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Abstract

Background: Parametric g-computation is an analytic technique that can be used to esti-

mate the effects of exposures, treatments and interventions; it relies on a different set of

assumptions than more commonly used inverse probability weighted estimators.

Whereas prior work has demonstrated implementations for binary exposures and contin-

uous outcomes, use of parametric g-computation has been limited due to difficulty in im-

plementation in more typical complex scenarios.

Methods: We provide an easy-to-implement algorithm for parametric g-computation in

the setting of a dynamic baseline intervention of a baseline exposure and a time-to-event

outcome. To demonstrate the use of our algorithm, we apply it to estimate the effects of

interventions to reduce area deprivation on the cumulative incidence of sexually trans-

mitted infections (STIs: gonorrhea, chlamydia or trichomoniasis) among women living

with HIV in the Women’s Interagency HIV Study.

Results: We found that reducing area deprivation by a maximum of 1 tertile for all

women would lead to a 2.7% [95% confidence interval (CI): 0.1%, 4.3%] reduction in

4-year STI incidence, and reducing deprivation by a maximum of 2 tertiles would lead to

a 4.3% (95% CI: 1.9%, 6.4%) reduction.
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Conclusions: As analytic methods such as parametric g-computation become more ac-

cessible, epidemiologists will be able to estimate policy-relevant effects of interventions

to better inform clinical and public health practice and policy.

Key words: Causal inference, G-computation, survival analysis, HIV, sexually transmitted infections, area

deprivation

Introduction

The g-methods are a class of causal inference techniques

that are increasingly being used for epidemiologic research.

These methods can be used to estimate the effects of expo-

sures, treatments and interventions under less restrictive

conditions than typical regression-based methods.1 The

three canonical g-methods include parametric g-computa-

tion,2 inverse probability-weighted estimation3 and g-esti-

mation of structural nested models.4 Of these, inverse

probability-weighted estimation has been most widely

used.5

The relatively widespread adoption of inverse

probability-weighted estimation may be due to the ease

of implementation using standard software.6 However,

inverse probability weighting is only valid under statisti-

cal modelling assumptions, e.g. properly specified models

for treatment and censoring. Parametric g-computation

requires a different set of statistical modelling assump-

tions for the outcome and covariates and therefore may

be used in cases where investigators have better knowl-

edge of the outcome and covariate processes than the

treatment and censoring processes. Ideally, practitioners

would use both of these distinct methods in parallel to

yield robust results.

Though often perceived as difficult to implement, in

many settings parametric g-computation can be imple-

mented with a similar level of ease as inverse probability-

weighted estimation. For instance, Snowden et al. provided

a simple algorithm for parametric g-computation to esti-

mate the effect of a fixed baseline exposure on a continu-

ous outcome.7 For more complicated scenarios involving

time-varying treatments and confounding, most examples

require far more complex algorithms that require fitting

multiple models plus Monte Carlo simulation8–11 or esti-

mating a set of iterated conditional expectations.12

Here, we extend Snowden et al.’s algorithm for cases of

intermediate complexity—the effects of dynamic baseline

interventions on time-to-event outcomes. Our algorithm

can easily be implemented using standard statistical soft-

ware. In the following sections, we introduce parametric g-

computation and dynamic baseline interventions, provide

an algorithm for implementing parametric g-computation

and illustrate the use of our proposed algorithm to estimate

the effects of an intervention to reduce area-level depriva-

tion on sexually transmitted infection (STI) incidence

among women with HIV.

Statistical methods

Notation

We index individuals in the sample with i, taking values

1;2; :; n, where n is the size of the study sample. The expo-

sure for individual i, which may be continuous or categori-

cal, is denoted by Xi. The time that individual i

experiences the outcome is denoted Ti, and the end of

follow-up is s. The quantity of interest is the risk of

experiencing the outcome by time t, which we denote

Yt;i ¼ IðTi � tÞ, where IðxÞ is the indicator function taking

value 1 when x is true. Throughout, capital letters repre-

sent random variables, whereas lowercase letters represent

their possible realizations.

Some individuals may be lost to follow-up before the

end of the study. The time of loss to follow-up is denoted

Ci. The observed time that an individual exits the study is
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denoted T�i ¼ min Ci;Ti; sð Þ, i.e. the first of the following

events: loss to follow-up, the outcome or the end of study

(s). Loss to follow-up at time t is denoted by

Lt;i ¼ IðCi � tÞ. Individuals for whom T�i ¼ Ci are missing

values for Yt;i. Here, we only consider a baseline exposure

or treatment, denoted Xi. We also observe a set of baseline

covariates, denoted Wi. We assume individuals are inde-

pendent and identically distributed, and therefore drop the

subscript i hereafter for notational simplicity.

Dynamic baseline interventions

The interventions we consider here are deterministic and

dynamic,13,14 meaning they involve changing the level of

the exposure for individuals by a certain known amount

(deterministic), with the amount depending on an individu-

al’s baseline exposure and covariates (dynamic). In general,

the intervention takes the form of a function mapping the

observed exposure and covariates to a new level of

exposure (we note that, more precisely, such interventions

can be described as dynamic interventions that depend on

the natural value of treatment15). For instance, we may be

interested in estimating the effect of shifting an ordinal ex-

posure down 1 level from that observed for each individual

with covariate value W ¼ 0 and 2 levels for those with co-

variate value W ¼ 1. In that case, those in the lowest expo-

sure category have their level of exposure unchanged, and

the exposure cannot be changed to be below its lowest pos-

sible level. The intervention function for the previously de-

scribed dynamic baseline intervention can be expressed as

gðx;wÞ ¼ max 1; x� I w ¼ 0ð Þ � 2� I w ¼ 1ð Þ
� �

�. With this

framework, many policy-relevant interventions can be

expressed.

Estimating the effects of dynamic baseline

interventions

To estimate the effects of dynamic baseline interventions,

we must introduce additional notation. Using notation

similar to Young et al.,15 we define Tg as the value T

would take if, possibly counter to fact, an individual expe-

rienced exposure consistent with the intervention repre-

sented by g. We similarly define Yg
t and Xg as the values Yt

and X would take under the intervention represented by g.

The effect of a dynamic baseline intervention on the out-

come, compared with no intervention, can be expressed as

wt ¼ E Yt½ � � E Yg
t

� �
.

Because the values of Tg (and thus Yg
t ) cannot be ob-

served, a set of identification conditions must be met to es-

timate wt. One set of sufficient conditions begins with a

graphical criterion described in detail by Young et al.15

The criterion requires that, conditional on baseline covari-

ates, all backdoor paths between observed treatment and

the potential outcome are blocked on the single world in-

tervention graph16 drawn for the intervention of interest.

This condition is generally violated when there is unmeas-

ured confounding present.17 In addition to the graphical

criterion, additional conditions that are together sufficient

to identify the effect include causal consistency,18 condi-

tionally uninformative censoring, positivity,19 and, if para-

metric models are used, correct model specification.

Causal consistency means that the outcome under an

observed level of exposure is equal to the outcome that

would be observed had exposure been set to that level by

an intervention, e.g. T ¼ Tg if X ¼ Xg. Causal consistency

is typically violated if there are multiple versions of the in-

tervention, referred to as treatment variation relevance,20

or if the outcome for an individual depends on the

exposure for other individuals, referred to as interfer-

ence.21 Conditionally uninformative censoring, denoted

Tg
qCjX;W, means the potential event time is independent

of time of loss to follow-up conditional on observed expo-

sure and the covariates. Finally, positivity means that,

within every combination of covariate values, there are

individuals observed with every level of exposure that

occurs under the intervention and individuals who are not

censored at every time, meaning that if Pr W ¼ wð Þ > 0,

then Pr X ¼ xjW ¼ wð Þ > 0 and Pr Lt ¼ 0jX ¼ x;ð W ¼
wÞ > 0 for all w and x that occur under the intervention.

Violations of positivity occur when individuals with certain

covariate values cannot experience all levels of exposure

(e.g. men cannot have hysterectomies).

When the aforementioned conditions are met, the risk

under the intervention can be expressed with the extended

g-formula22 as

E Yg
t

� �
¼
X

w;x
½ 1�

Ys

t¼0
Pr Yt ¼ 0jX ¼ x;W ¼ w;Lt ¼ 0
� �� �

PrðgðX; wÞ ¼ xjW ¼ wÞPr W ¼ wð Þ�

where Lt denotes the entire history of censoring through

time t. The intervened-on distribution of X is identified by

Pr gðX; wÞ ¼ xjW ¼ wð Þ ¼
X

k
I g k;wð Þ ¼ x
� �

PrðX
¼ kjW ¼ wÞ:

With E Yg
t

� �
expressed in this form, all the necessary

quantities can be estimated from the observed data. In our

proposed algorithm, Pr gðX;wÞ ¼ xjW ¼ wð Þ and

Pr W ¼ wð Þ are implicitly estimated nonparametrically

by averaging the predicted outcomes across observed indi-

viduals with each individual’s X set to gðX;WÞ. The

remaining term, Pr Yt ¼ 0jX ¼ x;W ¼ w;Lt ¼ 0
� �

, can be

estimated with any properly specified model, for instance,

a model for the discrete-time hazard, e.g. with pooled
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logistic regression (for discrete-time data),23 or a Cox

model with the Breslow estimator for the baseline hazard

function (for continuous-time data).24 When parametric

models are used, the estimation procedure is referred to as

parametric g-computation. Standard errors and confidence

intervals (CIs) can be estimated using the nonparametric

bootstrap.25

Here, to be consistent with the following illustrative ex-

ample, we consider the discrete-time data case. In practice,

wt can be estimated with the procedure displayed in

Figure 1, an extension of the parametric g-computation

procedure described by Snowden et al.7 to handle dynamic

interventions and time-to-event outcomes. We assume the

data are set up so that each row represents a person-visit.

Illustrative example

In this illustrative example, we estimate the effects of an in-

tervention on area deprivation on the incidence of an STI

in the Women’s Interagency HIV Study (WIHS). The

WIHS is a long-running interval cohort study of women

living with HIV and women at high risk of HIV.26

Beginning with the biannual WIHS visit that occurred be-

tween 1 October 2013 and 31 March 2014, the addresses

of WIHS participants from 10 locations were geocoded

(Bronx, NY; Brooklyn, NY; Washington, DC; San

Francisco, CA; Chicago, IL; Chapel Hill, NC; Atlanta, GA;

Miami, FL; Birmingham, AL; Jackson, MS). We linked

each woman’s census block group at the time of geocoding

to 2015 Area Deprivation Index (ADI)27 data, which rep-

resented percentile of deprivation across all census block

groups in the USA. The ADI is designed to characterize

area deprivation based on four domains, including income,

education, employment and housing quality. Women with

HIV were included in this analysis if (i) at their first

geocoded visit they lived in a block group classified in the

2015 ADI data (i.e. not with <100 persons, <30 housing

units, or >33% of the population living in group quarters),

and (ii) had at least one visit in which they did not self-

report an STI diagnosis visit (here, gonorrhea, chlamydia

or trichomoniasis) at or after their geocoding visit.

Included women were followed until the first of: one or

more self-reported incident STIs (gonorrhea, chlamydia or

trichomoniasis) diagnosed since last WIHS visit, loss to

follow-up (the projected date of the second consecutive

missed study visit), death, or their last attended visit be-

tween October 2017 and March 2018.

The intervention considered was an improvement in

ADI by k tertiles for each individual, for k 2 f1; 2g. For in-

stance, with k ¼ 1, individuals in the bottom tertile of ADI

stayed in the bottom tertile, individuals in the middle ter-

tile moved to the bottom tertile, and individuals in the top

tertile moved to the middle tertile. Here, the intervened-on

value of ADI was ADI� ¼ maxð1;ADI � 1Þ, where ADI is

categorized into 3 levels. The intervention was compared

with the natural course, which is the modelled incidence of

STI under no intervention.

We modelled the discrete-time hazard of STI with

pooled logistic regression. We modelled ADI as a 3-level

categorical variable and time with a 3-knot restricted cubic

spline. We included several baseline covariates in the

model including: age (3-knot restricted cubic spline), race/

ethnicity (non-Hispanic White, non-Hispanic Black or any

other race/ethnicity combination), detectable viral load (bi-

nary, lower limit of detection 20 copies/mL), highly active

antiretroviral therapy (HAART) since last visit (binary),

CD4 count (3-knot restricted cubic spline), history of AIDS

(binary), health insurance (binary), injection drug use (bi-

nary), depression (3-knot restricted cubic spline for Center

for Epidemiologic Studies Depression Scale score28) and

Figure 1. Algorithm for estimating the effects of a dynamic baseline intervention on a time-to-event outcome using g-computation.
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sexual risk factors [any vaginal sex (binary), any anal sex

(binary), unprotected vaginal sex (always, sometimes,

never), unprotected anal sex (always, sometimes, never)

and multiple sexual partners (binary)]. We also included

product terms between the ADI and time. Women with

missing data were excluded from the analysis. We esti-

mated 95% CIs as the 2.5th and 97.5th percentiles of 200

bootstrapped analyses. A SAS macro implementing this an-

alytic strategy is provided in the Supplementary Material,

available as Supplementary data at IJE online.

Of 1605 women who had a geocoded address in a clas-

sified block group and did not report having been diag-

nosed with an STI since the last WIHS visit, 1572 women

(98%) had complete data. The distribution of ADI was:

743 (47.3%) in the highest tertile (most deprivation), 325

(20.7%) in the middle tertile and 504 (32.1%) in the low-

est tertile (least deprivation). Over the course of follow-up,

105 women had an incident STI and 152 were censored

due to loss to follow-up (n¼ 85) or death (n¼ 67).

To check our modelling assumptions, we compared the

observed risk of survival with the risk from our models un-

der no intervention. The observed estimate of 4-year STI

incidence was 8.1% (95% CI: 6.4, 10.8), which was very

similar to our modelled 4-year incidence of STI of 8.0%

(95% CI: 6.7, 9.6, Figure 2).

The estimated 4-year STI incidence after intervening to

improve ADI by 1 tertile for all individuals was 5.3%

(95% CI: 3.5, 7.5, Figure 3), corresponding to a risk differ-

ence of �2.7% (95% CI: �4.3, �0.1, Figure 4). The

estimated 4-year STI incidence after intervening to improve

ADI by 2 tertiles for all individuals was 3.7% (95% CI:

1.8, 6.4, Figure 3), yielding a risk difference of �4.3%

(95% CI: �6.4, �1.9, Figure 4). The 4-year risk difference

comparing a 1-tertile ADI improvement with a 2-tertile

ADI improvement was �1.6% (95% CI: �3.5, 0.3,

Figure 4).

Discussion

We present a simple algorithm for implementing paramet-

ric g-computation to estimate risks under dynamic baseline

interventions. Our algorithm can be described succinctly in

6 steps: (i) fit a model for the discrete-time hazard of the

outcome conditional on baseline treatment or exposure,

baseline covariates, and time, (ii) set the treatment or expo-

sure of each baseline record according to the intervention

of interest, (iii) copy the intervened-on baseline records for

each time point, (iv) predict the discrete-time hazard for

each copied record, (v) compute the cumulative product of

the complement of the hazards over time, (vi) average the

complement of the cumulative products across individuals.

This procedure is intuitively appealing, as it involves di-

rectly setting each individual’s treatment or exposure based

on the intervention and estimating each individual’s risk

under that intervention. Recently developed SAS29 and

R30,31 packages that implement parametric g-computa-

tions and regression standardization can greatly ease the

implementation of this approach.

Figure 2. Comparison of the observed and modelled cumulative incidence of STIs among women with HIV in the Women’s Interagency HIV Study,

2013–2018. Black line, cumulative incidence function estimated using parametric models; grey lines, cumulative incidence functions estimated non-

parametrically from 200 bootstrap replicates from the original data.
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Care should be taken when choosing a method for esti-

mating effects, as each requires distinct conditions to be

met. When estimating the effect of a baseline intervention,

in addition to the identification assumptions of causal con-

sistency, conditional exchangeability, positivity and no mea-

surement error, the parametric g-formula also requires the

discrete-time hazard model be properly specified.

For instance, continuous variables must be modelled flexibly

enough to capture their true relationship with the outcome,

and effect measure modification must be accounted for, e.g.

by including interaction terms in the model. In our example,

we used pooled logistic regression, but more flexible model-

ling approaches may be used as well (we note, however,

that inference for g-computation may be invalid when data-

Figure 4. Risk differences comparing the risk of STIs under interventions to reduce area-level deprivation among women with HIV in the Women’s

Interagency HIV Study, 2013–2018. Circle, reduce area-level deprivation by 1 tertile vs no intervention; square, reduce area-level deprivation by 2 ter-

tiles vs no intervention; star, reduce area-level deprivation by 1 tertile vs reduce area-level deprivation by 2 tertiles. Symbols are point estimates, bars

are 95% CIs.

Figure 3. Cumulative incidence of STIs under interventions to reduce area-level deprivation among women with HIV in the Women’s Interagency HIV

Study, 2013–2018. Thin line, no intervention; medium line, reduce area-level deprivation by 1 tertile; thick line, reduce area-level deprivation by 2 ter-

tiles. Lines are point estimates, shaded regions are 95% CIs.

2026 International Journal of Epidemiology, 2020, Vol. 49, No. 6



adaptive methods are used32). Similarly, for inverse

probability-weighted estimation, the models for the proba-

bilities of remaining uncensored due to loss to follow-up

and due to not following the intervention of interest must be

properly specified. The analyst’s knowledge of treatment

and outcome processes will thus inform the choice of the

most appropriate method. Recently, doubly-robust methods

that (i) remain valid if either set of modelling conditions,

but not necessarily both, are met, and (ii) allow for the use

of extremely flexible, data-adaptive machine learning to fit

the necessary models, have been proposed,33,34 but these

methods are beyond the scope of this paper.

One often cited reason for choosing inverse probability-

weighted estimation methods is that parametric g-computa-

tion may suffer from the g-null paradox.35 Briefly, the g-null

paradox states that model misspecification is guaranteed

due to the incompatibility of the outcome and treatment

models used for estimating effects in the presence of time-

varying confounding affected by past exposure. When the g-

null paradox applies, then asymptotically one is guaranteed

to reject the null hypothesis of no effect of the intervention.

However, in the case of a baseline intervention as discussed

here, there is no time-varying confounding and only one

model is used, so the g-null paradox does not apply.

In our example, we used observational data to estimate

the effects of an intervention on area deprivation on the in-

cidence of the combined outcome of at least one of three

specific STIs. We note that these represent idealized inter-

ventions that may be difficult to implement in practice,

and we emphasize that the example is for illustrative pur-

poses and the results should be interpreted with caution. In

particular, our example highlights the need to carefully

consider the causal consistency assumption, an assumption

that is often of concern in health disparities research.36,37

The validity of our estimates relies on the strong assump-

tion that individuals set to a given ADI by the intervention

will experience social mixing patterns, and thus STI inci-

dence, similar to those of individuals already living in areas

with that ADI. However, interventions to improve area

deprivation can take at least two distinct forms—moving

individuals to better areas or improving the areas individu-

als live in. Each form may have different effects on a given

outcome, and concerns about treatment-variation rele-

vance and interference between individuals must be care-

fully considered. When estimating the effects of

hypothetical interventions, considering the exact form of

the intervention and its potential side effects and conse-

quences is necessary to provide unbiased estimates of the

effects of future policy decisions.

The algorithm we present can be used to estimate the

effects of dynamic baseline interventions, which encom-

pass a large class of interventions that may be of interest

for informing public health practice and policy. Though

we did not present more advanced cases, our proposed al-

gorithm can be extended to handle many such situations.

These may include the effects of stochastic interventions,38

in which the exact level the treatment takes under the inter-

vention for each individual is random, and the effects of

interventions generalized or transported to target popula-

tions of interest.39–41

With epidemiology increasingly focusing on consequen-

tialism42 and impact,43 being able to estimate the policy-

relevant effects of interventions is increasingly important

for informing public health decisions. With an understand-

ing of causal inference and the ability to implement mod-

ern methods, epidemiologists at all levels will be able to

evaluate the public health impacts of implementing policy-

oriented interventions within specific populations.

Supplementary data

Supplementary data are available at IJE online
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