marrow-derived HSCs and the downstream haematopoietic stem/progenitors (HSPCs). A fraction of these cells, known as endothelial
progenitor cells (EPCs), has endothelial specification and vascular tropism. In general, the levels of HSCs, HSPCs, and EPCs are considered
indicative of the endogenous regenerative capacity of the organism as a whole and, particularly, of the cardiovascular system. In the last
two decades, the research on CSCs has focused on their physiologic role in tissue/organ homoeostasis, their potential application in cell
therapies, and their use as clinical biomarkers. In this review, we provide background information on the biology of CSCs and discuss in
detail the clinical implications of changing CSC levels in patients with cardiovascular risk factors or established cardiovascular disease. Of
particular interest is the mounting evidence available in the literature on the close relationships between reduced levels of CSCs and ad-
verse cardiovascular outcomes in different cohorts of patients. We also discuss potential mechanisms that explain this association. Beyond
CSCs’ ability to participate in cardiovascular repair, levels of CSCs need to be interpreted in the context of the broader connections be-
tween haematopoiesis and cardiovascular function, including the role of clonal haematopoiesis and inflammatory myelopoiesis.
...................................................................................................................................................................................................
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Biology of circulating stem/
progenitor cells

Circulating stem cells (CSCs) are a heterogeneous cellular popula-
tion within peripheral blood (PB) with different anatomical and devel-
opmental origins. Haematopoietic stem and progenitor cells (HSCs/
HSPCs) constitute the most abundant and best-characterized CSC
type. Haematopoietic stem cells generate all cells of blood lineage
while retaining the ability to divide and self-maintain.1 According to
the most recent theories of haematopoiesis, a heterogeneous popu-
lation of HSCs remains flexible to give rise to lineage-restricted pro-
genitors (HSPCs) through a continuum of undifferentiated states.2

Murine HSCs emerge in the aorta/gonad/mesonephron region of the
embryo. Specialized haemogenic endothelial cells in the ventral wall

of the dorsal aorta undergo endothelial-to-haematopoietic transition
and detach into the circulation, reaching the liver. There, HSCs prolif-
erate and expand before finally colonizing the bone marrow (BM)
and installing haematopoiesis within a dedicated and specialized
niche.3

Haematopoietic stem cells/HSPCs retain such migratory activity
during adulthood, where they freely circulate in the blood and can be
found in various organs (e.g. the thymus, intestine, liver, lungs, kid-
neys, skin).4–7 Although some of the mechanisms governing HSPC
migration are known, the reasons why they are released from the
BM, and their biological role in PB remain largely unknown. It has
been hypothesized that HSPC traffic allows their better relocation at
preferred BM niches, thereby helping normal haematopoiesis.
Indeed, the migration of HSPCs out of the BM follows a circadian
rhythm,8,9 and the continuous trafficking of HSPCs between the PB
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and BM is a mechanism to redistribute and replenish the depleted
BM niches.6 Further, circulating HSPCs have patrolling functions in
tissues where they tend to stay longer and help fight infections and
promote tissue repair when exposed to noxious stimuli.4

Haematopoietic stem cells unexposed to such stimuli return to PB
via the lymph.4 Finally, HSPCs can contribute to peripheral tissue
homoeostasis, for example, by regulating vascular repair and regener-
ation.4,10,11 This hypothesis, which is relevant to the relationship be-
tween CSCs and cardiovascular outcomes, is supported by the
aforementioned ontologic overlap between the haematopoietic and
vascular systems.12 The existence of haemangioblasts in post-natal
life has long been debated.13 Since the first ground-breaking descrip-
tion of endothelial progenitor cell (EPC) isolation from the adult
PB,14 there has been a debate on the persistence of these ancestral
progenitors in adulthood (Supplementary material online, Discussion
S1).15

Some investigators have hypothesized that, upstream of HSCs in
the stem cell hierarchy, embryonic-like cells persist in the adult or-
ganism.16 Such very small embryonic-like (VSEL) cells would be able
to differentiate into cells of the three germ layers, thereby providing
great regenerative potential. However, VSELs are extremely rare in
the circulation and their phenotype in humans is still elusive.17

Residing in the CD45negCD34bright population, VSELs probably over-
lap at least in part with the EPC progeny.18

Vascular smooth muscle cell (SMC) progenitors among CSCs has
been hypothesized, but such cells have been then redefined as ‘SMC-
like macrophages’.19 Biological implications of circulating SMC
progenitors have not been fully elucidated, being involved in either
reparative (e.g. angiogenesis) or pathologic (e.g. atherosclerosis and
fibrosis) processes in the cardiovascular system.

Several authors reported the ability of blood cell subtypes to act
as osteoprogenitors. The identity and origin of circulating osteopro-
genitors (COP) are described in Supplementary material online,
Discussion S2. Circulating osteoprogenitor may assume a pro-
reparative function (e.g. by differentiation into bone, fat, and cartilage)
or a detrimental effect (e.g. by inducing ectopic calcification). In the
cardiovascular system, COPs may be involved in the so-called bone-
vascular axis, by representing one of the links between bone disease
and vascular calcification.20

In summary, it should be assumed that most CSCs are haemato-
poietic in nature and based on some but not all data available, HSPCs
retain an overlap with or give rise to EPCs in adulthood as the hae-
mangioblast does in the embryo. However, endothelial potential of
adult HSPCs is incomplete, whereas circulating cells with true endo-
thelial differentiation capacity likely derive from the vasculature itself
(Figure 1). Other cells of haematopoietic origin, like monocytes-
macrophages, are endowed with great plasticity, being able to assume
endothelial-like, SMC-like, or pro-calcific potential. Such cells are de-
void of stem cell features but they nonetheless can be important
actors in cardiovascular homoeostasis.

Clinical implications of circulating
stem cells

Over the last two decades, CSCs have been extensively studied in
three main areas of cardiovascular research: (i) physiological

contribution to myocardial and vascular homoeostasis; (ii) experi-
mental and human cell therapies for the treatment of cardiac or per-
ipheral ischaemia; and (iii) clinical biomarkers for diagnosis and
prognosis (Figure 2). Although the present review is mostly focused
on the relationships between CSCs and cardiovascular outcomes,
we will briefly review the status of research in these three areas.

The ground-breaking discovery in 2001 that extra-cardiac cells re-
populate the infarcted myocardium21 has spawned a multitude of
studies on both the cardiovascular regenerative potential of BM-
derived cells and their therapeutic potential. The extent to which
BM-derived CSCs physically contribute to cardiovascular repair has
been redefined and appears to be much more limited than previously
believed (Supplementary material online, Discussion S3). There are,
nonetheless, several proof-of-concept studies investigating the rela-
tionships between CSCs and cardiovascular repair and regeneration.
Beyond their ability to physically become cardiomyocytes, CSCs
exert much of their activity via paracrine signals.22 Indeed, cell
suicide-based studies have shown that BM-derived cells recruited
after experimental acute myocardial infarction (AMI) need to remain
physically located within the myocardium for a short period of time23

and may no longer be required after they have exerted their para-
crine effect. The physical contribution of CSCs to peripheral endo-
thelial cell repopulation has also been debated, with different results
obtained in the ischaemic24–26 vs. the non-ischaemic25,27 microcircu-
lation and conductance arteries.21,22 Yet, most pro-angiogenic effects
of CSCs in peripheral ischaemia appear to be mediated by secretory
activity: for example, when injected in mice with hind-limb ischaemia,
exosomes from human CD34þ CSCs mimicked the beneficial activity
of their parent cells,28 thereby making the physical contribution of
CSC to the growing vasculature dispensable.

Over the years, preclinical findings with BM-derived CSCs, mainly
HSPCs and EPCs, have propagated several clinical trials of BM-
derived cell therapy for cardiac or peripheral arterial disease.
Although a detailed review of this topic is beyond the scope of this
article, in Supplementary material online, Discussion S4, we summarize
conclusions from the most recent meta-analyses of clinical trials.
Overall, positive results of cell therapy in chronic ischaemic heart and
peripheral arterial diseases support the scientific claim that CSCs are
involved in cardiovascular homoeostasis.

Identification and enumeration of
circulating stem cells in the clinical
context
The discovery that CSCs have the capacity for vasculogenic cell differ-
entiation and angiogenesis has prompted clinical translational studies
in human subjects.14 As detailed in Supplementary material online,
Discussion S5, there are two broad approaches for characterizing
CSCs in the clinical context: (i) culture or colony forming assays of PB
cells; and (ii) flow cytometric analysis of circulating mononuclear cells
expressing specific surface antigens that identify populations enriched
for CSCs.29 Culture assays are expensive, time consuming, and have
low throughput, but allow isolation of cells for further analyses. Flow
cytometry is a relatively inexpensive, rapid, and high-throughput
method for identifying and quantifying CSCs. In general, HSPCs are
identified based on surface expression of haematopoietic markers
CD34 and/or CD133. Further specification staining for VEGF
receptor-2 (or KDR) or the chemokine receptor CXCR4 identifies
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..cells with vascular tropism (including EPCs) and homing capacity, re-
spectively, but yields lower cell counts. Enumeration of more specific
but rarer CSC phenotypes (such as EPCs) is intrinsically burdened by
lower technical reliability,30 with no clear benefit in terms of clinical
prognostic information. To date, which CSC phenotype is most
strongly associated with diagnostic and prognostic utility remains un-
clear (Supplementary material online, Table S2). In the following sec-
tion, we discuss the clinical implications of changes in CSC levels with
the natural history of cardiovascular health and disease (Figure 3).

Cardiovascular risk factors and
circulating stem cells
The relationship between CSCs and cardiovascular disease (CVD)
risk factors is complex.31–42 Advancing age, one of the strongest
determinants of cardiovascular risk, correlates inversely with CSC
function and number.32,33 Leucocyte telomere length, a marker of
biological aging, is also correlated with CSC counts.34 In general, this
reflects the well-known age-related changes occurring in the haem-
atopoietic system.43 In a recent study of over 2500 subjects, an over-
all age-related decline in CSC counts was found, but such decline was
observed only in patients with multiple cardiovascular risk factors.
In contrast, there was no apparent decline of CSCs with age among
healthy individuals free of cardiovascular risk factors.31 Moreover,
young subjects with risk factors had higher CSC counts compared to
age-matched healthy subjects, but a similar risk factor burden in older

subjects was associated with a decline in CSCs.31 This seems to imply
that risk factor exposure at a young age may stimulate the BM to re-
lease CSCs into the peripheral circulation, presumably in response to
the risk factor-mediated vascular injury. After decades of sustained
mobilization, the endogenous reparative potential may be exhausted,
and the CSC count then declines. This model is supported by experi-
mental data demonstrating that the atheroprotective and vascular
reparative effects of CSCs declines with both aging and prolonged
exposure to cardiovascular risk factors in a murine model of athero-
sclerosis.44 In the clinic, where most patients have advanced age and
multiple risk factors, this adverse impact on BM-derived CSCs is
thought to limit effectiveness of autologous cell therapies.45

Among non-modifiable risk factors, biological sex and ethnicity
show complex relationships with CSC counts that can offer insight
into the association between demographics and cardiovascular out-
comes (Supplementary material online, Discussion S6).

Exposure to virtually any of the known modifiable cardiovascular
risk factors impacts CSC or EPC-like phenotypes. For example, accel-
erated CSC senescence and impaired endothelial repair capacity
have been demonstrated among subjects with essential hyperten-
sion.37,38 Cigarette smoking impairs CSC functional activity and
smoking cessation increases circulating CSCs among those who
smoke chronically.39,40 Oxidized low-density lipoprotein induces
human EPC senescence in vitro as well.42 Diabetes is one of the trad-
itional risk factors most strongly associated with quantitative defects
and functional impairment of CSCs, including EPCs.46–48 Several

Figure 1 Origin and fate of circulating stem cells in the vascular system. In the embryo, haematopoietic stem cells arise from the haemogenic endo-
thelium. This haemato-vascular overlap explains why haematopoietic stem cell, haematopoietic stem/progenitor cells, and endothelial progenitor
cells are endowed with vascular tropism. In the adult, haematopoiesis transfers to the bone marrow, where two stem cell compartments, haemato-
poietic stem cells, and mesenchymal stem cells, contribute to circulating stem cells. Circulating osteoprogenitors can arise from both haematopoietic
stem/progenitor cells and mesenchymal stem cells and may contribute to ectopic vascular calcification observed within advanced atherosclerotic pla-
ques. In parallel, the arterial wall contains a hierarchy of vascular stem cells that can be isolated from peripheral blood as endothelial colony forming
cells. While the endothelial differentiation capacity of endothelial colony forming cell is well-established in vitro and in vivo, it is probably less efficient
for endothelial progenitor cell and haematopoietic stem/progenitor cell (question mark).
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studies have consistently reported a reduction of CD34þ CSCs and
other progenitor cell phenotypes in the PB of patients with Type 1 or
2 diabetes vs. controls.49 This alteration occurs early in the natural
history of Type 2 diabetes, is only partially reversible with glucose
control,50 and becomes more profound in long-standing complicated

diabetes.51 Paradoxically, in overweight/obese individuals, an increase
in CSC counts was shown to predict worsening insulin resistance.52

Again, this suggests that a transient early phase of BM stimulation to
release CSCs is associated with worse outcomes and then followed
by a diseased state of CSC pauperization.

CSC

angiogenesis

endothelial
repair

Physiological role

Cell therapies

cardiac / peripheral
ischemia

Diagnos�c / prognos�c use

associa�on

biomarker

outcome

Figure 2 Major topics in circulating stem cell research. Three areas of research related to bone marrow-derived circulating stem cells include ex-
ploration of their (i) physiologic role in ischaemia, angiogenesis and vascular repair; (ii) therapeutic potential for treatment of cardiac or peripheral is-
chaemia; and (iii) utility as diagnostic and/or prognostic markers.
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Figure 3 Circulating stem cells and the natural history of atherosclerosis. Changes in circulating stem cells throughout the lifespan with either
healthy aging or aging with cardiovascular risk factors or cardiovascular disease. The green line shows no appreciable age-related decline in circulating
stem cell in individuals free of cardiovascular risk factors, with an ability to mobilize circulating stem cells during injury. The red line shows age-related
trends in circulating stem cells in individuals exposed to cardiovascular risk factors or cardiovascular disease, characterized by a higher circulating
stem cell level when young due potentially to risk factor-mediated compensatory mobilization, followed by progressive age-related decline due to ex-
haustion, and an impaired mobilization response to injury. CVD, cardiovascular disease.

4274 G.P. Fadini et al.



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
Owing to the different methods and populations investigated in

each study, it is hard to establish a hierarchy of risk factors in
terms of their negative impact on CSCs. However, it is important
to remember that multiple cardiovascular risk factors cluster to-
gether in the same patients. The effects of combined risk factors
on CSCs have been examined in the setting of the metabolic syn-
drome: increasing number of metabolic syndrome components
was linearly related to a progressive decline in CD34þ CSCs,35

which may be related to systemic inflammation.35,36,41 Thus, com-
bined rather than individual effects of risk factors can restrict the
number of CSCs and drive the subsequent development or pro-
gression of CVD.

Circulating stem cells among patients
with subclinical and established
cardiovascular disease
Exposure to cardiovascular risk factors leads to subclinical CVD,
such as endothelial dysfunction, estimated as impaired arterial flow-
mediated dilation, increased carotid intima-media thickness (CIMT),
and development of coronary artery calcifications. Higher numbers
of CSC-colony forming units were associated with better endothelial
function,53 and circulating counts of CD34þVEGFR2þ cells were in-
versely correlated with CIMT,54,55 both well-established markers of
increased cardiovascular risk.56,57

Subclinical CVD progresses to symptomatic CVD over time
and manifests as coronary artery disease (CAD), heart failure
(HF), peripheral artery disease (PAD), or cerebrovascular disease.
In general terms, CSC counts and function continue to decline
with this progression.35,58 The higher the degree of atherosclerot-
ic plaque stenosis in the peripheral and cerebrovascular district,
the lower the levels of circulating CSCs/EPCs (Figure 3).59 Yet,
many acute events are caused by unstable plaques that are not ne-
cessarily the most stenotic. A double-edged role has been theor-
etically proposed for CSCs in plaque stability, being either
protective by promoting endothelial integrity or detrimental by
inducing intra-plaque angiogenesis and abrupt plaque growth.60

The observation that EPC injection can exacerbate unstable pla-
que features in mice is not substantiated by data from cell therapy
trials in humans.61 Although some differences in CSC, such as
higher CXCR4 expression, is indeed associated with plaque in-
stability also in humans,62 the exact pattern of CSC alterations in
the presence of unstable plaques is unknown.

However, in the setting of an acute ischaemic event, such as
AMI or stroke, CSCs are mobilized from the BM to PB.9,63–67

Ischaemia and tissue injury trigger an acute inflammatory response
with hypoxia-dependent up-regulation of hypoxia inducible fac-
tor-1 alpha (HIF-1a) that in turn stimulates expression of SDF-1a/
CXCL12, a homing signal for recruitment of CSCs to ischaemic
tissues.68,69 HIF-1a activation also promotes synthesis and release
of VEGF that circulates in higher concentrations and stimulates ni-
tric oxide-dependent increase in matrix metallopeptidase 9 in the
BM, triggering release of CSCs into the circulation.70–72This
increased supply of CSCs to the ischaemic tissues should enhance
vascular and tissue repair.73

Accordingly, in patients presenting with AMI, HSPCs have been
shown to be �25% higher and EPCs were more than doubled

compared to those with stable CAD,74 findings substantiated in other
studies.63–65 Mobilization of CSCs starts within a few minutes after
AMI, peaks after several days and normalizes within 60 days.64

Repetitive episodes of transient myocardial ischaemia are associated
with adaptive processes that include increased collateral forma-
tion,75,76 a phenomenon that involves recruitment of local cells and
BM-derived CSCs for vascular regeneration.14,77 In a clinical investiga-
tion of patients with CAD with and without myocardial ischaemia
during stress testing, patients without ischaemia had a 15% increase
in CD34þCXCR4þ CSC count after exercise, whereas patients with
myocardial ischaemia had an 18% reduction post-exercise, and this
CSC decrease was proportional to the magnitude of ischaemia and
to the change in circulating SDF-1a level.78 Thus, impaired availability
of BM-derived CSCs after acute ischaemia may well result in worse
outcomes, as discussed later.

Circulating stem cells in peripheral
arterial disease and heart failure
In patients with diabetes, who are particularly at risk for PAD,79 a
strong progressive reduction of CSCs and EPCs was found with
increasing severity of atherosclerosis obliterans and carotid athero-
sclerosis.35 Peripheral blood levels of CD34þ HSPCs and
CD34þVEGFR2þ EPCs were found to be reduced in patients with
evidence of both CAD and PAD compared to subjects with CAD
alone,80 findings that were confirmed by other studies.35,81,82

Subjects with low levels of both CD34þ and CD34þVEGFR2þ

counts had a 65% higher odds of having PAD and CAD compared to
those with CAD, indicating that reduction in EPC populations, in par-
ticular, is associated with more extensive multi-site atherosclerosis.80

There have been conflicting reports on the relationships between
CSC numbers and presence of HF or its severity in small popula-
tions.83–87 However, in a study involving over 1500 patients, com-
pared to patients without HF, those with HF had significantly lower
circulating levels of CD34þCXCR4þ CSCs and their levels correlated
with the severity of HF estimated as New York Heart Association
functional class, presence of diastolic dysfunction, left atrial size, pul-
monary hypertension, and brain-derived natriuretic peptide (BNP)
levels.88 Patients with non-ischaemic cardiomyopathy had the lowest
levels of CD34þCXCR4þ CSC counts, possibly due to the lack of
CSC mobilization in response to ischaemic episodes. Similar level of
CSC reduction was observed in patients with preserved or reduced
ejection fraction.88

Circulating stem cells and outcomes in
patients with cardiovascular disease
Several investigators have studied the prognostic significance of
CSC counts among patient with cardiovascular risk factors, CAD,
or other cardiovascular conditions. These have been summarized
in a recent meta-analysis.89 An updated summary of studies with
sample size >100 subjects is provided in Supplementary material
online, Table S1. Notwithstanding the differences in the assays
employed, studies have uniformly reported that CSC depletion is
independently associated with poor outcomes among patients
with established CAD or those at high risk for CVD. In one of the
largest studies to date, including over 900 patients undergoing
coronary angiography for suspected or confirmed CAD, low
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CD34þ, and CD34þCD133þ CSCs were independently associ-
ated with a two- to three-fold higher mortality risk over a 22-
month follow-up.90 In patients presenting with an acute coronary
syndrome, low CD34þ, CD34þCD133þ, and CD34þCXCR4þ

CSCs, but not CD34þVEGFR2þ EPCs, had similar predictive value
for recurrent AMI or death.74 The magnitude of
CD34þCD133þVEGFR2þ EPCs mobilization during ischaemic in-
jury or infarction appears to correlate with the magnitude of tis-
sue recovery including recovery of left ventricular function and
mortality after AMI, or improvement of neurological function after
stroke.66,67,74,91–93

As noted above, a low CD34þVEGFR2þ EPC count was an inde-
pendent predictor of PAD prevalence, and also predicted future ad-
verse cardiovascular and limb events.80 In HF, studies have reported
that low CSC counts are associated with all-cause and cardiovascular
mortality88,94: low CD34þCXCR4þ CSC counts in HF patients
emerged as independent predictors of premature mortality; low
CD34þVEGFR2þ EPC levels predicted adverse outcomes in the
heart failure with preserved ejection fraction (HFpEF) but not in the
heart failure with reduced ejection fraction (HFrEF) population.

The prognostic value of CSCs against the occurrence of cardiovas-
cular events has also been studied in patients with aortic stenosis, dia-
betes, metabolic syndrome, and end-stage renal disease
(Supplementary material online, Table S1). Low CD34þVEGFR2þ

EPCs portended adverse cardiovascular outcomes in patients with
aortic stenosis.95 Additionally, low CD34þ, CD133þ, and
CD34þCD133þ HSPCs are independently associated with a nearly
two-fold risk of cardiovascular events in diabetic individuals,96 and
CSC depletion was associated with adverse cardiovascular outcomes
among Asian patients on haemodialysis.97,98 Figure 4 shows the forest

plot of an updated meta-analysis of longitudinal studies involving 100þ
patients (from Supplementary material online, Table S1) and reporting
poolable estimates of the hazard ratio for cardiovascular events, car-
diovascular death, and all-cause death associated with low CSC levels.

To evaluate to what extent CSC levels improve cardiovascular risk
stratification, an early analysis of pooled patient-level data from five
longitudinal studies reported that baseline CSC count, when added
to a standard risk assessment model, improved discrimination of
patients who will undergo a future cardiovascular event.99 To this
end, specific metrics were used to estimate discrimination of patients
who experienced adverse cardiovascular outcomes compared to
those who did not, demonstrating that CSC measures helps in risk
stratification. These include C-statistics applied to longitudinal data,
net reclassification improvement (NRI) and the integrated discrimin-
ation improvement index.100 Based on NRI, addition of CSC count
to a fully adjusted risk model including hsCRP allowed a better reclas-
sification of up to 20% of patients into the appropriate risk cat-
egory.99 This finding, confirmed by others,90 supports the potential
use of CSCs in improving risk prediction. Although further large, pro-
spective, long-term studies are needed to confirm usefulness of
CSCs to improve risk stratification, we envisage a future when CSCs
will be incorporated into clinical practice for more precisely predict-
ing individual risk of adverse cardiovascular outcomes.

Impact of cardiovascular
pharmacotherapies and lifestyle
interventions on circulating stem cells
Pharmacologic intervention on cardiovascular risk factors is able to
modulate CSC counts and activity.101 For example, antihypertensive
agents, including angiotensin-II receptor blockers,102,103 angiotensin
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1.56  (1.21, 2.00)        13.8

1.90  (1.31, 2.77)        6.8

1.42  (1.27, 1.59)        42.5
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0.0      0.5      1.0        1.5     2.0       2.5      3.0
Hazard ratio

Meta-analysis forest plot

Figure 4 Prognostic role of circulating stem cells: an updated meta-analysis. The forest plot shows pooled hazard ratios derived from individual
studies investigating the association between low levels (below specific cut-offs) of circulating haematopoietic stem/progenitor cells and endothelial
progenitor cells and cardiovascular events (mostly defined as atherosclerotic events or cardiovascular death), cardiovascular death, or all-cause
death. Pooled hazard ratio, their 95% confidence intervals and attributed weights, calculated using the random effect model are shown. Tests for het-
erogeneity among summary statistics (Q and I2) were not statistically significant. An expanded version of the figure is provided in the Supplementary
material online, Appendix.
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converting enzyme inhibitors,104 and calcium channel blockers,105

were all able to increase CSC counts and activity. Atorvastatin treat-
ment in patients with stable CAD augmented CSC number and func-
tion, underlining another pleiotropic effect of statins.106 Notably,
statins may exert a wider variety of effects on cellular stemness prop-
erties, not limited to CSCs.107,108 Optimization of glycaemic control
in diabetes can restore CSC levels, especially EPCs, towards levels
seen in non-diabetic individuals. This effect is independent from the
glucose lowering strategy used, examples being insulin or SGLT-2 in-
hibitor use,109,110 but glucose control takes up to 6 months to trans-
late into an improvement in EPC levels. In contrast, DPP-4 inhibitors
can increase EPC levels in just a few days by raising PB concentrations
of SDF-1a and generating an SDF-1a gradient from the BM to PB that
allows CSCs to be readily mobilized.16,111,112

Among lifestyle interventions, smoking cessation seems to be able
to revert CSC reduction observed in cigarette smokers.39 Physical
activity has the potential to increase CSC levels,113 especially in
patients with CVD.114 The mechanisms involved are largely un-
known, but the different effects exerted by different exercise types
and intensity suggest that ischaemia is needed to achieve cell mobil-
ization from the BM.115 Finally, weight loss augments the lower CSC
count and function observed in obese subjects.116,117

The opportunity to rescue CSC levels in patients with or at risk
for CVD suggests that the cardiovascular protection exerted by risk
factor control is at least in part mediated by CSCs. We wish to
underline that causality in human studies linking CSCs to adverse
events is not yet established. Beyond animal experiments, causality
assessment in clinical research can be derived from Mendelian ran-
domization studies or specific therapeutic approaches. Genetic
determinants of CSC levels are largely unknown, prohibiting
Mendelian randomization. Also, there is no firm demonstration of
whether and how therapeutic strategies aimed at increasing CSCs
have direct cardiovascular protective effects. Alternatively, by meas-
uring CSC levels at baseline, during and after pharmacologic and non-
pharmacologic interventions against cardiovascular risk, one could
verify whether patients showing a positive CSC response are those
most protected from adverse outcomes.

Mechanisms linking circulating
stem cell with cardiovascular
outcomes

The links between reduced levels of CSCs and poor cardiovascular
outcomes could be easily explained by the wealth of observations
that BM-derived CSCs can contribute to cardiac and vascular hom-
oeostasis either by trans-differentiation or through secretion of fac-
tors that regulate local tissue responses to damage. However, a
general scepticism has developed around the possibility that BM-
derived cells truly participate in cardiovascular repair. Thus, in the
next paragraphs, we discuss the role of CSCs within a more complex
interplay between the haematopoietic and cardiovascular systems.

Stem cells, myelopoiesis, and
cardiovascular disease progression
Atherosclerosis is associated with elevations in circulating neutro-
phils and inflammatory monocytes.118–120 Mounting evidence

suggests that enhanced haematopoiesis with a myeloid bias contrib-
utes to the development and progression of CVD by increasing the
number of inflammatory leucocytes,121 involving activation and mo-
bilization of HSCs/HSPCs (Figure 5). In hypercholesterolaemia,
increased accumulation of cholesterol in BM-HSC membrane enhan-
ces sensitivity to IL-3 and GM-CSF, stimulating myelopoiesis.122

Hypercholesterolaemia also increases G-CSF levels, allowing greater
HSC mobilization and extra-medullary haematopoiesis, especially in
the spleen.123 This state in mice has its striking parallel in the transient
increase of CSC levels observed in patients exposed to risk factors at
a relatively young age. Quite interestingly, unstable atherosclerotic
plaques that eventually rupture and cause acute events may further
fuel myelopoiesis in a feed forward cycle.124 In addition to hyperchol-
esterolaemia, other risk factors contribute to CVD via mechanisms
involving myelopoiesis and HSC mobilization. Hypertension is associ-
ated with enhanced haematopoiesis and elevated leucocyte
counts.125–127 Imbalances between the ‘pro-inflammatory sympathet-
ic’ and ‘anti-inflammatory parasympathetic’ arms of the autonomic
nervous system in spontaneously hypertensive rats128–130 drives
HSC mobilization.131 Also, neutrophils in the BM express b-adrener-
gic receptors, whose stimulation results in secretion of various pro-
teases that allow HSC mobilization and subsequent leucocytosis.131

Studies also implicate the renin–angiotensin system (RAS) in the
regulation of myelopoiesis.132,133

Supplementary material online, Discussion S7 illustrates how activa-
tion of the sympathetic nervous system in various clinical conditions,
including stress and sleep deprivation, influences myelopoiesis and
HSPC mobilization, and how this can affect cardiovascular risk.

Diabetes mellitus is associated with higher number of leucocytes
including neutrophils and monocytes with increased tendencies to
enter atherosclerotic plaques and drive disease progression.134–137

Hyperglycaemia sustains leucocytosis via proliferation of BM myeloid
progenitors, 135 driven by damage associated molecular patterns
released from activated neutrophils. In Type 2 diabetes and obesity,
myelopoiesis is rather driven by inflammatory cytokines (e.g. IL-1b)
released by adipose tissue macrophages.138

Inflammation, myelopoiesis, and
circulating stem cell defects
The mechanisms driving reduction of CSCs in patients at risk for or
with CVD have not been clearly dissected. However, in the setting of
diabetes, the extremely consistent reduction in CSCs appears to
emerge from an impaired mobilization from the BM to PB.139

Diabetes induces an extensive remodelling of the BM-HSC niche,
with microangiopathy, sympathectomy, and fat infiltration.47 These
alterations could be sufficient to impair HSPC traffic, which relies on
the specialized BM microvasculature and sympathetic innervation.
Diabetes does not lead to a pauperization of intra-marrow HSPCs,
which can be readily mobilized by blocking CXCR4.140 Yet, in experi-
mental and human diabetes, physiologic CSC mobilization by tissue
ischaemia or growth factors (like G-CSF) is inhibited.139 Recently, it
has been found that hyperglycaemia-induced myelopoiesis drives the
expansion of BM macrophages, which produce excess amounts of
oncostatin M, acting against HSPC mobilization. Blocking myelopoie-
sis, oncostatin M production or signalling was able to restore normal
mobilization in experimental diabetes.141 These new findings provide
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a link between chronic low-grade inflammation typically observed in
diabetes and CSC defects. Thus, the underlying inflammatory state,
along with low CSC levels, would altogether be responsible for accel-
erating atherosclerosis and cardiovascular events. Although this path-
way has been demonstrated in the setting of overt hyperglycaemia, it
is possible that inflammation elicited by other triggers commonly pre-
sent in patients with cardiovascular risk factors exert similar effects
on CSCs.

Clonal haemopoiesis, circulating stem
cells, and cardiovascular disease
With biological aging, DNA of the ever-replicating HSPCs undergoes
somatic mutations in hotspot genes (typically DNMT3A, TET2,
ASXL1, and JAK2), resulting in the so-called clonal haematopoiesis of
indeterminate potential (CHIP). Most patients with CHIP will never
develop cancer, but display a two- to four-fold higher risk of CAD,
stroke, and CVD death.142 The mechanisms linking CHIP with CVD
are still being investigated, but recent evidence in mouse models sug-
gest that Tet2 mutation drives inflammatory myelopoiesis that in turn
propagates to atherosclerotic plaques.143 Interestingly, not only
CHIP but also epigenetic modulation of stem cells, including those
provided by microRNAs, can modify their differentiation trajectories
to pathways linked with cardiovascular disease.144,145 No study has
so far explored the interplay among CHIP, epigenetic changes, CSC
levels, and cardiovascular outcomes, but we speculate that myelopoi-
esis resulting from CHIP reduces CSCs with mechanisms similar to
those demonstrated in diabetes.146 Thus, excess myelopoiesis
emerges as a possible common denominator of the link between

CSCs and adverse cardiovascular outcomes. Of note, myeloid bias,
i.e. preferential differentiation of HSPC towards the myeloid vs. the
lymphoid lineage, is a typical feature of aging.147 Thus, CHIP, myelo-
poiesis, and reduced CSCs may be biologically interconnected, there-
by contributing to adverse cardiovascular outcomes by common and
independent mechanisms.

Next steps to leverage circulating
stem cells as a cardiovascular risk
biomarker

Several studies have shown that measuring CSC levels can yield infor-
mation useful for cardiovascular risk stratification. There are some
reasons why CSCs have not yet been incorporated into clinical prac-
tice as a risk biomarker (Supplementary material online, Table S2).
First, CSCs need to be quantified in fresh blood samples using expen-
sive flow cytometry instruments that are not readily available in all
clinical centres. In addition, an agreement on which is the CSC
phenotype provided with the greatest prognostic power is lacking.
Although inter-laboratory standardization exists for the quantifica-
tion of CD34þ HSPCs,148 it has never been applied in the study of
cardiovascular outcomes on a large scale. These technical issues dif-
ferentiate CSCs from biomarkers that can be easily measured in fro-
zen plasma/serum samples with inexpensive assays, like hsCRP. Even
detecting CHIP, although still expensive, can be performed in frozen
blood samples at core laboratories. Availability of newer fixation
reagents for delayed analysis149–151 and simplified cytometry

Bone 
marrow

Atherosclerosis

bo
ne Spleen

HSC

HSPC

progenitor

Mature cells

CSC

mobiliza�on

Risk factors

Diabetes

Hypercholest.

Hypertension

Smoke

SNS ac�va�on

Figure 5 Interplay among risk factors, stem cells, myelopoiesis, and atherosclerosis. Most traditional risk factors for atherosclerotic cardiovascular
disease have been associated with leucocytosis due to excess myelopoiesis in the bone marrow. With the exception of diabetes, risk factors also re-
sult in an enhanced mobilization of circulating stem cells from the bone marrow to peripheral blood. Diabetes instead causes an impaired ability to
mobilize stem cells and a depletion of circulating stem cells. Circulating stem cells can be buffered in the spleen, where haematopoietic stem cells and
haematopoietic stem/progenitor cells establish extra-medullary haematopoiesis, providing a peripheral reservoir of inflammatory cells. Thus, the ex-
tent to which risk factors stimulate haematopoietic stem/progenitor cell mobilization may not be related to circulating stem cell levels in the circula-
tion. Mature inflammatory cells generated in the bone marrow and/or the spleen can reach the vessel wall and contribute to atherosclerosis
development or progression. HSC, haematopoietic stem cells; HSPC, haematopoietic stem and progenitor cells; SNS, sympathetic nervous system.
Green arrows indicate stimulatory effects of risk factors, whereas red arrows indicate inhibitory effects.
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..instruments152 will allow collaborative efforts to collect CSC data
from large multicentre and multinational cohorts of diversified pa-
tient populations. Ideally, development of rapid point-of-care diag-
nostics for measuring CD34þ cell quantification would really make
CSCs a clinical-grade biomarker.

Conclusions and future directions

The intimate ontological relationships between the haematopoietic
and vascular systems leaves a legacy in the adult organism, where
BM-derived cells play a major role in regulating cardiac and vascular
pathology. Among such cells, CSCs have been studied in physiologic-
al, therapeutic, and prognostic settings. Supplementary material on-
line, Table S2 provides a summary of what we believe will be future
topics on the study of CSCs in the cardiovascular system. We ac-
knowledge that the concepts of cardiovascular regeneration and the
contribution of CSCs have evolved over the last two decades.
Technological developments have illustrated drawbacks in previous
research findings, warranting rigorous scrutiny. Substantial technical
and conceptual challenges remain and, once addressed, will further
clarify the complex interplay between CSCs and cardiovascular dis-
ease. Investment in this field has the potential for transformative
advancements in basic and clinical knowledge. In addition to under-
standing the biological contribution of CSCs to cardiovascular hom-
oeostasis and repair, measurement of CSCs in the clinic may improve
cardiovascular risk stratification in humans throughout their lifespan.

Supplementary material

Supplementary material is available at European Heart Journal online.
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