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Synopsis The complex interplay between form and function forms the basis for generating and maintaining organismal

diversity. Fishes that rely on suction-feeding for prey capture exhibit remarkable phenotypic and trophic diversity. Yet

the relationships between fish phenotypes and feeding performance on different prey types are unclear, partly because the

morphological, biomechanical, and hydrodynamic mechanisms that underlie suction-feeding are complex. Here we

demonstrate a general framework to investigate the mapping of multiple phenotypic traits to performance by mapping

kinematic variables to suction-feeding capacity. Using a mechanistic model of suction-feeding that is based on core

physical principles, we predict prey capture performance across a broad range of phenotypic trait values, for three

general prey types: mollusk-like prey, copepod-like prey, and fish-like prey. Mollusk-like prey attach to surfaces,

copepod-like prey attempt to escape upon detecting the hydrodynamic disturbance produced by the predator, and

fish-like prey attempt to escape when the predator comes within a threshold distance. This approach allowed us to

evaluate suction-feeding performance for any combination of six key kinematic traits, irrespective of whether these trait

combinations were observed in an extant species, and to generate a multivariate mapping of phenotype to performance.

We used gradient ascent methods to explore the complex topography of the performance landscape for each prey type,

and found evidence for multiple peaks. Characterization of phenotypes associated with performance peaks indicates that

the optimal kinematic parameter range for suction-feeding on different prey types are narrow and distinct from each

other, suggesting different functional constraints for the three prey types. These performance landscapes can be used to

generate hypotheses regarding the distribution of extant species in trait space and their evolutionary trajectories toward

adaptive peaks on macroevolutionary fitness landscapes.

Introduction

The complex interplay between form and function

forms the basis for the generation and maintenance

of organismal diversity. This diversity may be under-

stood in terms of the myriad ways organisms are

able to exploit resources in the environment

(Wainwright 2009; Pigot et al. 2016). Although se-

lection targets the fitness of the organism, it does so

by affecting the distribution of phenotypic traits that

influence the capacity of the organism to accomplish

the tasks that enable it to meet the essential chal-

lenges of growth, survival, and reproduction

(Kingsolver and Pfennig 2007). Consequently, under-

standing how complex functions evolve is contingent

upon the ability to predict how interactions between

these traits affect performance (Benkman 2003;

Oufiero et al. 2012).

In this paper, we define performance as the ability

of an organism to carry out fitness-determining

tasks. Because performance is the product of the
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interplay between phenotypic traits, it is possible to

map each combination of traits to its respective per-

formance, to produce a “performance landscape.”

Although these high-dimensional performance spaces

can only be visualized as two-dimensional (2D) or

3D constructs, a performance landscape is the com-

plex multivariate relationship between phenotypic

traits and performance (Arnold 1983). In the case

of morphological traits, this is often referred to as

the morphospace. However, in addition to morphol-

ogy, traits that underlie performance also include

behavioral or kinematic traits. We therefore refer

to this space as a “trait space,” and the set of all

possible combinations of measured traits represents

the potential phenotypic diversity contained within

the trait space. Notably the potential and realized

diversity of trait combinations differ, because the re-

alized diversity is limited by adaptive, developmental,

and biomechanical constraints.

Performance landscapes are conceptually related

to adaptive landscapes, except that performance

landscapes capture a specific behavior, which might

have limited effects on fitness. Conversely, the adap-

tive landscape summarizes all performances affected

by the measured phenotypic traits. Because the slope

of the adaptive surface corresponds to the selection

gradient and the curvature to the expected trait var-

iation in a population (Lande and Arnold 1983;

Arnold 2003), the adaptive landscape could link

functional and evolutionary biology (Arnold 1983).

The topography may signal the existence of con-

straints or drivers of evolution, in the form of pos-

itive or negative slopes, allowing the adaptive

landscape to be used to examine potential evolution-

ary trajectories. While the adaptive landscape was

originally conceived of in terms of genotype frequen-

cies in a population (Haldane 1927, 1954; Wright

1932), the concept was subsequently extended to en-

compass morphological traits (Simpson 1953; Lande

1976, 1979).

The adaptive landscape does not address perfor-

mance per se, but selection on phenotypic traits is

often inferred in terms of their influence on perfor-

mance (Arnold 1983, 2003; Kingsolver and Huey

2003). For example, adaptive peaks for the morphol-

ogy of the legs, tail, and body of Caribbean anoles

are associated with different microhabitats and are

interpreted as adaptations for locomotion in each

specific microhabitat (Mahler et al. 2013).

Similarly, variation in bill morphology of

Galapagos finches (Boag and Grant 1984; Grant

1986) or the craniofacial morphology of

Cyprinodon pupfishes (Martin and Wainwright

2013) corresponds to diet specialization and are

inferred as adaptations for different trophic niches.

Clearly, using Caribbean anoles for the mapping of

leg and body morphology to climbing or running

performance or Cyprinodon fishes for the mapping

of jaw morphology to bite force, it is possible to

generate performance landscapes for these organ-

isms. Such performance landscapes would only esti-

mate one component of fitness, a single task such as

capturing food items, and cannot be used to estimate

selection gradients or expected trait variation in the

population. However, they can elucidate the regions

of trait space where trait combinations result in

higher performance and identify regions where per-

formance in one task trades-off with performance at

another. Furthermore, a comparison of the realized

trait space and the performance landscape can be

used to generate hypotheses regarding the evolution-

ary processes that affect the distribution of extant

species, i.e., what role has performance (at a specific

task) played in shaping extant phenotypic distribu-

tions of species? For example, if the realized trait

space overlaps regions of high performance, this sup-

ports the hypothesis that selection on this combina-

tion of traits is affected by selection on the associated

performance task. Conversely, if the realized trait

space overlaps regions of low performance, selection

on this combination of traits may be primarily

driven by selection for other performance tasks, these

traits may be shaped by indirect selection on other

traits, or the phenotypic response to selection is

hampered by developmental, biomechanical, or other

constraints.

Here we describe our process for modeling the

performance landscape for suction-feeding in all

fishes. In the first step, we detail the theoretical prin-

ciples behind the performance landscape and how

kinematics governs feeding success for during

suction-feeding. We discuss how this can inform a

description of the landscape with respect to key mor-

phological and kinematic traits. We then describe a

method that allows us to evaluate the topography of

the landscape and, importantly, to identify and char-

acterize its peaks. Finally, we characterize regions of

kinematic trait space during suction-feeding that are

associated with high performance and compare these

regions among prey types.

Adaptive landscapes and performance

The action of natural selection on populations drives

the evolution of phenotypes, and ultimately that of

organismal diversity. One approach to understanding

the macroevolutionary trajectories leading to extant

organismal diversity is to infer the mode of trait
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evolution using the distribution of trait variation

across extant, closely-related species. Such evolution-

ary models are frequently implemented by fitting

continuous trait data to an Ornstein–Uhlenbeck

type model, which attempts to model the change

in trait values through time as the result of selection

and drift. The effect of drift is modeled as a

Brownian motion process operating on the trait,

whereas selection is modeled as the function of the

selection strength and the distance of a trait from the

optimum value of the trait. Thus, the model esti-

mates three parameters: the rate of Brownian motion

r, selection strength a, and the optimum value h
(Felsenstein 1985; Martins 1994; Butler and King

2004). It is possible to construct and compare mul-

tiple models of increasing complexity, each with an

increasing number of peaks. Thus, a model with no

peaks can be compared with a one- or two-peaks

model, comparing scenarios that trait evolution is

dominated by drift, or by attraction to one or two

adaptive peaks. The model is parameterized using a

combination of morphological and possibly behav-

ioral or ecological descriptions, and a phylogenetic

hypothesis pertaining to the clade’s history. These

methods can be fitted either with (Price et al.

2011; Konow et al. 2017) or without (Ingram and

Mahler 2013) reference to an a priori hypotheses

specifying which lineages correspond to particular

peaks. Note that implementations of these models

do not assume an a priori location of the adaptive

peaks or selection regimes, and also eschew quanti-

fication of fitness or fitness-related functions

(Ingram and Mahler 2013; Mahler et al. 2013;

Pfaender et al. 2016; Rossoni et al. 2019).

These types of models have yielded considerable

success, but also possess limitations. With the under-

lying assumption of these models being that popu-

lations evolve toward adaptive peaks, the models can

only infer peaks from the data and are severely lim-

ited in their ability to locate peaks in unoccupied

regions of trait space (e.g., Stayton 2019). When

models rely on user-provided reference to an a priori

hypotheses specifying which lineages correspond to

particular peaks (e.g., by coding ecological and/or

trophic niches using SIMMAP mapping; Collar

et al. 2009; Price et al. 2011), the OU model cannot

account for the possibility of multiple peaks for the

same coded niche, and could infer a peak that rep-

resents an intermediate value between the real peaks.

Furthermore, they are limited to the location of

peaks and are unable to identify valleys which may

constrain evolution. Other limitations of the OU

models include the unrealistic modeling of the OU

“regime” as an infinite basin of attraction with a

Gaussian distribution, and the fact that they are of-

ten limited to univariate data, although some gener-

alizations exist (Ingram and Mahler 2013; Clavel

et al. 2015; Khabbazian et al. 2016).

We can narrow these gaps in our understanding

of the proximate source of trait space occupation by

quantifying the relationship between morphology

and performance by creating a performance land-

scape. While adaptive landscapes illustrate how pop-

ulation fitness varies across trait space, performance

landscapes illustrate how the performance of individ-

uals (at specific tasks) varies across trait space.

Notably, performance landscapes do not indicate

the importance of these tasks to population fitness

(Arnold 2003). Since the same traits are likely to

affect the performance of multiple tasks, and possibly

in different ways, assessing the selection on pheno-

type may entail quantifying the effect of performance

on a range of related tasks (Dickson and Pierce 2019;

Stayton 2019).

Yet performance landscapes can provide useful in-

formation regarding features of the adaptive land-

scape. For example, they may reveal the presence

of multiple performance peaks, i.e., a many-to-one

relationship between form and function. Many-to-

one mapping is an inherent aspect of complex func-

tions when the outcome depends on more than two

parameters, such that multiple solutions can yield

the same result (Wainwright et al. 2005;

Wainwright 2009; Mu~noz 2019). Many-to-one map-

ping has been demonstrated in the case of tree seed-

lings (Marks and Lechowicz 2006), frog legs (Moen

2019), and squirrel jaws (Zelditch et al. 2017), and

can be a driver of morphological diversity (Alfaro

et al. 2004, 2005). As explained above, OU models

cannot account for multiple peaks for the coded

niche, i.e., many-to-one solutions. Furthermore, per-

formance landscapes can be employed not just to

examine performance gradients (i.e., quantify the

change in performance given a change in the under-

lying phenotype), but also to identify and quantify

constraints such as conflict and trade-offs between

performance at different tasks (Brodie and

Ridenhour 2003; Ghalambor et al. 2003), changes

in the magnitude of trade-offs due to environmen-

tally dependent reaction norms (Giebelhausen and

Lampert 2001), and the presence of performance

valleys (Martin 2016).

A straight-forward way to estimate a performance

landscape is to collect empirical data from multiple

organisms that vary in their phenotypic traits.

However, the resulting performance landscape will

be confined to the vicinity of the phenotypes occu-

pied by observed data points, as extrapolation of
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form–function relationships to phenotypes distant

from those observed would be unreliable (Phillips

and Arnold 1989; Arnold et al. 2001; Arnold 2003).

Further, examining the limits of the occupied region

of trait space is not necessarily sufficient to explain

why other regions are unoccupied. However, extend-

ing the boundaries of analysis is possible if form can

be related mechanistically to function. Such mecha-

nistic links have been successfully applied to explain

the morphology of labrid jaws (Alfaro et al. 2004,

2005), bacterial shape (Schuech et al. 2019), and the

shape of turtle shells and humeri (Polly et al. 2016;

Dickson and Pierce 2019; Stayton 2019). Here, we

take advantage of the knowledge of core physical

principles that underlie suction-feeding behavior to

describe the performance landscape for suction-

feeding fish, examine and characterize its surfaces,

and identify the performance peaks and troughs.

Suction-feeding in fishes

Suction-feeding represents a ubiquitous, evolutionary

conserved mode of feeding among aquatic verte-

brates (Ferry-Graham and Lauder 2001) and

describes a mode of prey capture in which the rapid

expansion and concomitant lowering of pressure in-

side the mouth cavity generates a flow that over-

comes the escape response of the prey to draw it

into the mouth (Alexander 1970; Wainwright and

Day 2007; Day et al. 2015). Functionally, suction is

accomplished by a complex and coordinated combi-

nation of cranial rotation, depression of the hyoid

and the lower jaw, and abduction of the suspenso-

rium and the opercular and branchiostegal mem-

branes (reviewed in Day et al. 2015). These

movements result in a wave of dorsal–ventral expan-

sion from the mouth to the opercular slits (Day et al.

2005; Bishop et al. 2008) such that a unidirectional

flow of water passes from the mouth, through the

buccal cavity to exit at the gills (Day et al. 2005,

2015; Holzman et al. 2008a; Jacobs and Holzman

2018). Peak flow occurs at or near the time of

peak mouth opening (Bishop et al. 2008; Jacobs

and Holzman 2018), which is thought to reduce

the possibility of prey escaping (Muller et al. 1982).

The hydrodynamics of suction-feeding are gener-

ally well understood. Computational models (Van

Wassenbergh and Aerts 2009; Yaniv et al. 2014;

Van Wassenbergh 2015) and empirical measure-

ments (Day et al. 2005, 2015; Jacobs and Holzman

2018) show that the suction flow in front of the

fish’s mouth is unsteady and characterized by steep

temporal and spatial gradients, but only affects a

volume of approximately one gape diameter away

from the mouth. In front of the fish and external

to the mouth, the flow serves to draw the prey into

the mouth, provided that the escape force exerted by

the prey is insufficient to overcome the opposing

force exerted by the suction flows (Holzman et al.

2007; Wainwright and Day 2007; Van Wassenbergh

et al. 2010). The three hydrodynamic forces exerted

on the prey by the suction flows are drag force, ac-

celeration reaction force, and the pressure-gradient

force across the prey (Wainwright and Day 2007).

Drag force results from the differential in speed be-

tween the prey and the flow around it, acceleration–

reaction force from the acceleration of water around

the prey, and the pressure-gradient force from the

spatial and temporal gradients (i.e., the acceleration)

of the speed of the flow (Holzman et al. 2007, 2012;

Wainwright and Day 2007; Day et al. 2015). The

relative importance of each force to prey capture

depends on characteristics of both the predator and

the prey, but acceleration-based forces often domi-

nate in moving prey toward the mouth, and the ca-

pacity for a fish to generate such forces relies on

faster mouth expansion and is often aided by small

mouth size and timing to maximize the force on the

prey (Holzman et al. 2008a, 2012; Day et al. 2015).

Moving the jaws forward moves the force field

extending from the mouth closer to the prey, and

the forward acceleration of the mouth may provide

an additional source of acceleration to the forces

being exerted on the prey (Holzman et al. 2008b,

2008c, 2012).

Mouth kinematics can be adapted to increase the

force exerted on the prey, but they cannot overcome

the rapid dissipation of those forces, and prey may

employ counterstrategies to detect predators and

move away from the force field to avoid capture.

For example, prey can attach to a surface or conduct

an evasive maneuver by exerting a force of its own,

directed away from the predator (Lenz and Hartline

1999; Buskey et al. 2002). Suction-feeding fish may

use rapid forward motion to close the distance to the

prey, but this motion generates a hydrodynamic dis-

turbance ahead of the moving body (White 2011).

Many zooplanktonic animals possess sensory mech-

anisms to detect such hydrodynamic disturbances.

For example, copepods possess hairs on their anten-

nae that bend in response to flows and trigger an

escape reflex (Yen et al. 1992; Fields and Yen 1997;

Kiørboe and Visser 1999; Woodson et al. 2005). Prey

with well-developed eyesight may take the looming

presence of a predator as a cue and seek to escape

when the approach rate of the predator is too fast

(Batty 1989; Domenici 2002; Paglianti and Domenici

2006). Consequently, the kinematics, morphology,
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and the behavior of both the predator and the prey

will influence the capture strategy of suction-feeding

fish and the results of the predator–prey interaction.

Modeling the performance landscape for
suction-feeding fishes

We employed a two-step process to model the per-

formance landscape: (1) we generated a large set

(>25,000) of phenotypic combinations by randomly

sampling from phenotypic ranges reported in litera-

ture and used a mechanistic model to predict feeding

performance for three types of prey (mollusk-like,

copepod-like, and fish-like) and (2) we modeled

the relationship between feeding performance and

phenotype across trait space by fitting general addi-

tive models (GAMs). We employed this two-step

process for two reasons. First, our mechanistic model

is computationally slow, and thus generating the en-

tire landscape at desirable resolution, or adding new

points to the landscape (e.g., for applying the gradi-

ent accent method; see below), would be very time-

consuming. Second, the model takes as input vectors

of the kind produced from digitization of high-

resolution filmed feeding strikes (e.g., gape diameter

at each point in time), while data in literature are

typically in the form of variables (e.g., peak gape

diameter and time to peak gape [TTPG]). While it

is possible to cross-translate the two input methods,

we feel that the variable-based input would facilitate

broader use and comparisons with other studies. All

scripts and simulations generated during this study

may be found in the Open Science Framework re-

pository (https://osf.io/9uc3y/).

Model inputs

In our analysis, we focused on six kinematic varia-

bles known to be important to suction-feeding per-

formance (Holzman et al. 2007, 2012, 2008c; Day

et al. 2015; China et al. 2017): (1) peak gape as

the diameter of the gape when it is 95% open, (2)

TTPG the time taken to open the gape from 20% of

maximum gape to 95% of maximum gape, (3) peak

jaw protrusion as 95% of the maximal jaw protru-

sion, (4) time to peak jaw protrusion (TTPJP) as the

time taken for the jaws to protrude from 20% to

95% of their maximal jaw protrusion, (5) ram speed

as the forward motion of the fish, and (6) strike

distance calculated to allow the mouth of the pred-

ator to be at the initial location of the prey at the

time of peak gape, given ram speed and jaw protru-

sion. We conducted a literature survey to obtain

plausible ranges of kinematic data measured for

prey strikes in 16 species of suction-feeding

centrarchids (Holzman et al. 2012), 33 species of

serranids (Oufiero et al. 2012), 25 species of cichlids

(Hulsey et al. 2010), as well as our unpublished data

on Pomacentrids (four species), serranids (three

additional species), and cichlids (four additional

species). The observed ranges for peak gape were

0.9–35.3 mm, TTPG 0.002–0.039 s, peak jaw protru-

sion 0.54–14.9 mm, TTPJP 0.002–0.038 s, ram speed

0.66–2155 m/s, and strike distance 0.00017–0.048 m.

As we only use the source data to obtain plausible

parameter ranges, the number of species in each

group does not affect the outcome. However, this

selection imposes some limits on the scope of the

landscapes examined here; for example, they are

not representative of either small cryptic species or

large pelagics, of fish that rely on biting, or of larval

fish. It should be noted that the chosen families en-

compass a large number of species for which

suction-feeding has been studied in detail.

Prey type

We estimated the performance landscape for

suction-feeding on three types of prey: prey which

attach to the surface by clinging to a holdfast, prey

which detect the hydrodynamic disturbance gener-

ated by the forward motion of a predator and use

this to trigger an escape reaction, and visually ori-

ented prey which try to escape when the predator is

within a critical distance. We term these prey types

mollusk-like, copepod-like, and fish-like prey, but

note that these represent generalized hydrodynamic

groups of prey targeted by suction-feeding fish,

rather than specific or exclusive categories. For ex-

ample, attaching to the surface is a common defense

strategy in shelled gastropods, which may also use

chemical or behavioral defenses (Feder 1963;

Pohnert 2004; Wainwright and Day 2007). Prey

fish typically rely on vision to spot an approaching

predator, but may also be able to detect hydrody-

namic disturbances via the lateral line system (Weihs

and Webb 1984; Paglianti and Domenici 2006;

McHenry et al. 2009; Nair et al. 2017). Finally, while

copepods can register hydrodynamic disturbance via

sensitive mechanoreceptors on their antennae, chem-

ical cues may also play a role, along with behavioral

strategies like diurnal vertical migration (Kiørboe

and Visser 1999; Jamieson 2005; Buskey et al.

2012). We further defined the characteristics for

each prey along with the performance metric associ-

ated with prey capture. Mollusk-like prey was mod-

eled to respond to the strike by attaching to a

holdfast, i.e., maintaining position. Accordingly,

feeding performance for mollusk-like prey was

Suction feeding performance landscapes 1255
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defined as the maximum force the predator is able to

exert on the prey, such that a greater maximum

force is able to dislodge more strongly attached

prey. Copepod-like prey was defined as an evasive

prey that starts an escape maneuver in response to

a threshold strain rate (i.e., threshold hydrodynamic

disturbance), equivalent to most zooplankton. To

calculate the hydrodynamic disturbance generated

by the moving fish, we modeled the fish as a sphere

moving in an ideal fluid and calculated strain as the

second order tensor of the velocity field. We then

calculated the strain rate magnitude at the location

of the prey as the Euclidian norm of the deformation

tensor (derivation in the Supplementary Material).

Feeding performance against copepod-like prey was

determined to be the lowest strain rate threshold,

i.e., the most sensitive prey the predator is able to

capture. The escape reaction of copepod-like prey

was modeled as being directed away from the pred-

ator with a maximum escape force of 2�10�4 N and

a reaction time of 1 ms, which is in line with obser-

vations on escaping zooplankton (Lenz and Hartline

1999; Buskey et al. 2002). Fish-like prey was defined

as an evasive prey that starts an escape maneuver in

response to the approach of the predator. Feeding

performance against fish-like prey was determined

as the greatest escape force the predator can over-

come. Similar to copepod-like prey, the escape reac-

tion of fish-like prey was modeled as being directed

away from the predator with a reaction time of 1 ms,

while a threshold escape distance was set to 0.75�
maximum gape, which is within the volume affected

by the suction flow of fish (Jacobs and Holzman

2018). For all the above-mentioned cases, we defined

the prey as a neutrally buoyant ellipsoid with a max-

imum diameter of 0.1 mm and a maximum length of

2 mm.

We estimated feeding performance using the

suction-induced force field model (SIFF; Holzman

et al. 2012), a mechanistic model that uses a suite

of parameters characterizing the shape and behavior

of the prey and the kinematics of the predator to

predict whether the prey is captured or escapes. By

using this mechanistic modeling approach, we can

extend our analysis to any region of trait space, ir-

respective of whether such trait values or trait com-

binations exist in the wild. SIFF is described in detail

in Holzman et al. (2007, 2012) and Wainwright and

Day (2007). Briefly, SIFF uses the time-dependent

gape size, jaw protrusion, ram speed, and strike dis-

tance during the feeding strike to estimate the flow

speed at the location of the prey. SIFF then utilizes

the estimated flow, and its spatial and temporal

derivatives, to calculate the total force exerted on

the prey as the sum of drag forces, acceleration re-

action forces, and pressure-gradient forces.

Gravitational forces are ignored because prey are as-

sumed to be neutrally buoyant. Summing the forces

exerted by the suction flow on the prey and the

forces applied by the prey, either to cling to a hold-

fast or substrate (attached prey) or swim away from

the predator (evasive prey), allows SIFF to predict

the motion of the prey relative to the predator and

determine whether it ultimately entered the mouth

of the predator (i.e., captured).

Because SIFF takes as input vectors such as would

be obtained from digitizing high-speed recordings of

suction-feeding strikes, we sampled randomly from

the phenotypic trait ranges, under a uniform distri-

bution, and used Equation (11) from Muller et al.

(1982) to generate the vectors that describe the time-

dependent opening of the gape, the protrusion of the

jaw, and the forward motion of the fish. We pre-

dicted the maximum flow speed using the relation-

ship between peak gape, TTPG, and the normalized

TTPJP, and maximum flow speed from Jacobs and

Holzman (2018), and generated a time-dependent

vector of flow speed, with flow starting at 20% of

mouth opening and peaking at the time of peak

gape. We defined the strike distance of the predator,

i.e., the distance from which the strike is launched,

such that the mouth of the predator would be at the

initial location of the prey at the time of peak gape

given ram speed and jaw protrusion.

For each trait combination, we ran SIFF to simu-

late the outcome of the strike, i.e., success or failure.

To determine the feeding performance against

mollusk-like prey, we extracted the maximum force

exerted on the prey during the strike. To determine

the feeding performance for copepod-like and fish-

like prey, we estimated the threshold in which prey

capture switched from failure to success using an

iterative binary search algorithm. The search started

with two points that yielded failure and success, and

then narrowed the search range until the flip point

from failure to success could be identified with a

precision of 0.0001 s�1 and 0.00001 N, respectively.

We calculated performance for N¼ 29,537 individual

combinations of kinematic variables for attached

prey, N¼ 29,068 for copepod-like prey and

N¼ 26,982 for fish-like prey.

Generating the performance landscape

The trait variables do not have a simple, additive

impact on a complex function like prey capture;

rather the contribution of any one variable is non-

linear and dependent on the values of the other
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variables (Holzman et al. 2012). However, SIFF and

the associated binary search algorithm are computa-

tionally demanding, which limits our ability to esti-

mate performance throughout the landscape. We

therefore used GAMs to predict performance at

each point in parameter space for the three prey

types. We used the function BAM (mgcv package,

Wood 2017) to describe the relationship between

performance and phenotypic traits, using a penalized

cubic regression splines and shrinkage smoothing to

reduce the estimated effect of parameters that pro-

vide little explanatory power (Wood 2017). The dis-

tributions of suction performance for the three prey

types deviated from normality and were log-

transformed prior to model fitting. We specified

the GAMs with only smooths and tensor smooths.

Tensor smooths are often useful for covariates mea-

sured in different (Wood 2017), units, and evalua-

tion of the fitted models revealed that all tensor

smooths were significant. We examined the fitted

models for over-smoothing by examining the basis

dimension, i.e., the dimension for the set of basis

functions of the spline, roughly corresponding to

the degrees of freedom allowed for each smooth

term in the model, and for concurvity, a condition

where a smooth term can be approximated by one or

more of the other smooth terms, to improve the

stability of the estimate and model interpretation

(Wood 2017). All parameters were significant except

for peak gape for copepod-like prey, with the fitted

models described >95% of variance in the predicted

capture rates simulated using SIFF (mollusk-like

prey: r2¼0.916, copepod-like prey: r2¼ 0.951, fish-

like prey: r2¼ 0.954; Supplementary Table S1).

We further tested the predictive ability of the

model by randomly dividing it into training/tests

data sets (training data set containing 90% original

data and the tests data set 10%) and reconstructed

the landscape from the data in the training set. We

then used the reconstructed landscape model to pre-

dict performance for the test set and performed a

linear regression of the SIFF-obtained performance

versus GAM-predicted performance. We repeated

this procedure 100 times and calculated the confi-

dence intervals around the intercept and the slope. If

the landscape offers an unbiased prediction of per-

formance, we would expect a regression slope of 1

and an intercept of 0. For mollusk-like prey, the 95%

confidence interval (CI) about the intercept was

(�0.00369, 0.00344) and about the slope (0.99705,

1.00116), for copepod-like prey, corresponding 95%

CI were intercept (�0.00004, 0.00321) and slope

(0.99895, 1.00045) and for fish-like prey intercept

(�0.01387, 0.00202) and slope (0.99764, 1.00033).

This allowed us to conclude that our models accu-

rately predict the feeding performance for all three

types of prey.

Finally, we assessed data saturation (Faulkner and

Trotter 2017) by sub-sampling the data set to obtain

subsets of smaller sample size. For each subset, we

fitted the same model and carried out a linear re-

gression of fitted against observed values. We then

plotted mean-squared error (MSE) of the linear re-

gression against sample size. When sampling across

the performance volume is sufficient to capture most

of the ruggedness of the landscape, the variance of

the MSE should decrease as MSE converges on the

error variance. We found that for our models, a data

set with �25,000 points produced a saturated model

(Supplementary Fig. S1).

Evaluating landscape topography

Because the topography of the landscapes may be

rugged, we require a method for finding not just

the point of maximum performance, but points as-

sociated with local performance peaks as well.

In cases where the performance landscapes can be

formulated as a closed mathematical function, peaks

may be located by analytical means, but in other

cases the rugosity of the landscape surface must be

examined using less systematic methods. For bivari-

ate landscape, even a complex (i.e., “ill-behaved”)

surface can often be conveniently represented graph-

ically (e.g., Schuech et al. 2019) either as a contour

landscape or as a 3D surface, where it is usually

straightforward to identify peaks, valleys, and saddles

and the slope of the surface represents the perfor-

mance gradient. Indeed, 2D projections of the three

landscapes reveal these features, as well as several

flat, uniform projections (Supplementary Figs. S2–

S4). However, since our landscapes are defined by

six parameters, such projections can be misleading

if they fail to capture the full effect of parameter

interactions. This is illustrated in Fig. 1, in which a

hypothetical performance landscape is characterized

by the three traits A, B, and C. In this example, the

interaction between A and B (Fig. 1a) implies that

the value chosen for trait A (Fig. 1b) drastically

changes the contours of the projection (i.e., 2D

plot) of the performance landscape on traits B and

C (Fig. 1c, d). In this hypothetical case, projecting

the landscape for lower value of trait A results in a

peak at a high value of B and moderately-high values

of C, whereas projecting the landscape for a higher

value of trait A results in a peak at low values of B

and C. We therefore employed a more general ap-

proach to finding the local maxima by modifying the
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gradient descent method (Cauchy 1847). For sim-

plicity we will describe the principle of the method

in the 2D case, and then extend it to our 6D

landscapes.

In the gradient descent method, the local mini-

mum is found by traveling along the path described

by the most negative gradient, i.e., the steepest de-

scent, but this is equivalent to finding a local max-

imum by traveling along the path described by the

most positive gradient (Fig. 2a). A point on the

landscape is chosen at random and the associated

performance is evaluated. Each parameter may re-

main constant, increase or decrease by a small

amount, which for two parameters creates 32¼9 pos-

sible combinations and thus eight points surround-

ing the center (starting) point. The performance at

these eight points describes the landscape immedi-

ately surrounding the center point, and the perfor-

mance gradients in the eight directions are calculated

by evaluating the performance for each point and

dividing the performance difference by the

Euclidian distance to the center point. The direction

is determined by the steepest positive gradient. A

local peak is found when all gradients are negative.

Repeating this procedure for various starting points

and comparing the end points will reveal the exis-

tence of the number of local peaks, if they exist

(Voran and Catellier 2009). We illustrate this

procedure using start point/end point plots, where

each plot represents a parameter with the start point

on the horizontal axis and the end point on the

vertical axis (Fig. 2b). Because a horizontal “band”

of points represents identical end points, the number

of horizontal bands reflects the number of local

peaks. Furthermore, if the start points result in end

points above the 1:1 diagonal line, this indicates that

the slope is overall positive, i.e., higher trait values

are associated with higher performance whereas if a

horizontal band is formed from start point along the

range, this indicates that the peak has a larger “basin

of attraction.” Gradient ascent analysis is a versatile

approach that enables stepwise exploration of the

landscape and is thus suitable for examining the di-

rection and endpoint of incremental trait evolution,

Fig. 1 Conceptual illustration of how 2D projections of a per-

formance landscape described by the three traits A, B, and C

may be misleading. (a) The projection of the landscape on traits

A and B, for a value of C. To illustrate the impact of C on

performance, a value is chosen for A (b). Due to the interaction

between A and B, the value chosen for trait A affects the 2D

projection of the landscape on B and C (c, d).

Fig. 2 Conceptual illustration of the gradient ascent method. (a)

A bivariate performance landscape is shown, with traits A and B

on the horizontal axes and performance on the vertical axis. The

surface contours are shown on a plane below. The gradient as-

cent paths are shown for three random starting points (red cir-

cle, green square, and blue diamond) and tracked across the

landscape, in the direction of the steepest gradient. A local peak

has been located when the gradients in all directions are nega-

tive. (b) The start points and the end points for each path and

trait are plotted. The path of the red circle starts at a point in

the middle of the range of trait A and close to the lower end of

trait B. After following the path of steepest ascent, it ends on a

peak located in the low-A, medium-B region of the landscape.

This is also the local peak that the path of the green square ends

up on, while the path of the blue diamond finishes on a peak

located at the edge of the landscape (maximum value of A), but

the same value for B. Thus, the gradient ascent method run for

three starting points resulted in the identification of two local

maxima, which is reflected in the two sets (red circle and green

square, vs. blue diamond) of end values in (b). Since two different

local peaks must differ in either one or both coordinates, the

number of horizontal lines will indicate the number of peaks in

the landscape (although if many more paths are tracked across

the landscape, a visual analysis may not be possible). Comparing

the location of start points and end points will furthermore in-

dicate the overall shape of the landscape informed by individual

parameters: if end points mostly are above the diagonal, this

implies an overall positive slope, whereas if end points are pro-

duced from start points from across the range, the basin of at-

traction of a peak is large.
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and is easily expanded to multivariate landscapes,

with the local peaks represented in a start point/

end point matrix with one plot for each parameter.

The method is not exhaustive and computationally

slow, but the greater challenge is to ensure that the

outcome is not subject to step length. At one ex-

treme, if the landscape is locally rough, the method

may find numerous local peaks that do not represent

an actual topography, whereas if the landscape is

spiky, too great a step may overshoot a peak alto-

gether. We performed multiple trials with variable

strep length and compared the results to ensure

consistency.

We performed the gradient ascent method for

each prey landscape, for a parameter step length of

1% but where the value of each parameter was

capped to the observed maximum and minimum

values. To improve the sensitivity in finding the lo-

cation of the peak, we allowed the algorithm to run

until a point had been found where all performance

gradients were negative. Here, the algorithm back-

tracked one step and retracked the steepest gradient

path but with a parameter step length of 0.01%. The

resulting start point/end point matrix plots revealed

the existence of multiple peaks in all three prey land-

scapes, indicating rugged topographies, but also an

edge effect which manifested itself in the form of

pronounced horizontal bands at the minimum and

maximum of the range of each parameter (Fig. 3).

Because we lack information of the landscape beyond

the modeled range, we considered the peaks located

at the maximum of the variable range unreliable.

However, none of our trait variables can be less

than 0, and performance at different tasks may im-

prove with lower values for some of the parameters.

For example, fish swimming very slowly will produce

weaker hydrodynamic disturbance which could im-

prove feeding performance on copepod-like prey.

We therefore retained the peaks located at the min-

imum of the variable range. In the case of jaw pro-

trusion, the method found few local peaks that were

described by intermediate values; rather, most peaks

were characterized by values at either extreme of the

range. As we were unable to judge the impact of

edge effects, we removed jaw protrusion from further

analyses.

Characterizing performance landscape
peaks

In view of the considerable rugosity revealed by the

gradient ascent analysis (Figs. 2 and 3) we examined

the trait space occupied by the peaks using a cluster

analyses, preceded by a principal component analysis

for only the points located on the peaks, repeated

separately for each prey type. Prior to conducting the

PCA, we rescaled performances and trait values to

span the range 0–1, according to the following

equation:

recsaled value¼1� original value�maximum valueð Þ
minimum value�maximum valueð Þ

(1)

except in the case of performance for copepod-like

prey, for which lower performance values indicate

ability to capture more sensitive prey, for which

the formula was edited to

recsaled value¼1� original value�minimum valueð Þ
maximum value�minimum valueð Þ

(2)

such that superior performance is represented by

higher values for all prey types. The first two

dimensions of the PCAs explained >75% of the

variance in the traits that characterize the local

peaks for all three prey types (Supplementary

Table S2), and we confined our analyses to these.

For mollusk-like prey, the first dimension explained

68.0% of the variance with strong positive loadings

on TTPJP and strike distance and negative on

TTPG, while the second dimension explained

27.5% and loaded strongly on peak gape, and

ram. For copepod-like prey, the first dimension

explained 68.1% of the variance with strong positive

loading primarily on peak gape. The second dimen-

sion explained 29.2% with strong positive loadings

on ram speed. For fish-like prey, the first compo-

nent explained 65.6% of the variance and loaded

strongly positive on peak gape and ram speed, while

the second dimension explained 21.8% and loaded

strongly on peak gape.

We employed two further approaches to examine

the pattern described by the peaks in trait space. First,

to describe the regions of the local peaks in terms of

their associated feeding performance and kinematic

trait profiles, we performed cluster analyses on the

results of the PCAs. This resulted in “peak clusters”

that are similar in their kinematic profiles. Second, to

characterize the basin of attraction in trait space as-

sociated with each “peak cluster,” we performed a

kernel density estimation for the density of start

points that reached each peak cluster. The local peaks

in the performance landscape for mollusk-like prey

could be broadly categorized into four peak clusters

(Fig. 4a and Supplementary Fig. S5). Feeding
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(a)

(b)

(c)

Fig. 3 Gradient ascent analysis for the performance landscape for suction feeding on (a) mollusk-like prey, (b) copepod-like prey, and

(c) fish-like prey with the parameters scaled to the [0,1]-interval. Start and end points for the six variables that describe the landscapes

are plotted on the x- and the y-axes, respectively. As described in Fig. 1, the number of local peaks is reflected in the number of

horizontal lines. Note that the three prey types here are not “real” prey but refer to prey which respond to an approaching predator

in a way typical for mollusks, copepods, and fish (i.e., clinging to a holdfast, attempting escape hydrodynamic strain is detected, or

attempting escape when a predator is within a certain distance).
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(a)

(b)

(c)

Fig. 4 Many to one mapping of kinematics to performance yields multiple peak clusters of unequal height. Boxplots show the

performance associated with each peak cluster (left panels) and the range of trait values (right panels) associated with each peak

cluster. Data are for (a) mollusk-like prey, (b) copepod-like prey, and (c) fish-like prey. Horizontal lines in the right panels show mean

performance in the landscape (solid line)6s.e. (dashed lines) and whiskers indicate 1.5* inter-quartile range. For each prey type, four
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performance differed considerably between these clus-

ters with cluster 1 outperforming the other three, and

an examination of the trait profiles revealed the ex-

istence of contrasting strategies. Peak cluster 1 de-

scribed strikes with short strike distance, while the

remaining three were associated with longer strike

distance but varied in terms of speed of mouth and

jaw movements. Four peak clusters could be identi-

fied in the landscape for copepod-like prey, with

slightly differing performance levels (Fig. 4b and

Supplementary Fig. S6). All peak clusters were de-

scribed by maximal jaw protrusion, and the two

highest performing peak clusters were also associated

with slow TTPG, fast TTPJP, and slow ram speed.

The remaining strategies were all associated with

fast TTPG, fast ram speed, slower TTPJP, and larger

strike distance. For fish-like prey, four clusters could

be identified, of which two had considerably higher

and more consistent performance than the other two,

as well as narrower trait ranges (Fig. 4c and

Supplementary Fig. S7). The highest performing

peak clusters in this landscape are characterized by

fast mouth and jaw movements and either large jaw

protrusion and slower ram speed or vice versa. The

other clusters show a broader range of parameter

values for both TTPJP, ram speed and strike distance.

Regardless of the relative heights of the peak clusters,

all exceeded the average performance of points on the

landscape (Fig. 4 and Supplementary Figs. S5–S7).

To identify the basin of attraction in trait space

for each of the performance peak clusters, we used a

kernel density analysis. For mollusk-like prey, the

basins of attraction were of roughly equal size and

partly overlapping (in the 2D projection), especially

those of clusters 2, 3, and 4 (Fig. 5a). For copepod-

like prey, peak clusters 2 and 4 attracted roughly

equal proportion of start points, resulting in two

larger basins of attraction, associated with clusters

2 and 4 and two slightly smaller ones associated

with clusters 1 and 3 (all of which overlapped to

some extent in the 2D projection; Fig. 5b). For

fish-like prey, peak cluster 4 attracted most start

points, and the basins of attraction were generally

somewhat smaller and denser than in the other land-

scapes, with those of peak clusters 1 and 2 almost

completely overlapping in the 2D projection

(Fig. 4c).

Fig. 4 Continued

peak clusters could be identified, associated with different performance levels (left panels). For all prey types, peak cluster 1 out-

performs the rest, but the margin is much greater for mollusk-like prey (top panel). The trait profiles of each peak cluster (right panels)

generally indicate a narrow range of traits for each peak cluster, with the exception of cluster 2 and 3 for fish-like prey (lower panels).

Again, note that these are not “real” prey but prey which respond to a predator in a manner typical for that of mollusks, copepods,

and fish.

(a)

(b)

(c)

Fig. 5 Different peaks have different “basins of attraction.”

Kernel density estimate contours of the location of the start

points associated with each peak cluster (as identified by color

and point shape), projected onto the first two dimensions of the

PCA performed on the local peaks. The local peaks defining the

clusters are denoted by solid points in the associated color and

shape, and the fraction of points belonging to each cluster is

shown in the inset pie chart. Top panel shows the clusters of the

landscape for mollusk-like prey, middle panel the landscape for

copepod-like prey, and lower panel the landscape for fish-like

prey. The full color version is available in the electronic version,

but is not necessary for interpretation of the figures.
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Discussion

The analyses show that the suction-feeding perfor-

mance landscapes for all three prey types are com-

plicated, having a rugged topography, with multiple

local performance peaks scattered across the trait

space. We also show that the performance landscapes

for the different types of prey differ from each other,

with respect to the location of the peaks, the unifor-

mity of the height of the peaks, and the profile of the

phenotypes associated with peaks. For each prey

type, the identified performance peaks could be clas-

sified into four clusters. These peak clusters differed

from each other both in terms of their kinematic

trait profiles as well as performance levels, but in

all cases, performance exceeded that of the average

landscape. Feeding performance is thus highly de-

pendent on the specific kinematic phenotype of the

predator, but predators that target similar prey may

still exhibit different kinematic strategies.

Implications for trophic specialization

Models of the evolution of specialized feeding strat-

egies, such as piscivory or other evasive prey special-

ists, commonly feature a generalized ancestor

(Sibbing et al. 1998; de Graaf et al. 2008; Gajdzik

et al. 2019). Although it would therefore be reason-

able to hypothesize that increased trophic specializa-

tion is accompanied by concomitant morphological

specialization or functional diversity, this is often not

the case (Bellwood et al. 2006; Cooper and Westneat

2009; Borstein et al. 2019), such that generalists are

not universally more morphologically or functionally

diverse than other feeding guilds. While specialists

are generally considered more constrained by trade-

offs, expected performance trade-offs between feed-

ing specialists and between prey types often fail to

materialize (Van Wassenbergh et al. 2007; Oufiero

et al. 2012; Walker and Caddigan 2015).

Comparing the three performance landscapes, we

find that the performance peaks for all three prey

types are generally associated with narrowly defined

phenotypes, and might therefore indicate that cap-

ture of evasive prey is not a more specialized feeding

strategy than capture of prey that attaches to a hold-

fast. However, this analysis does not account for per-

formance trade-offs for predators switching between

prey, or opportunistically feeding on alternative prey.

Importantly, the prediction based on the perfor-

mance landscape does not depend on performance

in extant species, which could be biased due to other

selective processes such as bottlenecks and historic

constraints but is based on core physical principles

used to generate the landscape.

Many-to-one mapping is considered a mechanism

that helps explain the morphological diversity ob-

served in suction-feeding fish (Alfaro et al. 2004,

2005; Wainwright et al. 2005). Examination of the

traits associated with performance peaks showed that

different peaks were associated with different trait

clusters, indicating that similar feeding performance

can be attained with disparate kinematic strategies

(Fig. 3). This is in line with the notion that

suction-feeding is characterized by many-to-one rela-

tionships (Holzman et al. 2011, 2012), consistent

with its multivariate and complex nature

(Wainwright et al. 2005; Wainwright 2009).

Notably, our analyses show that many-to-one map-

ping can be manifested either by the existence of

multiple local peaks or when a cluster encompasses

a broad range of trait values: in mollusk-like and

copepod-like prey, given the narrowly defined trait

ranges for each cluster, the many-to-one mapping is

largely associated with between-cluster differences,

while in fish-like prey many-to-one mapping is

also to a smaller extent present within clusters.

Implication for the location of extant
species

While performance landscapes cannot predict the se-

lection pressures exerted on the different traits, they

can be used to generate testable hypotheses regarding

the evolutionary processes shaping the extant func-

tional diversity. For example, on the landscape for

copepod-like prey, peak cluster #1 is associated with

the highest performance (Fig. 4b) and has one of the

largest basins of attraction as indicated by the kernel

density analysis (Fig. 5b and inset). Together, these

parameters should bias the evolution of zooplankti-

vore specialists to preferentially occupy this peak

cluster. Conversely, peak clusters #2 and #3 have

the lowest performance peaks on the landscape for

fish-like prey (Fig. 4c) and are also associated with

smaller basins of attraction (Fig. 5c and inset), gen-

erating the prediction that the evasive specialists (i.e.,

piscivores) should rarely occupy this peak cluster.

Clearly, other evolutionary processes as well as de-

velopmental, biomechanical, and ecological con-

straints can operate to bias the evolution of these

feeding guilds. However, contrasting adaptive and

performance landscapes can inform about the im-

portance (or lack thereof) of performance at a par-

ticular task in the selection on its underlying traits.

Even when performance is identified as an impor-

tant driver of trait evolution, the relationships be-

tween the location of the peak and the distribution

of the extant species is subject to interpretation. One
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view holds that species are expected to be found at

or close to an adaptive peak, broadly overlapping

regions of high performance in trait space (Grant

1986; Collar et al. 2009; Martin and Wainwright

2013). This view often informs the interpretation

of models that support an OU-like trait evolution.

Conversely, species can be constrained within a pa-

reto front that is delimited by the trade-offs between

different functions (Sheftel et al. 2013; Shoval et al.

2013; Hart et al. 2015). The vertices of the pareto

front correspond to performance specialists, but of-

ten this inference is made based on location in trait

space, rather than based on measured relative per-

formance (Kavanagh et al. 2007, 2013; but see, e.g.,

Dickson and Pierce 2019; Schuech et al. 2019;

Stayton 2019). Our performance landscapes now

provide the tools for testing these competing hy-

potheses regarding the location of extant species in

suction-feeding fish. Combining kinematic data from

observations of feeding strikes with diet data could

allow us to test the “pareto front” prediction that

specialists are found at the vertices of the Pareto

fronts and generalists in-between. Alternatively, an

OU process could align the evolution of phenotypic

traits toward adaptive peaks that should correspond

to regions of high performance (i.e., one or more

peaks). Lastly, it could be that the evolution of the

traits we measured is unrelated to the performance

landscape, indicating that biomechanical or develop-

mental constraints govern the evolution of suction-

feeding kinematics in fish.

In summary, we have shown that the performance

landscapes for suction-feeding fish are rugged, indic-

ative of many-to-one relationship between pheno-

type and performance optima. Closer examination

of the peak clusters in our landscapes further sug-

gests that prey type affect both ruggedness, in terms

of the number of peak clusters in each landscape, as

well as the range of phenotypic diversity associated

with each peak cluster. The former is consistent with

many-to-one relationships between phenotype and

performance, as expected for complex functions

like suction-feeding. The latter is indicative of dif-

fering degrees of phenotypic specialization associ-

ated with feeding on different prey types, with

evasive prey requiring a more specialized phenotype

than mollusk-like prey. This generates testable hy-

potheses with respect to the location of extant spe-

cies. Because we can distinguish between

performance peaks, both in terms of their relative

height in the performance landscape and the size of

their respective basins of attraction, for multiple

landscapes, we can generate predictions about where

in trait space we are likely to find the highest density

of feeding specialists and test these using data col-

lected on multiple species.
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