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to control the pandemic. The results show that eradication of the disease is possible if the
efficacy of treatment is perfect. We also investigate the existence of a dual-rate effect.
Conditions under which the effect occurs are derived. When the effect is present, a tactic to
control the infection might be to initially treat infected individuals aggressively at a

K ds: 3 . . . - .
Cg/vv;/gflg disease relatively high rate to drive the prevalence to a lower region that can be maintained in the
Dual-rate effect long run at relatively moderate rate and cost.

Treatment rate © 2021 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi

Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Coronavirus is a pathogen that targets the human respiratory system. It is mostly refereed to as COVID-19. The World
Health Organization (WHO) officially named it the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The WHO
declared the outbreak of SARS-CoV-2 a Public Health Emergency of International Concern on 30 January 2020 (Zheng et al.,
2020). Compared with the SARS-CoV that caused an outbreak of SARS in 2003, SARS-CoV-2 has a stronger transmission
capacity. It belongs to the same family of previous outbreaks of coronaviruses (CoVs), namely, severe acute respiratory
syndrome (SARS)-CoV and the Middle East respiratory syndrome (MERS)-CoV. These are characterized as agents that are a
great public health threat. Patients were admitted to hospitals with an initial diagnosis of pneumonia of an unknown etiology
in late December 2019 Wuhan, Hubei Province, China. These patients were epidemiologically linked to a seafood and wet
animal wholesale market in China, in the Hubei Province (Bogoch et al., 2020; Lu et al., 2020 ). This seafood and wet animal
wholesale market sold live animals such as poultry, bats, marmots, and snakes.

The coronavirus has caused a lot of damage economically, health wise and otherwise. Service-oriented economies will be
particularly negatively affected, and have more jobs at risk. Countries that are more reliant on tourism (more than 15% of GDP)
will be more affected by this crisis. This current crisis is generating spillover effects throughout supply chains. Therefore,
countries highly dependent on foreign trade are more negatively affected. Research study suggests that on average, each
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additional month of crisis costs 2.5—3% (Fernandes, 2020) of global GDP. Since the beginning of the virus, we have about seven
million cases and approximately four hundred thousands deaths (Worldometer, 2020) with the United States having the
highest cases as of June 2, 2020. Almost 50% of the cases have recovered worldwide. To contain the spread of the coronavirus,
the WHO suggested that people should wash their hands with soap for more than two minutes, maintain social distancing,
wear masks in public spaces, effective mass testing, lockdowns towns where the infection rates are higher. These lockdowns
were meant to prepare governments to buy adequate health equipments in order to minimize casualties in terms of death.
Many countries embarked on effective testing, had total lockdowns for almost two months in order to minimize the spread of
the coronavirus. Some managed to fumigate public places, effectively tested large percentages of their populations. Countries
like South Korea, Taiwan, New Zealand managed to bring down a lot of their cases in a short space of time due to their
effective mass testing strategies. However, despite all these efforts, the coronaviruses cases spike up once the economy is re-
opened. The best solution in containing the virus is getting some treatment drugs.

Several studies have been done on medications for treating COVID-19 patients. Cai et al., 2020 examined the effects of
favipiravir (FPV) versus lopinavir (LPV)/ritonavir (RTV) for the treatment of COVID-19. They discovered that favipiravir
showed better therapeutic responses on COVID-19 in terms of disease progression and viral clearance and hence one of the
potential drugs for treatment. Many researchers (Felsenstein et al., 2020; Zhai et al., 2020) also worked on the remdesivir
drug. Remdesivir has been recently a strong candidate for the treatment of COVID-19 and exhibits broad-spectrum antiviral
activity against RNA viruses. Zhai et al. (2020) worked analyzing the different treatment drugs that have been tried in different
clinical trials. Felsenstein et al. (2020) also analyzed different treatment drugs and their efficacy on reducing fatalities. They
observed that the following anti-viral treatment drugs are potential treatment drugs for COVID-19. One of them is chloro-
quine which has antiviral activity against Influenza, Chikungunya virus, seasonal CoVs, and SARS. Another anti-viral treatment
drug which is known as azithromycin is sometimes used for its immunomodulatory properties, especially in patients with
chronic pulmonary disorders (Gensel et al., 2017; Haydar et al., 2019). Felsenstein et al. (2020) reported that convalescent
plasma, i.e. plasma from individuals following COVID-19 resolution and rich in immunoglobulins directed against SARS-CoV2,
is being entertained as possible treatment option. However, many clinical trials are being undertaken to determine the best
treatment drug.

These medications once developed will be useful in mitigating the spread of the coronavirus. However, the question is,
what should be the optimal way of administering the medications so that the virus is contained? In this paper, we try to
answer this question by using the idea of dual-rate effect analysis. This effect has extensively studied in (Oduro, 2016; Oduro
et al., 2018, 2019) and has shown to occur several models, including the re-infestation models in (Oduro, 2016; Oduro et al.,
2018, 2019) and black pod disease model in (Oduro et al., 2020). In (Oduro et al., 2019), Oduro et al. stated that “the dual-rate
effect has important implications for control efforts, as in the presence of this effect a strategy of adopting a highly aggressive
short-term intervention at the beginning of a sustained control program may be more cost-effective in the long run than
treatment at a fixed rate without a heightened initial effort”. We study compartmental COVID-19 models that incorporate
treatment as a control measure with the ultimate goal of assessing optimal treatment strategies and deriving recommen-
dations. These models were inspired by efforts to eradicate or contain the COVID-19 pandemic. The results reported here are
purely mathematical and more widely applicable. They may be of particular relevance to the virus control efforts in lower
middle-income countries (LMIC) where funds for the COVID-19 control programs are severely limited and often in compe-
tition for funds with one another as well as with other pressing health care needs and sectors such as education and
infrastructure.

The rest of the paper is organized as follows, in Section 2, we formulate and analyze simple SEIR models. Dual-rate effect
analysis are done in Sections 3. We then summarize the results in Section 4.

2. COVID-19 models with treatment

In this section we present two mathematical models, the first one with 100% efficacy of treatment and the second one with
less than 100% efficacy of treatment.

2.1. Models formulation and their properties

2.1.1. First scenario: 100% efficacy of treatment

In this model, we assume that the population can be subdivided into four compartments. These are the susceptible (S)
class, exposed (E) class, infected (I) class and lastly the recovered (R) class. The susceptible class recruits new population at the
rate b. In all four classes, the natural death rate is given by p and the mortality due to COVID-19 is given by 4. The transmission
rate is given by ¢ and the progression rate of exposed individuals to infected individuals is given by p. The infected individuals
are treated with a recommended COVID-19 medication at rate v. These infected individuals can also be given other medical
therapy at the rate g. The combination of the treatment and other medical therapy ensures that the infected individuals
recover. The dynamics explained in this subsection are displayed in Fig. 1.

The dynamics in Fig. 1 can be represented as a system of nonlinear ordinary differential equations given by
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Fig. 1. Dynamics of COVID-19 with 100% treatment.
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We summarize the existence of equilibrium in the following theorem.

Theorem 2.1. Consider the model 1.

(i) The control reproduction number (R.) is given by

Bpb

Re = .
S up+w(q+tv+o+p)

(ii) When R < 1, then the disease-free equilibrium DFE = (/%, 0,0,0 ) is the only biologically feasible equilibrium.
(iii) When R > 1, then in addition to the DFE, there exists a unique endemic equilibrium EE = (S*,E*,I",R") with

r_Bpb—plp+1)(q+v+0+p) pb BB Ry - 1)
Bp+u)(q+v+o+np) Prw@+rv+otp B 0

Fig. 2. Dynamics of COVID-19 with imperfect treatment.
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2.1.2. Second scenario: less 100% efficacy of treatment

In this model, we assume that the population can be subdivided into five compartments. These are the susceptible (S)
class, exposed (E) class, infected (I7) class, infected (I3) class after receiving ineffective treatment, and lastly the recovered (R)
class. The recruitment rate is denoted by b, the natural mortality rate by u and the mortality rate due to COVID-19 by 6. The
transmission rate is given by ¢ and the progression rate of exposed individuals to infected individuals is given by p. The
infected individuals are treated at rate v. These infected individuals can also be given other medical therapy at the rate q.
However, if the treatment is ineffective, then the individuals from I; move to I, at the rate (1 — k)v where k is the fraction of
individuals who have been successfully treated with recommended COVID-19 medication. Thus those who have been suc-
cessfully treated progress to the recovered class from the infected class I;. The combination of the COVID-19 medication and
other medical therapy ensures that the infected individuals recover. Fig. 2 shows the dynamics explained in this subsection.

The dynamics in Fig. 2 can be represented as a system of nonlinear ordinary differential equations of the form:

® b B s s

% =B(h +1L)S - (p+ pE

%1 =pE—(q+v+0+wh @)
%2 — (1 =kl — (q+ 0+ wh

% =kvly +q(h + L) — uR.

We summarize the existence of equilibrium in the following theorem.

Theorem 2.2. Consider the model 2.

(i) The control reproduction number (R.) is given by

Re — bpB(q+o6+u+(1-kpw)
T+ o+ WP+ ) gty o+p)

(ii) When R, < 1, then the disease-free equilibrium DFE = (%, 0,0,0, 0) is the only biologically feasible equilibrium.
(iii) When R¢ > 1, then in addition to the DFE, there exists a unique endemic equilibrium EE = (S*,E*, 17,15, R") with

Table 1
Parameters and their meanings.
Parameter Value Unit
B (transmission rate) 4511e — 07 day!
b (recruitment rate) 9213 —
p (progression rate of exposed individuals to infected) 0.3571 day!
v (COVID-19 treatment rate) varies (0.4665) —
q (other medication therapy rate) 0.420 day!
0 (disease mortality rate) 0.0141 day!
u (natural mortality rate) 0.008638 -
S(0) (Initial value of the susceptible) 12797248 Individuals
E(0) (Initial value of the expose) 2729 Individuals
1(0) (Initial value of infected) 19 Individuals
R(0) (Initial value of recovered) 2 Individuals

R¢ = 1.5006 (For scenario 1)
R¢ = 1.7873 (For scenario 2)
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2.2. Model fitting

We use Pennsylvania (USA) state-level time series for cumulative active COVID-19 cases compiled by Worldometer
(Worldometer, 2020), from March 15, 2020, through May 31, 2020 to estimate the model parameters. The sources of the data
provided by Worldometer were checked for confirmation. The model fitting was performed using the standard nonlinear
least squares approach using the fmincon Optimization Toolbox embedded in MATLAB. We provide the estimated parameters
in Table 1. The recruitment rate was estimated from the population data for Pennsylvania, by US Census Bureau (US Census
Bureau) and the natural death rate was adopted from the National Center for Health Statistics (National Center for Health
Statistics).

2.3. Effect of COVID-19 treatment

Since the treatment rate, v, is our man control parameter, let us consider the effect of this parameter on the control
reproduction number for both models.
Scenario 1: The partial derivative w.r.t v is

IR Bpb
Ihe  _ <0. (3)
v w(p + 1) (g + v+ 0+ )

Thus, the R, is non-increasing with respect to v. Also

lim R, = 0.

v— 00

This suggests that eradication will be achieved with sufficiently high treatment rate, the control reproduction number
decreases significantly as the treatment rate increases.

Scenario 2:
We have
IR bk
A bp 5 < 0.
w w(p+m)(g+v+0+p)
and

. bpB(1 -k

lim R, = L “)

v (g + 0+ ) (P + p)
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Fig. 3. Impact of COVID-19 treatment on I(t) in the scenario 1 model, baseline v = 0.4665.
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Fig. 4. Impact of COVID-19 treatment on [;(t) in the scenario 2 model, baseline v = 0.4665.
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Fig. 5. Impact of COVID-19 treatment on Ix(t) in the scenario 2 model, baseline v = 0.4665.
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Fig. 6. Impact of k on L(t) in the scenario 2 model, baseline k = 0.5.

The R decreases with v but asymptotically approaches the right-hand side of 4. This suggests that with some parameter
settings, high treatment rate may not be sufficient to eradicate the disease.

Figs. 3—5 show the effect of varying the treatment rate, v, on the infectious class in scenario 1 and 2 respectively. The values
of parameters used are as given in Table 1 unless otherwise stated. First, increasing the treatment rate decreases the pop-
ulation of infected individuals as shown in Figs. 3 and 4. We also note that decreasing the treatment rate increases the
population of infected individuals. The treatment intervention delays the peak of the epidemic curve and thus reduces the
number of infested individuals. Second, Fig. 5 shows the effect of treatment on the infected population that still remain
infected after being treated (Scenario 2). Of course, the potency of the treatment will play a major factor, fixing k = 0.8 and
increasing the treatment rate leads to increase in the I(t) infected population as shown in Fig. 5. Other medical therapies may
be needed to contain individuals in the I,(t) class if the COVID-19 treatment is not 100% effective. In Fig. 6, we show the effect
of k (fraction of successfully COVID-19 treatment) on I5(t). Increasing k, decreases the I(t) population. For example, increasing
the baseline k = 0.5 by 50% reduces the population in Iy(t) from about 7 x 10° to below 4 x 10° individuals. Thus, the efficacy of
the treatment has direct impact on this infected population.
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3. Treatment strategies

In this section, we investigate long-term cost effective strategies for controlling the COVID-19 infection. Assuming there is
a recommended medication treatment, we show the existence of a dual-rate effect. When this effect is present, an initial
aggressive treatment rate may plunge the prevalence to a level that can be controlled at a lower treatment rate and relatively
moderate cost (Oduro, 2016; Oduro et al., 2018, 2019).

3.1. Preliminaries

In what follows, we provide some useful definitions with notations that are needed in subsequent section.
Let [T, T") be a given time interval of length T" — T~ = AT. Then

’I‘+
Yr oo = / I(t)dt (5)
i

is the overall cases of COVID-19 between T~ and T*. Following the approach in (Oduro, 2016; Oduro et al., 2018, 2019), we
conceptualize the cost (C) as the total amount of treatment needed over the interval and it is defined as

T+
Cv / I(t)dt, (6)
J

where v is the COVID-19 treatment rate. We established in Section 2.1 that when v is kept constant, the susceptible, exposed,
infested, and recovered individuals approach an equilibrium, with I*(v) denoting the number of infected individuals at
equilibrium. If an endemic equilibrium can be reached, then the long-term cost of COVID-19 treatment can be conceptualized
as follows:

Cv) = l" (v). (7)

It is important to note that, the equilibrium value I*(v) is a monotone decreasing function of v. However, under certain
conditions the dependence of C on v is not monotone.

Definition 3.1. [Dual-rate effect]. Let I*(v) be the number of infected individuals at equilibrium and C(v) be the cost of treatment
at equilibrium. A dual-rate effect occurs if there exist two different treatment rates v; and v, such that

L. C(v1) = ((v2),
ii. I*(v1) < I*(vy).

We will use the following observation.

Proposition 3.1. If the cost function C(v) has a strict local maximum at some v 2 (0, ), then the dual-rate effect occurs.

Proof. Let v, be the critical point of C(v). Then there exist two distinct treatment rates v; and vy with v; < v¢ < vy such that
C(vy)) = C(vp) < C(v¢). Since I* depends on the treatment rate and decreases monotonically with v, a low treatment rate
0 < v; < Ve Will produce a relatively high I* and a high treatment rate v, < vy, will yield a relative low I*. That is, I*(v;) > I*(vp).
This implies that there is a cost C(v;) = C(vy,) that corresponds to two different values of I*(v).

3.2. Main results

We present results for dual-rate rate effect.

Theorem 3.1. Consider the model with perfect treatment efficacy and let B>%§W. Then the dual-rate effect occurs
whenever the endemic equilibrium exists.
Proof. Using the I*(v) of the endemic equilibrium in Theorem 2.1 and the definition in equation (7), we have

_ pbv _ pw
S e PRI E n R ®)

It follows that
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dC_ pb(g+d+m
v (p+u)(@+v+o+p)

- % (9)

This yields a critical treatment rate v* = %f (q + 6 + p), which is biologically meaningful if ﬁ>%ﬁ+’”“).
Also,

d’c _ 2pb(q+ 0+ p)
A (prp)(gtvotp?

<0. (10)

By the second derivative test, the cost function C(v) has a local maximum value at v*. The rest of the Proof follows directly
from Proposition 3.1.

In Figs. 7 and 8, we present an illustration of the presence of the dual-rate effect. For example, (with b = 9213,
6 = 1.386e — 06, u = 0.008638, p = 0.2710, g = 0.4655, 6 = 0.014067) a cost of 500 corresponds to two different treatment
rates, approximately v = 0.05 and v, = 0.8. Since the [* is a monotone decreasing function of v, [*(0.05) = 612 individuals, a
relatively low infection level than I*(0.8) = 10419 individuals. Here, an optimal strategy is to initially treat at rate v = 0.8 to
push the system into a region with low endemic level of infection that can be maintained in the long run at relatively low rate
v = 0.05.

Theorem 3.2. Consider the model with imperfect treatment efficacy and let

#((H-@+ﬂ)(P+H)<6<M(Q+5+#)(p+#)
pb (1-k?pb

Then the dual-rate effect occurs whenever the endemic equilibrium exists.
Proof. Similarly to the proof of Theorem 3.1, let

2000

1500

1000

500

Cost of Treatment

0 0.2 0.4 06 0.8 1
Treatment rate

Fig. 7. Identical costs corresponding to two treatment rates.

15000

10000}

5000

Number of infected individuals at equilibrium

0 50 1000 1500

0
Cost of Treatment

Fig. 8. Identical costs can produce two endemic equilibrium levels.
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The critical treatment rate occurs at
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_ 2pb(g+ w1k’ ( qotut(1—ky )31
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- 2pb(1 — k) ( 1+(1—k)2 ) B
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2
B L 3< ! —1><0
(P+u)(q+6+u)2<1+(17k)1/2) 1_k

forall0 <k < 1.

The cost function has a strict local maximum at v*, the existence of the dual-rate effect follows from Proposition 3.1.

As illustrated in Figs. 9 and 10, the dual rate occurs in this scenario where the efficacy of treatment is not perfect.
4. Summary

In this paper, we designed and analyzed two mathematical models with treatment, one with 100% efficacy of the treat-
ment and the other one with less than 100% efficacy of the treatment. We derived conditions for both disease-free and

endemic equilibria to exist, and argued that the infection can be eradicated in the scenario with perfect efficacy of treatment if

359



B. Oduro, V.M. Magagula Infectious Disease Modelling 6 (2021) 351-361

Cost of Treatment

% 05 1 15 :
Treatment rate

Fig. 9. Identical costs carrying two different treatment rates.
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Fig. 10. Identical costs with two different endemic equilibrium levels.

the treatment rate is sufficiently high. On the other hand, treatment may not be sufficient for eradication if the efficacy is not
prefect. The prevalence can only be driven to arbitrarily low levels by sufficiently large treatment rate.

We also investigated the long-time cost effective strategies for controlling the COVID-19 infection. In particular, we
showed the existence of the dual-rate effect in both models. When this effect is present, the optimal strategy might be an
initially very aggressive treatment to plunge the prevalence to a level that can be controlled at a lower treatment rate and in
the long run at relatively moderate cost. The high initial treatment rate may require a substantial initial investment (cost)
which may payoffs in the long run. Without the initially very high treatment, the same average cost would only allow a much
less significant reduction in long-term prevalence level.
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