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• Substantial decline (21%) in fine aero-
sols is observed during COVID lockdown
than pre-lockdown in 2020.

• A small decline (1%) in fine aerosol
levels occured in 2020 lockdown com-
pare to same period in 2019.

• Analyses of long-term changes reveal no
difference (α = 0.05) in aerosol levels
between 2020 and 2002–2019.

• Changes in air quality during lockdown
is not due to COVID intervention, but
season.
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Globally, ambient air pollution claims ~9million lives yearly, prompting researchers to investigate changes in air
quality. Of special interest is the impact of COVID-19 lockdown.Many studies reported substantial improvements
in air quality during lockdowns compared with pre-lockdown or as compared with baseline values. Since the
lockdown period coincidedwith the onset of the rainy season in some tropical countries such as Nigeria, it is un-
clear if such improvements can be fully attributed to the lockdown. We investigate whether significant changes
in air quality in Nigeria occurred primarily due to statewide COVID-19 lockdown. We applied a neural network
approach to derive monthly average ground-level fine aerosol optical depth (AODf) across Nigeria from year
2001–2020, using the Multi-angle Implementation of Atmospheric Correction (MAIAC) AODs from Terra and
Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) satellites, AERONET aerosol optical properties,
meteorological and spatial parameters. During the year 2020, we found a 21% or 26% decline in average AODf

level across Nigeria during lockdown (April) as compared to pre-lockdown (March), or during the easing
phase-1 (May) as compared to lockdown, respectively. Throughout the 20-year period, AODf levels were highest
in January and lowest in May or June, but not April. Comparison of AODf levels between 2020 and 2019 shows a
small decline (1%) in pollution level in April of 2020 compare to 2019. Using a linear time-lag model to compare
changes in AODf levels for similar months from 2002 to 2020, we found no significant difference (Levene's test
and ANCOVA; α= 0.05) in the pollution levels by year, which indicates that the lockdown did not significantly
ollege of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.
tchie), ayotunde.etchie@covenantuniversity.edu.ng (A.T. Etchie), alijauro@nesrea.gov.ng (A. Jauro), pinker@atmos.umd.edu

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2021.145187&domain=pdf
https://doi.org/10.1016/j.scitotenv.2021.145187
mailto:tunde.etchie@fulokoja.edu.ng
mailto:ayotunde.etchie@covenantuniversity.edu.ng
mailto:alijauro@nesrea.gov.ng
mailto:pinker@atmos.umd.edu
mailto:ns341@cam.ac.uk
https://doi.org/10.1016/j.scitotenv.2021.145187
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


T.O. Etchie, A.T. Etchie, A. Jauro et al. Science of the Total Environment 768 (2021) 145187
improve air quality in Nigeria. Impact analysis using multiple linear regression revealed that favorable meteoro-
logical conditions due to seasonal change in temperature, relative humidity, planetary boundary layer height,
wind speed and rainfall improved air quality during the lockdown.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Following the declaration ofWorld Health Organization onMarch
11, 2020 that the novel coronavirus (COVID-19) is a global pandemic
(Cucinotta and Vanelli, 2020), many countries took some form of ac-
tions to prevent or reduce this virus spread. Among others, these ac-
tions involved mandatory shutdown of economic activities and
restriction of non-essential travel. The global response to COVID-19
provided researchers a unique opportunity to assess the short-term
impact of interventionmeasures on ambient air quality. Such studies
are critically important considering that about nine million people,
worldwide, die every year from stroke, heart disease, respiratory in-
fections, chronic obstructive pulmonary disease and lung cancer
caused by exposures to ambient fine particulate matter (PM2.5) pol-
lution (Cohen et al., 2005; Burnett et al., 2018; Yin et al., 2020). Expo-
sure to PM2.5 pollution has also been linked to increased deaths from
diabetes mellitus (Meo et al., 2015; Weinmayr et al., 2015) and more
recently, COVID-19 (Hendryx and Luo, 2020; Setti et al., 2020; Wu
et al., 2020).

Several studies reported substantial improvements in air quality
during COVID-19 lockdown compared to pre-lockdown (Abdullah
et al., 2020; Chen et al., 2020; Li et al., 2020; Menut et al., 2020;
Rodríguez-Urrego and Rodríguez-Urrego, 2020; Tobías et al., 2020;
Wang et al., 2020; Zambrano-Monserrate et al., 2020; Zheng et al.,
2020). Other studies comparing PM2.5 pollution levels during lockdown
with baseline average also found substantial declines in PM2.5 pollution
levels during the lockdown period. For example, between 10% and 54%
reductions in PM2.5 pollution levelswere reported for different localities
in India during lockdown compared to baseline averages (Chauhan and
Singh, 2020; Kumar et al., 2020; Mahato et al., 2020; Ranjan et al., 2020;
Sharma et al., 2020). Similar or lower reductions in PM2.5 pollution
levels were also reported for localities in China (Pei et al., 2020; Zheng
et al., 2020), Brazil (Dantas et al., 2020; Nakada and Urban, 2020),
United States and Canada (Adams, 2020; Berman and Ebisu, 2020),
and in many parts of the world (Baldasano, 2020; Chauhan and Singh,
2020; Muhammad et al., 2020).

Except for China, many countries began lockdown between mid-
March and early April. During this period, most countries transitioned
from one weather season to the next. For example, India transitioned
from winter to summer, while Nigeria moved from dry to rainy season.
Some seasons such as winter are known to aggravate air pollution,
while others such as rainy seasons reduce pollution level. Indeed, air
pollution levels were found to be strongly influenced by season
(Etchie et al., 2018a). For instance, studies conducted in India observed
higher levels of PM2.5 pollution during winter compared with summer
(Pandey et al., 2013; Singla et al., 2012; Tiwari et al., 2012), or during
dry (summer) compared to rainy (monsoon) season (Etchie et al.,
2017). Recently, Chauhan and Singh (2020) attributed about 20% and
30% reduction in PM2.5 pollution level during COVID-19 lockdown pe-
riod in New York and Los Angeles, respectively, to rainfall. Likewise,
the analysis of long-term trends (2015–2020) in PM2.5 pollution during
the months of January to May in New York did not find a significant
change in air pollution resulting from COVID-19 lockdown (Zangari
et al., 2020). Improvement in air quality during the lockdown months
in New York was attributed to seasonal change and previous environ-
mental interventions (Zangari et al., 2020). To the best of our knowl-
edge, no study has examined the long-term seasonal changes in air
quality in tropical countries (such as a transition from dry to rainy
2

season) in the months of COVID lockdown. This study aims to shed
light on the changes in PM2.5 pollution level in a tropical country and
its relation on COVID lockdown.

Satellite-based aerosol optical depths (AODs), which represent
the extinction capability of total atmospheric column content were
found to correlate with ground-level (ambient) PM2.5 measurements
(Wang and Christopher, 2003; Gupta et al., 2006; Guo et al., 2009;
Jiang et al., 2021). Thus, satellite AODs have been widely used to de-
rive ambient PM2.5 concentrations due to their high spatial (global)
and temporal (~20 years of daily observations) coverages. Several
methods have been utilized to derive ambient PM2.5 concentrations
at a high spatiotemporal resolution using satellite AOD products
(Wei et al., 2019). The methods include: semi empirical models
(Lin et al., 2015; Zhang and Li, 2015); chemical transport models
(van Donkelaar et al., 2019); and statistical models such as linear
model (Chudnovsky et al., 2013), mixed-effect model (Chudnovsky
et al., 2014; Kloog et al., 2015; Xiao et al., 2017; Zhang et al., 2019),
generalized additive model (Ma et al., 2016) and geographically
and/or temporally weighted regression models (Hu et al., 2013; He
and Huang, 2018).

Recently, machine learning algorithms have been used to predict
ambient PM2.5 levels from satellite AODs. This is due to their flexibility
in solving large, complex and non-linear relationships among environ-
mental, meteorological and geographical predictors. Thus, overcoming
the inherent limitations of the statistical model assumptions such as
normality, homoscedasticity, multicollinearity and independence (Z.Y.
Chen et al., 2019; Li and Zhang, 2019). Themachine learning algorithms
frequently used for PM2.5 predictions from satellite AODs include: neu-
ral network (NN) (Gupta and Christopher, 2009; Wu et al., 2012; Zou
et al., 2015; Li et al., 2017a), deep belief network (Li et al., 2017b), ex-
treme gradient boosting (J. Chen et al., 2019), support vector machines
(Liu et al., 2017;Wang et al., 2017), decision tree (Reid et al., 2015; Zhan
et al., 2017), random forest (Brokamp et al., 2018; Park et al., 2019,
2020; Yang et al., 2020; Jiang et al., 2021) and extremely randomized
tree (Wei et al., 2019, 2020, 2021).

The lack of ground-level monitoring network for PM2.5 in Nigeria
makes it difficult to derive spatial and temporal datasets for PM2.5. Con-
sequently, AERONET's (Aerosol Robotic Network) measurements have
been utilized to assess local aerosol pollution levels in Nigeria (Nwofor
et al., 2018; Ogunjobi and Awoleye, 2019). Satellite AODs have also
been utilized to assessed long-term trends in aerosol pollution levels
in China (Guo et al., 2011; Cheng et al., 2013), South Africa (Kumar
et al., 2014), United States (Tang et al., 2017) and India (Mahato et al.,
2020; Ranjan et al., 2020). Satellite AODs however represent both natu-
ral and anthropogenic aerosol pollution level, and may have high mea-
surements error compared to ground-level fine mode AODs (AODf),
which have radii between 0.1 and 0.25 (Park et al., 2019) and aremainly
anthropogenic.

In this study, we utilizedNN to derivemonthly average ground-level
AODf across localities in Nigeria from the year 2001 to 2020 using satel-
lites AOD products, AERONET aerosol optical properties, meteorological
parameters and spatial predictors. We statistically assessed the long-
term trends (2001 to 2020) in AODf in order to ascertain whether
changes in air quality occurred in Nigeria due to COVID-19 lockdown
or not. We believe that ours is a first study to statistically examine the
long-term trends in air quality in a tropical country with high baseline
air pollution level, high frequency of rainfall and no environmental in-
tervention measures prior to 2020.
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2. Materials and methods

2.1. Overview of the COVID-19 State of Emergency in Nigeria

Nigeria detected the first COVID case in Ogun State on February 28,
2020 traced to an Italian visitor to Nigeria through the Murtala
Muhammed International Airport in Lagos. On 26th March 2020, the
first COVID fatality was recorded in Nigeria, prompting the Federal
Government to declare a nationwide lockdown in effect from 11 pm
on 30th March 2020. The lockdown, spanning from 30th March to 3rd
May 2020, banned all non-essential international and domestic travels,
and shutdown economic activities including schools.

Between 4th May and June 1st of 2020, the first phase of easing of
the lockdown (easing phase-1) took place. During this period, intrastate
movement resumed but commercial drivers were allowed to take only
60% of their normal carriage capacities. Also, overnight curfew from
8 pm to 6 am was exercised but was later shortened from 10 pm to
4 am in most States of Nigeria. Senior public offices and private busi-
nesses were allowed to work only on Mondays, Wednesdays and Fri-
days. In the second phase of easing (easing phase-2), which was from
2nd June to 29th June 2020, banks resumed normal working hours. Re-
ligious gatherings less than 20 persons were allowed to hold just one
service per week. Government offices opened from Monday to Friday
but working hours were from 9 am to 2 pm. This second phase was
later extended to September 03, 2020. During this extension, domestic
travels resumed followed by international flights. Vehicles were man-
dated to travel with 50% of their carriage capacities, with compulsory
use of face mask.

2.2. Data acquisition and processing

2.2.1. Satellites AOD products
We obtained daily Multi-angle Implementation of Atmospheric Cor-

rection (MAIAC) AOD products (green band at 550 nm) (MCD19A2)
over land from the Terra and Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS) satellites. TheMAIAC processed AODprod-
ucts are level-2 gridded datasets with spatial resolution of 1 km × 1 km
(Lyapustin and Wang, 2018a, 2018b). We acquired and processed
monthly average AODs for all pixels covering Nigeria, as well as the av-
erage values for pre-lockdown (January 01–March 30), lockdown
(March 31–May 03), easing phase-1 (May 04–June 01), and easing
phase-2 (June 02–August 25) for each year from 2001 to 2020 using
codes in Google Earth Engine (GEE) cloud platform (https://code.
earthengine.google.com/).We used theGEE's built-in country boundary
feature (USDOS/LSIB_SIMPLE/2017) to specify Nigeria using the FIPS
country code. The monthly average and phase-wise means of AOD
over Nigeria were exported and processed in QGIS 3.12.3. Zonal statis-
tics were computed using Nigeria's administrative unit layers for States
(Etchie et al., 2018b, 2019).

2.2.2. AERONET aerosol optical properties
AERONET, developed by the United States National Aeronautics and

Space Administration (NASA), is a global network of ground-level sun
photometers. The sun photometers measure aerosol optical properties
such as AOD, AODf and fine mode fraction (FMF) at multiple wave-
lengths ranging from 340 to 1020 nm (Tian and Gao, 2019; Aldabash
et al., 2020). The instruments are well-calibrated and have high tempo-
ral resolution takingmeasurements for every 15min. AERONEThas only
one ground-monitoring station in Nigeria, which is at Ilorin (8.48° N,
4.67° E, at elevation of 400 m). We downloaded version 3, level 2
(cloud screened and quality controlledwith pre-field and post-field cal-
ibration applied), monthly aerosol optical properties (AOD and AODf at
500 nm and the Angstrőm exponents at 440–870 nm and 500 nm, re-
spectively) from 2001 to 2019 (the most recent year) from https://
aeronet.gsfc.nasa.gov/. Since the satellite AODs were at 550 nm wave-
length,we converted the AERONET AODs andAODf to 550 nm following
3

a standard algorithm (Holben et al., 2001; Bibi et al., 2015; Ogunjobi and
Awoleye, 2019).

2.2.3. Meteorological and spatial predictors of AODf

We downloaded different monthly average meteorological pre-
dictors over Nigeria: rainfall (RF) (mm), relative humidity (RH)
(%), air temperature at 2 m above the ground (T) (K), wind speed
at 10 m above ground (WS) (m/s), and planetary boundary layer
height (PBLH) (m), for each year from 2001 to 2020 from the second
Modern-Era Retrospective Analysis for Research and Applications
(MERRA-2) site (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/).
Additional downloaded predictors were monthly averages of nor-
malized difference vegetation index (NDVI) for each year from
2001 to 2020 from Terra MODIS (https://modis.gsfc.nasa.gov/data/
dataprod/mod13.php); and yearly average gridded population den-
sity (PD) (number of persons per square kilometer) for the year
2000, 2005, 2015 and 2020 from the Socioeconomic Data and Appli-
cation Center (SEDAC) (https://sedac.ciesin.columbia.edu/data/set/
gpw-v4-population-density-rev11). The datasets were processed
and downloaded using GEE cloud platform with its built-in country
boundary feature for Nigeria.

2.3. Spatiotemporal modeling of AODf across Nigeria

First, we evaluated the satellite MAIAC AODs (AODMAIAC) against
the corresponding ground-level AERONET AOD datasets at 550 nm
(AODAERONET) at Ilorin using simple linear regression, after removing
outliers (n = 9). The validation result is shown in Eq. (1):

AODMAIAC ¼ 0:54� AODAERONET þ 0:04 ð1Þ

The correlation coefficient (r) is 0.84, and the root mean squared
error (RMSE) is 0.10. The regression intercept is 0.04. The small value
of intercept suggests that the MAIAC algorithm greatly reduced mea-
surement error due to surface reflectance. However, a slope of 0.54
shows that the monthly average MAIAC AODs underestimate the actual
ground-level measurements from AERONET. This suggests that the
Terra and Aqua MODIS AOD measurements at Ilorin at 10:30 am and
1:30 pm local time underrepresent AERONET's measurements taken
every 15min, by approximately half, at themonthly time scale. A previ-
ous study that also utilized monthly AODs from AERONET at Ilorin, but
over shorter period of time (2004–2014) to validate monthly AODs
from the MODIS Deep Blue algorithm reported a relatively weaker cor-
relation coefficient (r = 0.58), larger intercept (0.09), but comparable
slope value of 0.51 (Ogunjobi and Awoleye, 2019).

We utilized the multilayer perceptron, neural network (MLP-NN)
procedure, which is a feedforward architecture from the input layer
through the hidden layer to the output layer. The input parameters
were location, year, month, AODMAIAC, RF, RH, T, WS, PBLH, NDVI
and PD, while the output parameter was ground-level AODf. We ob-
tained the number of nodes in the hidden layer from training with-
out external interference. The main function of the NN model was
to estimate the nonlinear monthly average values of AODf from
2001 to 2020 across Nigerian localities using MAIAC AODs, meteoro-
logical and spatial predictors. The analysis was performed using IBM
SPSS 23 statistics package.

2.4. Statistical analyses

2.4.1. Time-lag modeling
We used a quantitative method to assess and compare the monthly

average AODf (from January to August) in 2020 with the corresponding
values for the previous eighteen years (2002–2019). In other words, we
took into account any potential decline in air pollution going from year
2002 to 2020,while testing if there has been a significant short-termde-
crease in air pollution levels in 2020 as a result of COVID lockdown.We
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utilized a linear time-lagged regression model (Eq. (2)) and analysis of
covariate (ANCOVA) to test for statistically significant difference in pol-
lution level for the same period by year (Zangari et al., 2020). The time-
lagged regression is given by:

y ¼ β0 þ β1X þ βnZn þ XZn þ tn þ ε ð2Þ

where: β0 is intercept for year 2020, β1 is coefficient for time, X. Here, X
is covariate for month of the year (January–August). β1X is slope for
2020, while βnZn and XZn are the intercept and slope, respectively, for
each nth year (2002–2019). tn is time lag for each year (2002−2020)
and ε is error term (Zangari et al., 2020).

We performed ANCOVA using F-test for type III sums of squares,
testing for homogeneity of the regression intercepts (change in air pol-
lution levels) and homogeneity of the regression slopes for time, X (rate
of change of air pollution) for each previous year relative to 2020, using
a dummy covariate for year (2002–2019= 0; and 2020= 1). The anal-
yses were performed using IBM SPSS 23 statistics package.

2.4.2. Impact analysis
We investigated the impact of localmeteorological conditions on the

AODf, using multiple linear regression, of the form:

y ¼ β0 þ β1X þ β2Sþ β3RH þ β4RF þ β5T þ β6WSþ β7PBLH þ β8Z þ ε

ð3Þ

where y is AODf, β0 is intercept, β1 to β8 are the coefficients for time (X,
is month of the year from January to August), season (S: dry season is
January–February, while rainy season is March–August.), relative hu-
midity (RH), rainfall (RF), temperature (T), wind speed (WS), planetary
boundary layer height (PBLH) and year (Z, is 2001–2020), respectively.
ε is error term.

3. Results and discussion

3.1. Spatiotemporal trend of satellite aerosols (AODs) across Nigeria

The period average AODs across Nigeria during pre-lockdown,
lockdown and easing phases in the year 2020 are shown in Fig. 1.
There were substantial reductions in AOD levels across the States in
Nigeria during the period of lockdown or easing phases compared to
pre-lockdown in year 2020 (Fig. 1). During lockdown, the average air
pollution level in Nigeria fell by about 69% in comparison to the pre-
lockdown value, with further reduction of about 23% during easing
phase-1. In Lagos, the pollution levels changed by about 81% and 6% re-
spectively for the above two phases, and the reduction was observed to
be about 50% and 56% respectively for these phases in FCT area. Gener-
ally, air pollution reductions during lockdown appeared to be greater in
the Southern States than in the Northern States. Also, the lowest pollu-
tion levels were observed during easing phase-1, but not during lock-
down. The pollution levels increased considerably, particularly in the
Central States, during easing phase-2. The percentage increase in pollu-
tion levels in Nigeria as a whole, Lagos or FCT during easing phase-2
compared with easing phase-1 was approximately 44%, 11% or 381%
respectively.

A time-series analysis of historical changes in AOD levels from 2010
to 2020 (Fig. 2) did not reveal a considerable change during lockdown
or phase easing in 2020 compared to the past ten years. Seasonal influ-
ence and local meteorological conditions, rather than lockdown, appear
to account for the reduction in air pollution level during lockdown or
phase easing. For example, the mean pollution level during lockdown
in 2020 in Nigeria of 0.22 was greater than the corresponding period
in 2013 or 2014, which is 0.19 or 0.21, respectively. Similarly, the AOD
levels during easing phase-2 in 2020 of 0.25 exceeded the value for sim-
ilar period in year 2016, 2018 or 2019, which is 0.22, 0.23 or 0.22,
4

respectively. The mean AOD level during easing phase-1 in the years
2020 and 2012 are similar i.e. 0.17.

Two distinct AOD spikes could be seen in the period corresponding
to the COVID lockdown in the year 2015 and 2018 (Fig. 2). We
attempted to unravel the cause of the spike by examining the long-
term trends (2001−2020) of AOD, surface temperature and rainfall
for the month of April, which is the dominant month of the lockdown.
The result (Fig. 3) shows that throughout the 20-year period, the air
temperaturewas almost stable, but rainfall showed considerable fluctu-
ations. The amount of rainfall dropped considerably in year 2015, which
probably caused the spike in AOD level. However, this was not the case
in year 2018 where both the AOD level and the amount of rainfall were
high. Thus, while we could attribute the spike in AOD in the period cor-
responding to the COVID lockdown in year 2015 to reduced (or de-
layed) rainfall, we could not suggest the same for the AOD spike for
the same period in 2018.

3.2. Spatiotemporal trend of ground-level finemode aerosols (AODf) across
Nigeria

The COVID lockdown measures in Nigeria are expected to impact
mainly anthropogenic pollution sources. Therefore, we statistically
assessed the long-term trends (2001–2020) in ground-level fine mode
aerosols (AODf) across localities in Nigeria. The MLP-NN validation re-
sult for the prediction is shown in Fig. 4. About 65% of the datasets
were used for training, while 35% was used for testing. The relative
error for training and testing was 0.08 and 0.05, respectively. The
model R2 and RMSE was 0.93 and 0.034, respectively.

The spread of fine aerosol pollution across localities in Nigeria from
January to April in years 2020 and 2019 are shown in Fig. 5. There
were substantial reductions in the pollution levels across the localities
during COVID lockdown (April) compared to pre-lockdown months
(January toMarch) in both year 2020 and 2019. The trends of fine aero-
sols from year 2001 to 2020 usingmonthlymeans are shown in Fig. 6. In
year 2020 the average level of fine aerosols fell by about 21% during the
lockdownmonth of April compared toMarch, with further reduction of
about 26% in May (easing phase-1). Similar pattern of decline in fine
aerosol levels of 7% or 28%was observed during themonth of lockdown
or easing phase-1 in 2019. The pollution levels however increased in
June, July or August by 7%, 46% and 25% in 2020 or by 7%, 41% and 19%
in 2019, compared to the preceding month. Comparison of the average
pollution level in Nigeria between lockdownmonth (April) of 2020 and
2019 shows a decline in the pollution level by 1% in 2020 compared to
2019. Furthermore, fine aerosol pollution levels were generally higher
in the Northern States compared to the Southern States. During the
lockdown month of April 2020, the level of fine aerosol pollution de-
clined by about 10% and 48% in Lagos and FCT, respectively, compared
to the pre-lockdown month of March 2020. Comparison of the lock-
downmonth in 2020 and 2019 however showed that fine aerosol pollu-
tion levels increased by about 28% in Lagos, but decreased by 3% in FCT
in 2020 lockdown compared to 2019.

Throughout the 20-year period, the levels of fine aerosol pollution
were highest in January, and lowest in May or June, but not April,
which is the lockdown month. Both Levene's test and ANCOVA did not
detect a statistically significant difference (α = 0.05) between the pol-
lution levels (intercepts of the time-lag model) or the change in pollu-
tion levels (slopes of the time-lag model) in Nigeria by year (see the
Supplemental Materials Tables S1 and S2). This indicates that both the
pollution level and the rate of change of pollution in 2020 are similar
to the values for the previous eighteen years (2002–2019).

The impact analysis usingmultiple linear regression shows that sea-
sonal change and variations in local meteorological conditions are sig-
nificant (α = 0.05) factors influencing fine mode aerosol levels across
Nigeria (Table 1). The prevailing temperature has the greatest effect
on fine aerosols pollution in Nigeria, followed in a decreasing order by
month of the year, relative humidity, PBLH, season and wind speed.
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Fig. 2. Phase-wise mean MAIAC AOD in Nigeria as a whole, Lagos and the Federal Capital Territory from 2010 to 2020.
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The negative sign in Table 1 indicates negative correlation between the
parameter of interest and AODf. For example, when the surface temper-
ature increases, the convective currents become stronger dispersing
ground level aerosols leading to a decrease in AODf levels. Similarly, in-
crease in surface relative humidity favors the hygroscopic size growth
and accumulation of fine mode aerosols into coarse mode aerosols
(Hu et al., 2010) resulting in lower AODf levels. High wind speed re-
duces AODf levels by dispersion. Aerosols interact strongly with meteo-
rological parameters within the PBLH. PBLH characterize the convective
and turbulent processes, entrainment and dispersion of aerosols and
was found to correlate negatively with surface relative humidity
(Zhang et al., 2013; Miao et al., 2019), except over desert region domi-
nated with stable PBL regime (Zhang et al., 2018). Therefore, a decrease
in PBLH (i.e. increase in surface relative humidity) may lead to the
growth/accumulation of coarsemode aerosols from finemode aerosols,
leading to a reduction in AODf levels.

For the coastal state of Lagos, the effect was greatest for temperature
followed in a decreasing order by month of the year, rainfall, wind
6

speed, season, year and PBLH. The result for Lagos suggests that rainfall
may also have statistically significant effects on aerosol pollution levels
in other southern States of Nigeriawhere the intensity of rainfall is high.
Heavy rainfall can reduce aerosol pollution levels by directly scavenging
the pollutants or indirectly, by limiting outdoor activities that cause the
pollution. For instance, both economic and commercial activities are af-
fected by heavy rainfall. Rainfall also reduces household burning of solid
fuels and wastes. In periods of heavy downpour, rainfall degrades roads
and causes flood, leading to reductions in non-essential movements.
Floods also pollute drinking water resources considerably (Adewuyi
et al., 2014; Etchie et al., 2013, 2014, 2020).

Very few investigations are available on the impact of seasonal
change on air quality in Nigeria. A study that assessed ground-level
concentrations of PM2.5 in residential, commercial and industrial areas
in Ibadan, Nigeria reported substantially lower concentrations of PM2.5

in rainy season (July to October) of 8–30 μg/m3 compared to dry season
(November to February) of 25–60 μg/m3 (Akinlade et al., 2015).
Owoade et al. (2013) assessed concentrations of ambient PM2.5 in



Fig. 3. Comparison of MAIAC AOD with temperature [K (×1000)] and rainfall [mm (×100)] in April (lockdown period) from 2001 to 2020.
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residential, commercial and industrial areas of Lagos from February to
October 2010, and reported PM2.5 concentrations ranging from 2 μg/
m3 to 67 μg/m3. However, no comparison was made between PM2.5

levels in rainy and dry seasons. Another study that assessed concentra-
tions of PM10 and PM2.5 outside a scrap iron and steel smelting facility in
Osun State, Nigeria reported a statistically significant decline in concen-
trations of PM10, but not PM2.5, during rainy season compare to dry sea-
son (Owoade et al., 2015). Ogundele et al. (2017) assessed heavy metal
concentrations in PM2.5 outside the steel smelting facility, but did not
report the impact of seasonal change on metal concentrations.

Our statistical analyses show that favorable seasonal change and
local meteorological conditions, rather than COVID-19 intervention
measures, accounted for the reductions in aerosol pollution levels in
Nigeria during the period of lockdown or phase easing compared to
pre-lockdown in 2020. Local meteorological condition have been impli-
cated to significantly impact both the PM2.5 level and its composition
7

(Cui et al., 2020). Our studies (Etchie et al., 2017, 2018b) found signifi-
cantly lower concentrations of PM2.5 and airborne polycyclic aromatic
hydrocarbons in an Indian district (Nagpur) during rainy (monsoon)
season compared to summer, winter or post-monsoon season. Recently,
Chauhan and Singh (2020) attributed about 20% and 30% reductions in
PM2.5 pollution levels during COVID-19 lockdown in New York and Los
Angeles, respectively, to rainfall.

Recent studies in different parts of the world have reported signifi-
cant improvements in air quality during COVID-19 lockdown (Berman
and Ebisu, 2020; Chen et al., 2020; Kumar, 2020; Kumar et al., 2020;
Mahato et al., 2020; Muhammad et al., 2020; Ranjan et al., 2020;
Rodríguez-Urrego and Rodríguez-Urrego, 2020). However, studies that
analyzed the long-term changes in air pollution in temperate localities
found no significant improvement resulting from the lockdown mea-
sures (Adams, 2020; Zangari et al., 2020). Using ground-level fine
mode aerosol levels across Nigeria from 2001 to 2020, we have, for



Fig. 4. Predicted versus actual AODf, based on multilayer perceptron neural network.
Broken lines indicate 95% confidence interval.
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the very first time, shown that the COVID-19 shutdown measures did
not contribute significantly to air quality improvement in Nigeria. Al-
though there was substantial decline in the pollution levels during the
COVID lockdown and phasing easingmonths (April–August 2020) com-
paredwith pre-lockdownmonths (January–March 2020), the change in
pollution was similar in magnitude to reductions occurring during the
same period in past years (2001 to 2019). The impact analysis revealed
that seasonal change to favorablemeteorological conditions inNigeria is
responsible for the decline in air pollution during the COVID lockdown
period.
Year 2020
January February

Year 2019

Fig. 5.Monthly average AODf across Nigerian S
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We note some limitations of this study. First, we derived the levels of
fine aerosols acrossNigeria usingAERONET's ground-levelmeasurements
due to the lack of ground-level monitoring stations for PM2.5 or gaseous
pollutants such as NOx and SO2 in Nigeria. Thus we could not interpret
the magnitude of the changes in fine aerosols in terms of actual concen-
trations or risk to human health in Nigeria. Secondly, our estimates of
fine aerosols were based on datasets from the only AERONETmonitoring
station in Nigeria, which is at Ilorin. Therefore, the spatio-temporal vari-
ability of fine aerosols across Nigeria is dependent on the variability in
MAIAC AODs, spatial predictors and meteorological parameters utilized.

4. Conclusion

From this study, we conclude that there were significant improve-
ments in air quality across Nigerian localities during the COVID-19 lock-
down and easing phases, compared with pre-lockdown period in year
2020. However, the air quality improvements were not due to the lock-
downmeasures, but seasonal change of favorablemeteorological condi-
tions. Namely, improvement in air quality resulting from the 2020
COVID lockdown measures in Nigeria was not statistically significant
because of the strong effects of seasonal weather changes. Possibly,
this conclusion may also be applicable to other tropical countries that
transitioned into a season characterized by low pollution levels at the
time of COVID shutdown, and should be investigated in future studies.
To our knowledge, ours is the first study that has statistically assessed
the effect of COVID-19 lockdown intervention on air quality in a tropical
countrywith high baseline pollution level, strong seasonality and no en-
vironmental intervention history before 2020.
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Fig. 6. Monthly average levels of fine mode AOD from year 2001 to 2020 in Nigeria.
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Table 1
Factors that significantly (α=0.05) influencedfinemode aerosol optical depths (AODf) in
Nigeria and Lagos.

S/N Nigeria Lagos

Parameter Coefficient (β):
r = 0.95, R2 = 0.90

Parameter Coefficient (β):
r = 0.92, R2 = 0.84

1 Temperature −0.984 Temperature −0.678
2 Month −0.699 Month −0.394
3 Relative humidity −0.361 Rainfall −0.278
4 PBLH 0.267 Wind speed −0.206
5 Season 0.224 Season −0.181
6 Wind speed −0.127 Year 0.179
7 – – PBLH 0.087
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