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HELQ and EGR3 expression correlate 
with IGHV mutation status and prognosis 
in chronic lymphocytic leukemia
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Abstract 

Background:  IGHV mutation status is a crucial prognostic biomarker for CLL. In the present study, we investigated 
the transcriptomic signatures associating with IGHV mutation status and CLL prognosis.

Methods:  The co-expression modules and hub genes correlating with IGHV status, were identified using the 
GSE28654, by ‘WGCNA’ package and R software (version 4.0.2). The over-representation analysis was performed to 
reveal enriched cell pathways for genes of correlating modules. Then 9 external cohorts were used to validate the cor‑
relation of hub genes expression with IGHV status or clinical features (treatment response, transformation to Richter 
syndrome, etc.). Moreover, to elucidate the significance of hub genes on disease course and prognosis of CLL patients, 
the Kaplan–Meier analysis for the OS and TTFT of were performed between subgroups dichotomized by the median 
expression value of individual hub genes.

Results:  2 co-expression modules and 9 hub genes ((FCRL1/FCRL2/HELQ/EGR3LPL/LDOC1/ZNF667/SOWAHC/SEP‑
TIN10) correlating with IGHV status were identified by WGCNA, and validated by external datasets. The modules were 
found to be enriched in NF-kappaB, HIF-1 and other important pathways, involving cell proliferation and apoptosis. 
The expression of hub genes was revealed to be significantly different, not only between CLL and normal B cell, but 
also between various types of lymphoid neoplasms. HELQ expression was found to be related with response of immu‑
nochemotherapy treatment significantly (p = 0.0413), while HELQ and ZNF667 were expressed differently between 
stable CLL and Richter syndrome patients (p < 0.0001 and p = 0.0278, respectively). By survival analysis of subgroups, 
EGR3 expression was indicated to be significantly associated with TTFT by 2 independent cohorts (GSE39671, 
p = 0.0311; GSE22762, p = 0.0135). While the expression of HELQ and EGR3 was found to be associated with OS 
(p = 0.0291 and 0.0114 respectively).The Kras, Hedgehog and IL6-JAK-STAT3 pathways were found to be associating 
with the expression of hub genes, resulting from GSEA.

Conclusions:  The expression of HELQ and EGR3 were correlated with IGHV mutation status in CLL patients. Addi‑
tionally, the expression of HELQ/EGR3 were prognostic markers for CLL associating with targetable cell signaling 
pathways.
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Background
CLL (chronic lymphocytic leukemia) is characterized 
by uncontrolled proliferation of monoclonal B cells, 
and resistance to cell apoptosis. CLL is the most preva-
lent adult leukemia in Europe and America. The age-
adjusted incidence in United States is 4.1 per 100,000 
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inhabitants, with 4500 estimated deaths [1]. The diagno-
sis requires monoclonal B cells count more than 5 × 103/L 
in peripheral blood, with characteristic morphology and 
immunophenotype (typically positive for CD5, CD23, 
CD19, CD20 and CD200). The disease course of CLL is 
heterogenous, and the treatment was initiated only in 
patients with advancing or symptomatic disease. The 
immunochemotherapy, including anti-CD20 monoclonal 
antibody and cytotoxic agents (fludarabine and cyclo-
phosphamide, etc.) was the traditional choice. While 
novel agents, including BTK (Bruton’s Tyrosine Kinase) 
inhibitor (ibrutinib, zanubrutinib) and BCL2 (B cell lym-
phoma 2) inhibitor (venetoclax), have greatly improved 
the survival of CLL patients.

Due to the high heterogeneity of CLL, several risk 
score systems have bene established, among which 2 
most widely accepted systems are Rai and Binet risk 
stratification developed about 40  years ago [1]. These 
clinical staging systems seemed insufficient for clinical 
practice, due to the rapid progress of treatment. More 
molecular and cytogenetic markers were included in the 
current scoring system, such as CLL International Prog-
nosis Index (CLL-IPI) [2], which included TP53 gene 
mutation/deletion, IGHV mutation status, serum beta2 
microglobulin, clinical stage and age. The IGHV (immu-
noglobulin heavy-chain variable region) gene mutation 
status is demonstrated to be a pivotal prognostic marker 
for CLL. The U-CLL (unmutated CLL) patients have 
shorter lymphocyte doubling time and higher expression 
of CD38, and correlated more aggressive disease course 
with shorter TTFT (time to first treatment) in compari-
son with that of M-CLL (mutated CLL) patients [3–5]. 
Moreover, the unmutated IGHV status predicts unfa-
vorable OS (overall survival) for CLL patients receiving 
immunochemotherapy [6]. However, the expression sig-
nature associating with IGHV mutation has been rarely 
been investigated.

The transcriptomic analysis based on microarray 
and RNAseq methods, have preliminarily revealed the 
expression profiles and altered signaling pathways for 
CLL, which have provided potential biomarkers and 
therapeutic targets [7–10]. By WGCNA (weighted gene 
co-expression network analysis), the hub genes and 
co-expression modules associating with IGHV status, 
were identified and validated. The expression signature 
of hub genes were also associated with clinical features 
(response to immunochemotherapy and Richter trans-
formation) and clinical outcomes (OS and TTFT). The 
flowchart for the overall design of this work was shown 
in Fig. 1. Our work revealed the transcriptomic signature 
characterized by co-expression modules, and provided 
insights and rationales to utilize HELQ/EGR3 expression 
as prognostic markers for CLL.

Methods
Data source
The expression matrix and clinical/genetic data was 
downloaded from GEO database repository (https​://
www.ncbi.nlm.nih.gov/gds/). The details of GEO datasets 
used in this study were summarized in Table 1 [7–9, 11–
16]. Since the WGCNA required representative samples 
and expression information of full-scale genome. Among 
the 6 independent datasets including IGHV mutation 
information (Table  1), GSE38611/40570/51529 included 
only early stage patients (Binet A). And GSE69034 used 
total lymphocytes instead of purified B cells, which may 
lead to bias to transcriptomic analysis. GSE9992 was 
performed in GPL96 platform, which were only able 
to detect 12,402 genes and resulted in missing value 
for many genes. Therefore, GSE28654 was selected for 
WGCNA analysis, which avoided abovementioned 
problems. The last access to the GEO database is on 
2020.10.15.

Weighted gene co‑expression network analysis
The weighted gene co-expression network was based on 
the expression data of the whole genome, by ‘WGCNA’ 
package [17] and R software (version 4.0.2). The outli-
ers among samples were detected by hierarchical clus-
tering by average link. The soft threshold power was 
defined as the minimal beta value which set the scale-free 
R2 > 0.85. Then inter-gene correlating coefficients were 
calculated by Pearson’s method, which constructed the 
matrix of gene adjacency and turned into TOM (topo-
logical overlap matrix) sequentially. The minimal size of 
co-expression modules was limited to 30 genes. Genes 
in the whole genome were classified into co-expression 
modules according to TOM-based dissimilarity by aver-
age linkage hierarchical clustering method. The first 
principal component of expression matrix is set as mod-
ule eigengenes. The module membership of individual 
genes was defined as the correlation coefficients between 
gene expression and eigengene of the module. The gene 
significance of individual genes was defined as the cor-
relation coefficients between gene expression and IGHV 
status. The modules were identified as targets, with the 
highest Pearson’s coefficient with IGHV status. Within 
target modules, the hub genes were defined as gene mod-
ule membership ≥ 0.8, weighted q value < 0.01, and gene 
significance ≥ 0.2.

Additionally, PPI (protein–protein interaction) net-
work was established for target modules by STRING 
database (https​://strin​g-db.org/) based on the previous 
evidence and experiments. The genes of target modules 
were mapped into STRING, and the criteria of extracting 
PPI pairs was that confidence ≥ 0.4.

https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
https://string-db.org/
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Fig. 1  The overall flow chart of our present study
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Over‑representation analysis for the correlated modules
The ORA (over-representation analysis) was per-
formed for genes in the ‘black’ and ‘purple’ modules 
using hypergeometric distribution method. The analy-
sis was performed by CPDB online tools [18] (http://
cpdb.molge​n.mpg.de/) based on GO (gene ontology) 
database [19, 20] and KEGG (Kyoto Encyclopedia of 
Genes and Genomes) database [21, 22] respectively. P 
value < 0.05 was set as the criteria of enriched pathways.

Validation of hub genes expression signature
To validate the association of hub genes and IGHV 
mutation status, the expression data was normalized 
by ‘limma’ package in R software (version 4.0.2), gene 
expression was compared between M-CLL and U-CLL 
groups using 6 independent datasets (GSE38611, 
GSE40570, GSE51529, GSE69034 and GSE9992). Due 
to the EGR3 expression data was missing in GSE9992, 
only HELQ/ZNF667/SOWAHC were analyzed for this 
dataset. Then the comparison of hub genes expression 
was performed across different lymphoid neoplasms 
(CLL/FL/DLBCL/MALT-MZL/NMZL/MCL) and nor-
mal lymphoid tissues, using GSE50006 and GSE32018 
[23].

The association of hub genes and clinical features of CLL 
patients
The expression level of hub genes was extracted from the 
whole transcriptomic datasets. GSE58211 [13] was used 
to compare the hub genes expression between different 
Binet stages. GSE10138 dataset was utilized for compari-
son of hub genes expression between response groups to 
immunochemotherapy. Moreover, the hub genes tran-
scription was compared between Richter transformed 
and non-transformed CLL patients of GSE103265.

Survival analysis for hub genes expression in CLL
The GSE39761 provided individual TTFT data for 130 
untreated CLL patients. Meanwhile, the GSE22762 con-
sisted of individual TTFT data of 70 CLL patients, and 
OS data for 107 CLL patients. The cohorts were dichoto-
mized into low and high expression groups by the median 
value of hub genes expression.

Genome‑wide gene expression profile associating 
with hub genes
Due to the prognostic significance of HELQ and EGR3 
genes, the expression correlation analysis was performed 
to uncover the associating genes. We calculated Pearson’s 

Table 1  The summary of GEO datasets used in the present study

GEO accession Number 
of samples

patients subgroup Application in this study

GSE28654 [7] 89 61 M-CLL and 28 U-CLL WGCNA to reveal hub genes correlating with IGHV status

GSE38611 [8] 136 76 M-CLL and 60 U-CLL Validation for the correlation of hub gene expression with 
IGHV status

GSE40570 [11] 159 96 M-CLL vs 63 U-CLL Validation for the correlation of hub gene expression with 
IGHV status

GSE51529 [9] 229 131 M-CLL and 85 U-CLL Validation for the correlation of hub gene expression with 
IGHV status

GSE69034 144 86 M-CLL and 58 U-CLL Validation for the correlation of hub gene expression with 
IGHV status

GSE9992 [12] 60 24 M-CLL and 36 U-CLL Validation for the correlation of hub gene expression with 
IGHV status

GSE50006 210 188 CLL and 32 healthy donors Validation for expression difference of hub genes between 
CLL and healthy dornors

GSE32018 [23] 127 17 CLL, 23 FL, 22 DLBCL, 24 MCL, 15 MALT-MZL, 13 NMZL 
and 13 normal lymphoid tissues

Validation for expression difference of hub genes between 
various type of lymphoid neoplasms

GSE58211 [13] 300 29 Binet stage A, 179 Binet stage B and 92 Binet stage C 
CLL patients

Validation for expression difference of hub genes between 
different stages of CLL

GSE10138 [14] 68 32 progressive and 36 stable CLL patients Validation for the correlation of hub gene expression with 
treatment response in CLL patients

GSE103265 19 8 CLL and 11 Richter syndrome Validation for expression difference of hub genes between 
stable CLL and Richter syndrome patients

GSE39671 [15] 130 130 CLL survival analysis of TTFT stratificated by hub gene expres‑
sion

GSE22762 [16] 107 107 CLL survival analysis of TTFT/OS stratificated by hub gene 
expression

http://cpdb.molgen.mpg.de/
http://cpdb.molgen.mpg.de/
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coefficients for individual genes of the whole genome. R 
software (version 4.0.2) and ‘stats’ package was utilized 
for the calculation. The criteria of associating genes were 
defined as |R2|> 0.45 and p value < 0.05. Then, The GSEA 
was performed to access the enrichment of HELQ/EGR3 
associating genes on signaling pathways, according to 
MSigDB database [25–27] (http://softw​are.broad​insti​
tute.org/gsea/msigd​b). The significantly enriched path-
ways were selected with |NES (normalized enrichment 
score)|> 1 and q value < 0.05.

Statistical analysis
The expression data was normalized by ‘normalizeBe-
tweenArrays’ function in ‘limma’ package from R soft-
ware (version 4.0.2). The unpaired t test was utilized to 
compare the normalized continuous variables between 2 
subgroups. In the situation of comparing between more 
than 2 groups, the ordinary one-way ANOVA test was 
used. The logrank test was utilized to test the survival 
difference between subgroups, using p < 0.05 as cut-off 
value.

Results
The results of WGCNA
The GSE28654 cohort included 61 M-CLL, 28 U-CLL and 
23 CLL with undetermined IGHV status (excluded from 
WGCNA) [7]. The median age at diagnosis was 61 years 
old, and the majority of the cohort were in early stages 
(104 Binet stage A and 8 Binet stage B patients) and 
untreated (78 untreated vs 34 treated patients) [7]. No 
outliers were detected by hierarchically clustering with 
average distance (Additional file 1: Fig. S1). We selected 
3 as the soft threshold power according to Fig.  2a. The 
maximal dissimilarity was set as 15% for merging simi-
lar modules, resulting in a total of 14 co-expression 
modules. The topological overlap degree of individual 
modules was shown in Fig.  2c, which was generated in 
the form of topological overlap heatmap after grouping 
4 hundred randomly selected genes into modules. Addi-
tionally, the eigengene adjacency heatmap demonstrated 
the relationship between modules (Fig.  2d). The Pear-
son’s coefficients and p values, generated from the cor-
relation analysis between individual module eigengenes 

and IGHV status, were shown in Fig. 2e. The correlation 
between the ‘black’ module and M-CLL was the most 
significant (R2 = 0.59, p = 9e−12). Whereas the ‘purple’ 
module was the most correlated with U-CLL (R2 = 0.85, 
p = 1e−32). 4 genes (FCRL1/FCRL2/HELQ/EGR3) of 
the ‘black’ module, and 5 genes (LPL/LDOC1/ZNF667/
SOWAHC/SEPTIN10) of the ‘purple’ module were iden-
tified as hub genes.

To our best knowledge, HELQ/EGR3/ZNF667/
SOWAHC were not described to be relevant with CLL 
previously. As an important regulation factor of DNA 
repair pathway, HELQ (Helicase POLQ-like protein) 
expression is demonstrated as an indicator of resistance 
to platinum based chemotherapy in epithelial ovarian 
cancer [28]. Hui Cheng et  al. demonstrate that EGR3 
(Early growth response protein 3) is a strong limiting 
factor for potential of hematopoietic stem cell prolif-
eration [29]. Recently, the under-expression of EGR3 is 
demonstrated to be an independent risk factor for meta-
static prostate cancer [30]. ZNF667, encoding Zinc fin-
ger protein 667, may involve in transcription regulation, 
the aberrantly hypermethylation of which promoted 
progression of laryngeal and esophageal squamous cell 
carcinoma [31, 32]. SOWAHC, encoding Ankyrin repeat 
domain-containing protein SOWAHC, is demonstrated 
to be prognostic in bladder cancer [33] and lung squa-
mous cell carcinoma [34]. The 4 genes were selected as 
target genes in the following analysis, according to prog-
nostic value in abovementioned studies and correlation 
with IGHV status in WGCNA. Moreover, the genes of 
‘black’ and ‘purple’ modules were mapped into STRING 
tools, to establish the PPI network (Additional file 2: Fig. 
S2).

The results of ORA for co‑expression modules
For the ‘black’ module, the genes were mainly enriched 
in biological processes involving with B cells, like B cell 
activation, B cell proliferation, B cell apoptotic process, 
negative regulation of B cell receptor signaling pathway, 
etc. (Fig.  3a). And the molecular functions of the genes 
were enriched in binding, catalytic activity, etc. whereas 
the products of genes were predominantly located in cell, 
membrane, etc. Based on KEGG database, the genes were 

(See figure on next page.)
Fig. 2  a The scale independence (the left plot) and mean connectivity (the right plot) corresponding to different soft-thresholding values. b The 
cluster dendrogram (the upper part) and the co-expression modules (the lower part) generated by average linkage hierarchical clustering method. 
the branches of the dendrogram represent individual genes. The height indicates the Euclidean distance. Each module that contains weighted 
co-expressed genes, is displayed with a distinct color. c The heatmap of topological overlap using 400 randomly selected genes. The genes are 
divided into different colors (modules), shown under the cluster dendrogram. d The heatmap of module eigengene adjacency, which stands for the 
relationship between distinct co-expression modules. e The module-trait relationship plotter. All modules (colors) are displayed on the longitudinal 
axis, while all prognostic markers are displayed on the transverse axis. Each cell contains R2 and p value of correlations between the modules and 
prognostic markers by Spearman’s method. The gradient color of each cell corresponds to the R2 (red = 1, blue =  − 1)

http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
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predominantly enriched in NF-kappa B signaling, JAK-
STAT signaling, p53 signaling pathway, etc. (Fig. 3b).

For the ‘purple’ module, the genes were mainly 
enriched in biological processes, like regulation of acti-
vated CD8-positive alpha–beta T cell apoptotic process, 
signal transduction by p53 class mediator resulting in 
transcription of p21 class mediator, etc. (Fig. 3c). And the 
molecular functions of the genes were enriched in trans-
port activity, catalytic activity, etc. whereas the products 
of genes were predominantly located in cell, membrane, 
etc. Based on KEGG database, the genes were predomi-
nantly enriched in mTOR signaling, Wnt signaling, p53 
signaling pathway, etc. (Fig. 3d).

Validation of hub genes by additional independent CLL 
cohorts
The comparison of hub genes expression level between 
M-CLL and U-CLL patients based on GSE38211 was 
shown in Fig.  4, in which the HELQ and EGR3 expres-
sion was significantly higher in M-CLL group than that in 
U-CLL group. While ZNF667 and SOWAHC expression 
was significantly lower in M-CLL than that in U-CLL 
group. Similar results were calculated and obtained from 
other independent datasets (Table  2). The expression 
of HELQ, and ZNF667 was also significantly different 
between CLL leukemic cells and normal B cells (Fig.  5, 
Table  2). The expression was significantly differential 

across various types of lymphoid neoplasms for HELQ/
EGR3/ZNF667 (Fig. 6, Table 2).

Expression of hub genes was associated with treatment 
response and Richter transformation of CLL patients
No significant association between the Binet clinical 
stage and expression of all hub genes, was uncovered 
in our analysis based on GSE58211 (data not shown). 
The higher expression of HELQ predicted stable dis-
ease instead of progressive disease for CLL in GSE10138 
(Fig. 7a, p = 0.0413), while other hub genes were not sig-
nificantly expressed differently (Fig.  7b–d). In Richter 
transformed CLL patients, the expression of HELQ sig-
nificantly decreased (p < 0.0001), while the expression of 
ZNF667 significantly increased (p = 0.0278) in compari-
son with non-transformed cases (Fig. 8).

HELQ and EGR3 predicted TTFT and OS for CLL patients
The analysis on impact of hub genes expression on TTFT 
was shown in Fig.  9. EGR3-low group had significantly 
shorter TTFT in comparison with EGR3-high group 
based on GSE39671 (Fig.  9b) and GSE22762 (Fig.  9f ). 
Although it’s not significant, the TTFT of HELQ-low 
group tended to be inferior to HELQ-high group (Fig. 9a, 
e). No significantly results of TTFT analysis were found 
for ZNF667 (Fig. 9c, g) and SOWAHC (Fig. 9d, h), either. 
However, intriguing trends were revealed for ZNF667 

Fig. 3  a, b The results ORA for the ‘black’ module (GO/KEGG). a, b The results ORA for the ‘purple’ module (GO/KEGG). The X-axis represented the rich 
factor, and the diameter of dots indicated gene number involved in the gene set. Additionally, the color of dots correlated with the −log10(p value)
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(Fig.  9c) and SOWAHC (Fig.  9h), which demonstrated 
that the survival of subgroups was not significantly dif-
ferent (p > 0.05), but the Kaplan–Meier curves were sepa-
rated (Fig. 9c, h).

The survival analysis using GSE22762 dataset was 
shown in Fig.  10. The HELQ-low group showed sig-
nificantly unfavorable OS in comparison with the 

Fig. 4  The comparison of hub genes expression between M-CLL and U-CLL based on GSE38611. ***p < 0.0001

Table 2  The comparison of  hub genes (HELQ/EGR3/ZNF667/SOWAHC) expression indicated significant difference 
between M-CLL and U-CLL using unpaired t-test. Since the HELQ expression was not included in the platform of GSE9992, 
the p-value was not calculated

GSE38611 (76M-
CLL vs 60 U-CLL)

GSE40570 (96M-
CLL vs 63 U-CLL)

GSE51529 
(131M-CLL vs 85 
U-CLL)

GSE69034 (86M-
CLL vs 58 U-CLL)

GSE9992 
(24M-CLL vs 36 
U-CLL)

GSE50006 (188 
CLL vs 32 healthy 
donors)

GSE32018 (17 CLL, 
23 FL, 22 DLBCL, 
24 MCL, 15 MALT-
MZL, 13 NMZL,13 
lymphoid tissues

p value (t test) p value (t test) p value (t test) p value (t test) p value (t test) p value (t test) p value (one-way 
ANOVA test)

HELQ  < 0.0001 0.0004  < 0.0001 0.748 NA  < 0.0001 0.0236

EGR3 0.0003  < 0.0001  < 0.0001  < 0.0001 0.0015 0.1509 0.0493

ZNF667  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001 0.0034 0.0003

SOWAHC  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001 0.9806 0.0729
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HELQ-high group (Fig.  10a). The OS of the EGR3-
low group was also inferior over the EGR3-high group 
(Fig. 10b).

The results of GSEA for HELQ and EGR3
The results of GSEA were shown in Table 3. The activated 
pathways associating with HELQ expression, included 
MYC (Myc proto-oncogene protein) targets, E2F (Tran-
scription factor E2F1 targets and DNA repair pathways, 
etc. while the suppressed pathways associating with 
HELQ expression, included Hedgehog signaling, Kras 
signaling pathway etc. (Fig. 11a). The activated pathways 
correlating with EGR3 expression, included MYC targets, 
E2F targets, PI3K-Akt-mTOR signaling pathways, etc. 
while the suppressed pathways correlating with EGR3 

expression, included IL6-JAK-STAT3 signaling, Kras 
signaling pathway etc. (Fig. 11b).

The associated pathways of HELQ and EGR3 were 
overlapped, among which E2F signaling, MYC signaling 
and DNA repair pathways were activated in both sets, 
whereas Kras signaling/inflammatory response were both 
suppressed.

Discussion
The expression signature of patients harboring different 
status of IGHV mutation, has been explored previously 
[35–38]. But no researchers investigated the co-expres-
sion modules correlating with IGHV status using 
WGCNA. WGCNA is a clustering method to investi-
gate the scale-free property of gene expression network, 

Fig. 5  The comparison of hub genes expression between CLL and normal B cells based on GSE50006. ***p < 0.0001. **p < 0.01. ns, p > 0.05
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in which TOM was used to evaluate the connectivity of 
individual genes [39]. Then the co-expression modules 
were identified, genes of which is highly co-expressed 
and strongly connected in network[40].

In the results of WGCNA, the ‘black’ module was sig-
nificantly correlated with M-CLL, and the ‘purple’ mod-
ule was significantly correlated with U-CLL. Notably, 
the 2 modules were connected in the protein–protein 
interaction analysis based on pre-existing experimen-
tal evidence in STRING database (Additional file 2: Fig. 
S2). Moreover, ORA revealed several overlapped path-
ways enriched by both modules, such as mTOR, Hippo 
and p53 signaling (Fig. 3). In accordance with our results, 
mTOR signaling was activated in the majority of CLL 

patients, but in 2 different manners [41]. In most of 
U-CLL, mTOR activation occurs downstream of BCR 
signaling. While a subset of M-CLL is driven by mTOR 
signaling in a non-BCR-dependent manner.

The ORA based on GO database demonstrated that 
genes in the ‘black’ module were mainly enriched in 
biological processes related with B cell activation/prolif-
eration/apoptosis. Of note, negative regulation of B cell 
receptor signaling were found to be enriched by gene 
set of the ‘black’ module (p = 0.00185), which involved 
PLCL2 and FCRL3. PLCL2 expresses in hematopoietic 
cells, encoding phospholipase C-L2 protein. The B cells 
in PLCL2-knockout mice were highly proliferative to 
cross-linking of BCR signaling [42], suggesting a negative 

Fig. 6  The comparison of hub genes expression between different types of lymphoid neoplasms based on GSE32018. ***p < 0.0001. *p < 0.05. ns, 
p > 0.05
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regulation role in BCR signaling. FCRL3, encoding Fc 
receptor-like protein 3, is reported to be highly expressed 
in M-CLL instead of U-CLL [43], which demonstrates the 
inhibitory potential on BCR signaling [44]. And deletion 
or downregulation of FCRL3 predicts poor prognosis for 
CLL patients [45].

For the ‘black’ module, ORA according to KEGG 
database, demonstrated the NF-kappaB, HIF-1 and 
AMPK signaling pathways were enriched for the ‘black’ 
module. The activity of NF-kappaB signaling is demon-
strated to be variable but overall increased in CLL leu-
kemic cells [46–48], which is also crucial for survival of 
leukemic cells [47] and potentially targetable for CLL 

[49]. HIF-1a expression and HIF-1 signaling is dem-
onstrated to promote the interaction of CLL leukemic 
cells and microenvironment [51], which facilitates the 
survival and propagation of CLL. The transcription of 
HIF-1 is increased in TP53-disrupted CLL patients, 
while the HIF-1 induced interaction, between leukemic 
cells and stromal cells, is independent of TP53 status 
[52]. The inhibition of HIF-1 signaling is potentially 
therapeutic, especially in M-CLL based on our analysis. 
The previous report indicates AMPK signaling is in the 
control of apoptosis for CLL cells [53, 54], which can 
be activated by acadesine in a p53 independent way. 
Additionally, AMPK signaling can be activated by ATP 

Fig. 7  The comparison of hub genes expression between CLL-stable and CLL-progressive group after immunochemotherapy based on GSE10138. 
*p < 0.05. ns, p > 0.05
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deleting agents, such as metformin and 8-chloro-aden-
osine, which will switch the energy-generating path-
ways, leading to autophagy both in  vitro and in  vivo 
[55, 56]. Therefore, the AMPK signaling and autophagy 
are potential crucial pathways in M-CLL.

In ORA for the ‘purple’ module, Wnt signaling was 
enriched for U-CLL patients. The Wnt signaling is 
required for survival of CLL leukemic cells in the 
functional study [58], which is activated by somatic 
mutations [59] or Notch2 activity from BMSC [60]. 
Combining with our ORA analysis for the ‘purple’ 

module, inhibition of Wnt signaling or Notch 2 was 
potential therapeutic for U-CLL patients.

A total of 9 hub genes were identified by WGCNA, 
including FCRL1, FCRL2, HELQ, EGR3, LPL, LDOC1, 
ZNF667, SOWAHC and SEPTIN10. The impact of Fc 
receptor like molecules (including FCRL1 and FCRL2) 
have been elucidated in CLL, which predicts the IGHV 
mutation status and clinical progression [43], and can 
act as potential immunotherapeutic targets [61, 62]. LPL, 
encoding lipoprotein lipase, is expressed in CLL patients 
with aggressive clinical properties, which promotes 

Fig. 8  The comparison of hub genes expression between Richter transformed and non-transformed CLL based on GSE103265. ***p < 0.0001. 
*p < 0.05. ns, p > 0.05
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activating ligands for PPARα (Peroxisome proliferator-
activated receptor alpha) and switch energy source 
to fatty acid [63]. Additionally, the LPL expression is 
reported to be a strong prognostic indicator [64]. Hatice 
Duzkale et  al. demonstrate that mRNA expression of 
LDOC1 is correlated with prognostic markers (cytoge-
netic markers, IGHV mutation status, and ZAP-70 
expression), also a predictor of OS for CLL patients [65]. 
The expression of SEPTIN10 is reported to an independ-
ent prognostic factor for survival [66] and TTFT [37] of 
CLL patients. 4 other genes were not reported in previ-
ous studies, and selected as target genes in our study, due 
to the prognostic value in cancers and correlation with 
IGHV status.

The correlation of hub genes expression with IGHV 
status in external cohorts was consistent with the result 
obtained from WGCNA (Fig.  4, Table  2), in which the 
HELQ and EGR3 were overexpressed in M-CLL than that 
of U-CLL significantly, while ZNF667 and SOWAHC 
were under-expressed.. The differential expression was 
found to be significant for HELQ and ZNF667 between 
CLL cells and normal B cells (Fig. 5). Moreover, HELQ, 
EGR3 and ZNF667 were expressed differentially among 
diverse types of lymphoid neoplasm (Fig.  6). The above 
results suggested that the expression signature of hub 
genes is CLL-specific.

The analysis on GSE10138 indicated higher expression 
of HELQ correlated with better response to immuno-
chemotherapy (Fig. 7). Additionally, the results obtained 

from GSE103265 suggested that HELQ and ZNF may 
serve as potential indicators for Richter transformation 
(Fig. 8), which may help to predict high risk CLL patients. 
The association of hub genes expression with clinical fea-
tures suggested that these genes may involve in patho-
genesis of CLL.

As the individual course of early stage CLL is heter-
ogenous, the anticipation for urgency and probability 
of more aggressive intervention is still not solved. Our 
results demonstrated that EGR3-high group had sig-
nificant longer TTFT and more indolent disease course, 
which were consistent with International Prognostic 
Score for Early-stage CLL (IPS-E) system[67], in which 
U-CLL predicts unfavorable TTFT. Furthermore, our 
analysis on OS confirmed the survival advantage of 
HELQ-high as well as EGR3-high group (GSE22762). 
Although novel target agents have greatly improved the 
prognosis of CLL patients than traditional immuno-
chemotherapy, the prognostic value of HELQ and EGR3 
is still potentially crucial, the re-evaluation of which is 
worthy to conduct in the novel drug era.

Due to the relevance of HELQ and EGR3 with disease 
course and prognosis of CLL, we performed GSEA to 
reveal the significantly activated and/or suppressed sign-
aling pathways correlating with HELQ/EGR3 overex-
pression (Fig. 11 and Table 3). The GSEA indicated that 
Kras signaling and Hedgehog signaling was negatively 
correlated with HELQ expression. The somatic muta-
tions in RAS signaling pathway, including KRAS, occurs 

Fig. 9  Kaplan–Meier plots for TTFT of subgroups dichotomized by hub genes expression, based on GSE39671 and GSE22762
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in a subset of CLL cases, who more frequently have 
unmutated IGHV gene and worse TTFT [68]. While the 
functional activation, instead of activating mutations, of 
Kras signaling has not been reported yet. The inhibitors 
of Kras signaling, such as ulixertinib [68], may provide a 
new treatment option for HELQ-low or U-CLL patients. 
The Hedgehog signaling is implicated in the initiation, 
maintenance [69], and survival [70] of CLL cells. CLL 
patients with activation of Hedgehog pathway are associ-
ated with a shorter median TTFT [71], which may attrib-
ute to the inferior clinical outcomes in HELQ-low group. 
Although vismodegib, a Hedgehog inhibitor, significantly 
suppressed the Hedgehog signaling in CLL patients, no 
patients response to vismodegib treatment in a phase II 
clinical trials [72]. Limited number of included patients 
and ‘ligand-independent’ activation of Hedgehog path-
way may contribute to the failure.

The IL6-JAK-STAT3 signaling was also demonstrated 
to be negatively correlated with EGR3 expression 
(Table 3). In CLL cells, extracellular IL6 or BCR signaling 

induces tyrosine phosphorylation of STAT3 [73, 74], 
leading to upregulated of anti-apoptosis genes and a sur-
vival advantage. The BMSC are reported to interact with 
CLL cells by modulating JAK2/STAT3 signaling [75], 
protecting from CLL cells from ibrutinib. This effect can 
be reversed by combination of ibrutinib and JAK2 inhibi-
tor (AG490), which triggers apoptosis of CLL cells even 
in the presence of BMSC. Therefore, additional inhibition 
of IL6-JAK-STAT pathway may be a potential option for 
EGR3-low or U-CLL patients, which facilitate the clear-
ance of residual CLL cells in protective bone marrow 
microenvironment after ibrutinib treatment. The PI3K-
Akt-mTOR signaling was positively correlated with EGR3 
expression. According to the DNA perturbation based 
stratification study, signaling mediated via mTOR plays 
a greater role than canonical BCR signaling for survival/
proliferation of a M-CLL subset, as the effect of inhibiting 
mTOR is greater than BTK [41]. So, for M-CLL patients, 
high expression of EGR3 may be an indicator for usage of 
additional mTOR inhibitor.

Fig. 10  Kaplan–Meier plots for OS of subgroups dichotomized by hub genes expression, based on GSE22762
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The MYC target signaling was activated in both 
HELQ-high and EGR3-high group (Table  3). MYC and 
downstream targets play a role in antigen induced CLL 

proliferation [76, 77]. The GSEA indicated the possible 
pathways related with HELQ/EGR3 expression and pro-
vided insights to investigation of personalized therapy.

Table 3  The results of GSEA for HELQ and EGR3 with significantly enriched pathways

Pathway Enrichment Score NES P value FDR adjusted p value Q values

HELQ expres‑
sion associ‑
ated pathways

Kras signaling − 0.435668418 − 2.1532 1.00E−10 5.00E−09 3.05E−09

Hedgehog signaling − 0.42542167 − 1.6012 0.00905 0.0266321 0.01626

coagulation − 0.40041732 − 1.9035 1.78E−06 1.78E−05 1.09E−05

Myogenesis − 0.366088795 − 1.8159 3.62E−06 2.64E−05 1.61E−05

Epithelial mesenchymal transition − 0.365397776 − 1.8159 3.69E−06 2.64E−05 1.61E−05

Bile acid metabolism − 0.340839788 − 1.5737 0.00346 0.0123508 0.00754

Estrogen response late − 0.335392317 − 1.6646 7.44E−05 0.0004131 0.00025

Inflammatory response − 0.332882791 − 1.6521 0.0001 0.000507 0.00031

Spermatogenesis − 0.312304664 − 1.4807 0.00614 0.0191922 0.01172

Estrogen response early − 0.307378963 − 1.5247 0.00124 0.0051754 0.00316

Xenobiotic metabolism − 0.304376309 − 1.5098 0.00158 0.0060767 0.00371

DNA repair 0.240957608 1.47711 0.00535 0.0178322 0.01089

MYC targets 0.255275512 1.66642 7.34E−05 0.0004131 0.00025

G2M checkpoint 0.301740945 1.98069 1.82E−07 2.28E−06 1.39E−06

E2F targets 0.304239585 1.99709 1.16E−07 1.93E−06 1.18E−06

Mitotic spindle 0.30860828 1.97486 4.61E−08 1.15E−06 7.04E−07

Protein secretion 0.32775742 1.88719 0.00013 0.0005808 0.00035

EGR3 expression 
associated 
pathways

Interferon alpha response − 0.498828541 − 2.3019 7.24E−09 3.62E−07 1.45E−07

Cholesterol homeostasis − 0.433630867 − 1.8937 8.29E−05 0.0003453 0.00014

Reactive oxigen species pathway − 0.410797211 − 1.6669 0.00434 0.0120436 0.00482

Coagulation − 0.381436147 − 1.8811 8.40E−06 5.59E−05 2.24E−05

Myogenesis − 0.35817246 − 1.8869 3.24E−06 3.24E−05 1.30E−05

Interferon gamma response − 0.353929759 − 1.8643 1.82E−06 2.27E−05 9.09E−06

IL6-JAK-STAT3 signaling − 0.345542037 − 1.5649 0.00978 0.0232876 0.00932

Kras signaling − 0.329603523 − 1.732 8.04E−05 0.0003453 0.00014

epithelial mesenchymal transition − 0.32757194 − 1.7247 4.34E−05 0.0002168 8.67E−05

Estrogen response late − 0.321965048 − 1.6931 0.00013 0.0004868 0.00019

Inflammatory response − 0.306318547 − 1.6109 0.00055 0.0019486 0.00078

Complement − 0.286012557 − 1.5067 0.00293 0.0086057 0.00344

Apoptosis − 0.278729142 − 1.4182 0.01129 0.0243914 0.00976

Estrogen response early − 0.272180964 − 1.4339 0.00861 0.0215358 0.00861

Glycolysis − 0.268495638 − 1.4144 0.01088 0.0243914 0.00976

Adipogenesis − 0.26708006 − 1.4058 0.00807 0.0212352 0.00849

Hypoxia − 0.264798339 − 1.3925 0.01171 0.0243914 0.00976

Allograft rejection − 0.260668803 − 1.3732 0.01705 0.0340906 0.01364

PI3K-Akt-mTOR signaling 0.312772587 1.4756 0.01953 0.0375598 0.01502

DNA repair 0.326826349 1.62277 0.00084 0.0027889 0.00112

Mitotic spindle 0.339594124 1.78072 3.16E−05 0.0001753 7.01E−05

G2M checkpoint 0.357870462 1.86809 4.20E−06 3.50E−05 1.40E−05

E2F targets 0.399460879 2.08519 2.71E−08 4.51E−07 1.80E−07

MYC targets v1 0.401746954 2.09159 1.97E−08 4.51E−07 1.80E−07

MYC targets v2 0.428081704 1.80452 0.00173 0.0054071 0.00216

Protein secretion 0.440075051 2.06176 8.94E−06 5.59E−05 2.24E−05
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Fig. 11  The running enrichment score curve for pathways significantly correlating with HELQ (a) and EGR3 (b)
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Conclusion
We identified the co-expression modules and hub genes 
correlating with IGHV mutation status in CLL patients. 
The differential expression of hub genes was validated 
by external cohorts, and associated with clinical fea-
tures like treatment response and Richter transfor-
mation. HELQ and EGR3 expression were prognostic 
markers and predicted TTFT and OS.
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