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We show that the Zeeman field can induce a topological transi-
tion in two-dimensional spin–orbit-coupled metals and, concomi-
tantly, a first-order phase transition in the superconducting state
involving a discontinuous change of Cooper pair momentum.
Depending on the spin–orbit coupling strength, we find different
phase diagrams of two-dimensional (2D) superconductors under
in-plane magnetic field.
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A fundamental concept in the theory of metals is Fermi sur-
face, the locus of gapless electronic Bloch states in momen-

tum space. While Bloch states in conventional metals are spin
degenerate, the degeneracy is lifted by a magnetic field via a
Zeeman effect and in noncentrosymmetric crystals by spin–orbit
coupling (SOC). In both scenarios, the Fermi surface becomes
spin split. When attractive interaction is present at low energy,
pairing instability of the Fermi surface turns a metal into a
superconductor. The interplay between spin–orbit and Zeeman
splitting has interesting consequences for superconductivity, as
shown in many previous works (1–18). Recent discovery of super-
conductivity in a variety of two-dimensional spin–orbit-coupled
materials, including transition metal dichalcogenides (19) and
strontium titanate films (20), adds additional venues for further
investigation of this important problem.

In this paper, we take a fresh look at spin–orbit-coupled
metals and superconductors through the lens of wavefunction
topology. We characterize the topology of electron wavefunc-
tions on spin-split Fermi surfaces and establish a correspondence
between topological metals in two dimensions and topologi-
cal crystalline insulators in three dimensions. Applying an in-
plane magnetic field to spin–orbit-coupled two-dimensional (2D)
metals can induce a topological phase transition, character-
ized by a change of spin texture on the Fermi surface and π
phase shift in quantum oscillation. When the metal becomes
superconducting at low temperature, the field-induced topo-
logical transition of Fermi surface is found to strongly impact
electron pairing. We present phase diagrams of 2D super-
conductors under in-plane magnetic fields for various SOC
strengths.

This work is organized as follows. We start with a case study
of 2D Rashba systems under an in-plane magnetic field, which
induces a topology change of spin texture on the Fermi surface.
We then define a general set of topological invariants for 2D met-
als having any space–time parity symmetry in terms of quantized
π Berry phase on spin-nondegenerate Fermi surface. Finally, we
examine the impact of Fermi surface spin splitting on super-
conductivity and show that the field-induced topological tran-
sition of the Fermi surface can cause a change in pairing from
intrapocket to interpocket, leading to a first-order phase transi-
tion in the finite-momentum superconducting state at finite field.
Importantly, the intrapocket pairing state evolves smoothly from
the zero-momentum Bardeen–Cooper–Schrieffer (BCS) state at
zero field, while the interpocket pairing state evolves smoothly
from the finite-momentum Fulde–Ferrell–Larkin–Ovchinnikov
(FFLO) state at field beyond the Pauli limit. By combining
microscopic calculation, symmetry analysis, Ginzburg–Landau
theory, and physical argument, we obtain a global phase

diagram of spin–orbit-coupled superconductors under Zeeman
field.

Rashba Systems
We consider a single-component 2D electron gas with SOC
under magnetic field

H (k) =
k2

2m
−µ+ g(k) ·σ +σ ·B, [1]

where k = (kx , ky) is the 2D momentum, m is effective mass, µ
is chemical potential, g(k) is the SOC vector, B is the Zeeman
energy due to the in-plane magnetic field, and Pauli matrices σ =
(σx ,σy ,σz ) denote spin.

As a concrete example, we consider Rashba SOC g =αRk× ẑ
with Rashba coefficient αR. At B = 0, in the energy eigenstate
the electron’s spin is tied with its momentum due to Rashba
SOC. As a result, two concentric Fermi circles are present, with
helical spin textures of the same chirality. The shape and spin
configuration of both Fermi surfaces evolve with the in-plane
magnetic field. As B increases, the two pockets approach each
other and deform into ovals known as Cartesian ovals (Fig. 1A).
The electron’s spin lies within the xy plane and winds by 2π
around both inner and outer Fermi surfaces. At a critical field
B =αRkF≡∆so with kF =

√
2mµ, the two ovals touch each

other at a point kP≡ kFẑ× B̂, where a twofold spin degeneracy
arises. The resulting Fermi surface is a single self-intersecting
curve known as a limaçon of Pascal (Fig. 1B). As the field
increases further, these two ovals disconnect again and move
away from each other (Fig. 1C). Now, the spin winding number
on each Fermi surface is 0, and the spin configuration resem-
bles more the Zeeman-dominated case. The inner Fermi surface
shrinks further and eventually disappears at sufficiently high
fields.

The merging of two pockets and the change of spin wind-
ing number at B = ∆so mark another type of Fermi surface
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Fig. 1. (A–C) Fermi surfaces in normal phase. Yellow and blue colors denote inner and outer Fermi surfaces, respectively, and arrows denote electron
spins. Shaded small disks in A and C denote paired electrons in corresponding superconducting phases. (D–F) Bogouliubov Fermi segments in corresponding
superconducting phase, represented by maxima of zero-energy electronic density of states (DOS) ρ=− 1

π Im[tr(Gτe)], where G is Gor’kov Green’s function,
and τe = diag(1, 0) acts in the particle-hole space. We choose parameters m = 1, µ= 10, αR = 1, ∆ = 1, broadening η= 0.01, and magnetic field (A and D)
B = 3, (B and E) B = ∆so =

√
20, and (C and F) B = 7.

topological transition. It is fundamentally different from Lifshitz
transitions that reconnect Fermi contours through a saddle point
in the energy dispersion. Here instead, the original Dirac point at
k = 0 moves to kP at the Fermi level and results in Fermi surface
touching at B = ∆so . The dispersion around kP takes the form
of an overtitled and anisotropic Dirac cone,

H (kP + p) =−vFpx +αR(pxσy − pyσx ), [2]

where vF =
√

2µ/m is the Fermi velocity. Moreover, the topol-
ogy of Fermi surface in momentum space is unchanged before
and after the transition, and the DOS remains finite throughout,
unlike the van Hove singularity resulting from saddle points.

Topology of Metals
Unlike Lifshitz transition associated with Fermi surface geome-
try, what we uncovered in Rashba systems involves the topology
of quantum wavefunction on a spin nondegenerate Fermi sur-
face. To characterize the wavefunction topology, we introduce
a general topological invariant for 2D systems having any parity
symmetry, i.e., invariant under any transformation that reverses
the orientation of the space–time manifold, including time-
reversal T , reflection M (x→−x ), and the combined operation
of twofold rotation (x→−x , y→−y) and time-reversal C2T .
We define the Berry phase ϕ=

∮
Ek=µ

Ak · dk as the topological

invariant of a Fermi surface, where Ak =−iψ†k∇kψk is the Berry
connection and ψk is the wavefunction with energy Ek. One can
transform the Berry phase ϕ into an integral of Berry curvature
Ωk = (∇k×Ak)z on the k-space section enclosed by the Fermi
contour; namely, ϕ=

∫
Ek<µ

Ωkd
2k. Under the parity symmetry,

we find energy dispersion is even Ek =EPk while Berry curvature
is odd Ωk =−ΩPk, where P can be T ,M or C2T . As a result,
ϕ=−ϕ (mod 2π), and the Berry phase would be either zero or
quantized to π, if inside the enclosed section there are even or
odd numbers of Dirac points, respectively. At a Dirac point, two
bands cross and the Berry curvature becomes singular. Due to
the parity symmetry, Dirac points are restricted to be at time-
reversal-invariant points (P = T ) or on the reflection-invariant
lines (P =M ) or anywhere in the momentum space (P =C2T ).

This quantized Berry phase therefore serves as a Z2 topolog-
ical invariant. Generally speaking, Zeeman splitting of Fermi
surface results in 0 Berry phase, while spin–orbit splitting results
in π Berry phase on each Fermi surface enclosing a time-
reversal-invariant momentum. In the 2D Rashba model, the Z2

topological distinction continues to hold in the presence of a
Zeeman field, which preserves reflection and C2T . We can also
include higher-order SOC such as hexagonal warping (21) to
break C2T symmetry while preserving reflection M (x→−x ),
so that the SOC vector reads g =αRk× ẑ +w(k3

+ + k3
−)̂z, where

k±= kx ± iky . In this case, the Dirac point is on the kx = 0 line
as restricted by M , and only magnetic field B ‖ x can drive a
topological transition of Fermi surfaces.

We refer to Fermi surfaces having quantized Berry phase π
and 0 as topological and trivial, respectively. It is interesting to
note that Fermi surfaces with quantized π Berry phase are the
hallmark of surface states in 3D topological (crystalline) insu-
lators protected by parity symmetry—T , M , or C2T (22–26).
While these topological surface states are known as “half” of
2D metals, we now turn this viewpoint the other way. The 2D
topological metals, defined as having spin-nondegenerate Fermi
surfaces with π Berry phase, can be viewed as a “sum” of topo-
logical surfaces. Thus follows a correspondence between 2D
topological metals and 3D dimensional topological (crystalline)
insulators.

Since the sum of Berry phases over all Fermi surfaces must be
zero in any 2D metal with parity symmetry, topological metals
have an even number of spin-nondegenerate Fermi surfaces with
π Berry phase. A transition from a topological metal to a trivial
one generally involves the touching of two Fermi surfaces at a
band degeneracy point to enable the change of Berry phase from
π to 0 on each Fermi surface. We thus conclude that an in-plane
magnetic field generally induces a topological phase transition
in spin–orbit-coupled 2D metals, provided that parity symmetry
(e.g., C2T or M ) is present.

The presence of a spin–orbit-split Fermi surface leads to beat-
ings in quantum oscillation phenomena, as observed in semicon-
ductor heterostructures and noncentrosymmetric metals. The
Berry phase change from π to 0 across the topological tran-
sition can be further detected by analyzing the phase shift of
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quantum oscillation as a function of in-plane magnetic field (27,
28). We also note recent works on topological characterization of
3D metals under Zeeman fields using Chern numbers on Fermi
surfaces (27, 29).

When attractive interaction is present, metals with spin-split
Fermi surfaces may become unstable to pairing at low tempera-
ture. The competition between spin–orbit and Zeeman splitting,
which drives the topological transition in the normal state, also
significantly impacts the superconducting state, which we now
turn to.

Finite-Momentum Superconductivity
We consider clean superconductors with a local attraction and
an energy gap that is small compared to Fermi energy. In this
case, superconductivity at zero field is the conventional BCS
type. Increasing temperature T and/or in-plane magnetic field B
drives superconducting to normal transition. The superconduct-
ing order parameter near the transition is determined by the pair
susceptibility (9, 10, 17)

χ(q, B,T ) =N0 log
ωD

T
−
∑
s=±

δχs(q, B,T ), [3]

where q is Cooper pair momentum. The first term is the q = 0
pair susceptibility in BCS theory, where N0 is the total DOS of
Fermi surfaces and ωD is the Debye frequency. The second term
is the correction due to Fermi surface spin splitting and finite
Cooper pair momentum:

δχs =

∮
FSs

dk

|v|

{
φ

(
Q + sE+

2πT

)
cos2

θ

2
+φ

(
Q + sE−

2πT

)
sin2 θ

2

}
[4]

is contribution from inner (s = +) or outer (s =−) Fermi sur-
face, φ(x ) = Reψ

(
1+ix
2

)
−ψ

(
1
2

)
, ψ is the digamma function, v

is electron velocity, Q = v · q is the depairing energy of finite-
momentum pairing, E±= |h+| ± |h−| is the Zeeman depairing
energy of inter- (+) or intrapocket (−) Cooper pairs, θ=
〈h+, h−〉 is the angle between h±= B + g( 1

2
q± k), and g(k) is the

SOC vector.
In the presence of Rashba SOC, the inner (s = +) and outer

(s =−) Fermi surfaces at B = 0 have different DOS given by
Ns = 1

2
N0(1− 1

2
sλ) with λ= ∆so/µ, respectively. As shown in

refs. 1 and 2, when ∆so�∆0, this DOS asymmetry (often
neglected) is important in determining Cooper pair momen-
tum and critical fields at low temperatures. In this work, we

always take into account DOS asymmetry N+ 6=N− when SOC
is present.

From pair susceptibility, the in-plane critical field Bc(T ) is
given by vχmax = 1, where v is the attractive interaction strength
in s-wave channel and χmax is the maximum of χ(q) among all
q. In this way we also determine the Cooper pair momentum q
near Bc .

Depending on the magnetic field B and Rashba coupling
energy ∆so in comparison to the BCS gap ∆0 = 2ωDe

−1/N0v ,
we find three phases at T = 0 near the upper critical field: the
normal phase (N) and finite-momentum superconducting phases
whose Cooper pairs are dominantly interpocket (I) and intrapoc-
ket (II), respectively. In the limit of vanishing SOC ∆so = 0,
phase I reduces to the well-known FFLO state, which occurs
at magnetic field above the Pauli limit BP ≡∆0/

√
2 (30, 31).

Here the Zeeman splitting of the Fermi surface favors inter-
pocket pairing between majority and minority spin states. In the
opposite limit of large SOC ∆so�∆0, the helical spin texture
of the spin–orbit-split Fermi surface favors intrapocket pair-
ing (II). This phase can survive magnetic fields much larger
than the Pauli limit and is destroyed only when Zeeman energy
becomes comparable to SOC and distorts the Fermi surface
significantly (1, 2).

By calculating χ(q, B,T = 0), we obtain the phase diagram
shown in Fig. 2A. Phases I and II are both finite-momentum
superconductors indistinguishable by symmetry. They are sep-
arated by a first-order quantum phase transition, where the
Cooper pair momentum changes abruptly mainly due to the
change of pairing from interpocket to intrapocket. As shown
in Fig. 1A, the topological metal (B <∆so) has helical spin
configuration of Fermi surfaces and hence electrons from the
same Fermi surface can have opposite spins, which results in
the intrapocket pairing (II) of Fig. 1D. On the contrary, the
trivial metal (B >∆so) as shown in Fig. 1C has Zeeman spin
configuration where two Fermi surfaces are spin polarized along
opposite directions, and hence electrons from different Fermi
surfaces can have opposite spins, leading to interpocket pair-
ing (I) in Fig. 1F. Here our argument is based on Fermi surface
spin configuration controlled by magnetic field. In the supercon-
ducting phase, the Cooper pair momentum can also alter Fermi
surface spin configuration. Quantitative calculations taking into
account both effects show that the exact phase boundary between
I and II at T = 0 is at ∆so/B ≈ 0.7. The first-order phase
boundary between I and II ends at a tricritical point (∆∗so ,B∗)
with ∆∗so ≈ 0.7∆0,B∗≈∆0, where three phases (I, II, N) meet.
Remarkably, near (∆∗so ,B∗) the phase boundary between super-
conducting phases I and II is a straight line ∆so/B ≈ 0.7 and

Fig. 2. (A) Phase diagram in the ∆so-B plane at zero temperature, where N is the normal phase and I and II denote superconducting phases whose
Cooper pairs are mainly inter- and intrapocket, respectively. Black (red) lines denote second- (first-)order phase transitions. (B) Pair susceptibility at the
first-order (red) and second-order (black) phase transitions when ∆so = 0.67∆0, where q0 = ∆0/vF. Dots are from numerical calculations and lines are from
interpolation of dots. We set µ= 50Tc to include DOS asymmetry.
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Fig. 3. Phase diagram in the T-B plane with different SOC strengths. Black (red) lines denote second- (first-)order phase transitions. We set (B) µ= 10Tc and
(C and D) µ= 50Tc to include DOS asymmetry, which drives the tricritical point (T*, B*) in A to a critical point (T′

*
, B′

*
) in B.

closely follows the one between topological and trivial metal
in the absence of superconductivity. This finding demonstrates
the direct impact of topology on finite-momentum pairing in
spin–orbit-coupled metals.

We further consider low-energy Bogouliubov quasiparticles
of the superconducting phase under a magnetic field. As the
field strength increases, the energy gap closes and zero-energy
quasiparticles form a Fermi surface that is marked different
from the normal-state Fermi surface. At B <∆so (Fig. 1D), two
Bogouliubov–Fermi segments are formed by the inner pocket,
while the outer pocket is fully gapped. At B >∆so (Fig. 1F),
four Bogouliubov–Fermi segments are formed by both inner
and outer Fermi surfaces. Such Bogouliubov–Fermi segments
as shown in Fig. 1 D–F can be measured experimentally via
scanning tunneling microscope spectroscopy (32) or quasiparti-
cle interference. In terms of topology, we find Berry phases along
zero-energy contours of Bogouliubov quasiparticles are zero, and
Bogouliubov–Fermi surfaces are trivial in our model. As a result,
within the superconducting phase, topological transitions can-
not be realized, and there are either first-order phase transitions
(∆so <∆∗so) or no phase transitions (∆so >∆∗so), as shown in the
phase diagram Fig. 2A.

Our results on finite-momentum superconductivity at T = 0
have important implications for the global phase diagram as a
function of temperature and magnetic field, which is plotted
in Fig. 3 for different SOC strengths. Without SOC, phases I
(FFLO) and II (BCS) are separated by a first-order phase transi-
tion line in the T -B plane, which starts at (T = 0,B =BP ) and
ends at a finite-temperature tricritical point (T∗= 0.56Tc ,B∗=
0.6∆0) where phases I, II, and N meet (33, 34) (Fig. 3A).

In the presence of SOC, a small field B�∆so displaces the
centers of inner and outer Fermi pockets to opposite momenta
±k0∝±B. Then, pairing within the inner (outer) Fermi pocket

would lead to Cooper pair momentum ±q≡±2k0, respectively.
Importantly, due to the difference in DOS on the two pockets,
the pairing susceptibilities χ(q) and χ(−q) are generally unequal.
The larger of the two sets the Cooper pair momentum near the
superconducting transition temperature. This argument shows
that the Cooper pair momentum q is linearly proportional to B
in the weak-field regime. The resulting finite-momentum super-
conductor is characterized by intrapocket pairing and evolves
smoothly out of the BCS state at B = 0 and hence is different
from the conventional FFLO phase at B >BP .

The linear coupling between Cooper pair momentum and in-
plane magnetic field can be also deduced at a formal level from
the Ginzburg–Landau free energy in terms of the real-space
order parameter ψ(r), F =

∫
drf with

f =ψ∗αψ+ β|ψ|4. [5]

The coefficient of the quadratic term α can be expanded in pow-
ers of the wavevector q. Up to fourth order, it takes the following
form dictated by symmetry,

Fig. 4. Cooper pair momentum q is determined by magnetic field B under
different point groups. In D2d, directions of q, B form a mirror pair with
respect to the mirror plane denoted by a dashed line.
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α= a0 + a1q
2 + a2q

4− (b0 + b1q
2)q ·ΛB, [6]

where ΛB is an odd-in-B vector. Here, in addition to even-
order terms a0, a1, a2, odd terms b0, b1 may be allowed in
spin–orbit-coupled systems, which are invariant under joint rota-
tion of Cooper pair momentum and the Zeeman field. At weak
field, ΛB∝B. By minimizing α, we find the induced Cooper
pair momentum q near normal-superconducting transition is
proportional to B:

q =
b0
2a1

ΛB∝B. [7]

Since the new terms are odd under inversion I : q→−q, B→B
or reflection Mz : q→ q, B→−B, they exist in systems with bro-
ken I and Mz or equivalently in the following 15 point groups:
Dn , Cnv, Cn , D2d, S4, C1 (n = 2, 3, 4, 6). The direction of ΛB and
hence the induced Cooper pair momentum depend on the point
group symmetry. Fig. 4 shows the direction of q for point groups
Dn , Cnv, and D2d, respectively. For 2D Rashba systems, the
induced Cooper pair momentum at weak field can be obtained
by calculating a1 and b0 using BCS theory: q = 2αRB× ẑ/v2

F (4).
Note that the DOS asymmetry must be included to obtain a
nonzero q.

By numerically calculating the susceptibility χ(q) as a function
of B , we locate the normal-superconducting phase boundary,
i.e., the upper critical field curve Bc(T ). Without SOC (b0 =
b1 = 0), the Bc(T ) curve is divided into two parts by a tricriti-
cal point (T∗,B∗), which corresponds to a0 = a1 = 0 and a2> 0.
The Cooper pair momentum at the onset of superconductivity
changes from q = 0 at B <B∗ to q =

√
|a1|/2a2 at B >B∗.

When SOC is present, due to b0, b1 6= 0 the Cooper pair
momentum is already nonzero at weak field. Our microscopic
calculation shows that for both small and large Rashba couplings,
the Cooper pair momentum at Tc changes smoothly with the
field. In other words, there is no tricritical point on the Bc(T )
curve. On the other hand, a perturbatively small SOC strength
cannot eliminate the strong first-order transition between BCS

and FFLO states at low temperature. Therefore, for small SOC
strength, we expect the phase diagram shown in Fig. 3B. Since
at B 6= 0 the superconducting phases I and II both have finite-
momentum Cooper pairs and share the same symmetry, the
first-order transition between them starts at (T = 0,B &BP )
(Fig. 2A) and ends at a critical point (T ′∗,B

′
∗), which is located

inside the superconducting phase and away from the Bc(T )
curve (Fig. 3B).

As SOC strength increases, the critical point (T ′∗,B
′
∗) moves

to a higher field and lower temperature. At certain SOC strength
∆so = ∆∗so , a zero-temperature tricritical point (0,B∗) arises
(Fig. 3C), a direct result of the topological transition of the
normal-state Fermi surface. Near the zero-temperature tricriti-
cal point (0,B∗), Eq. 6 also applies. In a small range of SOC
strength ∆∗so 6∆so 6∆∗∗so ≈ 1.1∆∗so , only phase II exists at zero
temperature, while a short first-order line between phases I and
II remains at finite temperature. Finally, for ∆so >∆∗∗so , the
entire superconducting region is phase II with interpocket pair-
ing (1–9) as shown in Fig. 3D. Putting all these results together,
we arrive at a global phase diagram of 2D superconductors under
an in-plane magnetic field, for different SOC strengths.

Conclusion
To conclude, we show that the interplay between SOC and
Zeeman effect leads to additional normal and superconducting
phases in metals. The Fermi surface transition in normal phase
is of topological origin and drives a first-order phase transition
within the finite-momentum superconducting state. Depending
on the SOC strength, we find different phase diagrams of 2D
superconductors under an in-plane magnetic field.

Data Availability. All study data are included in this article.
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