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To cope with environmental challenges, plants produce a wide
diversity of phytochemicals, which are also the source of numerous
medicines. Despite decades of research in chemical ecology, we still
lack an understanding of the organization of plant chemical diver-
sity across species and ecosystems. To address this challenge, we
hypothesized that molecular diversity is not only related to species
diversity, but also constrained by trophic, climatic, and topograph-
ical factors. We screened the metabolome of 416 vascular plant
species encompassing the entire alpine elevation range and four
alpine bioclimatic regions in order to characterize their phytochem-
ical diversity. We show that by coupling phylogenetic information,
topographic, edaphic, and climatic variables, we predict phytochem-
ical diversity, and its inherent composition, of plant communities
throughout landscape. Spatial mapping of phytochemical diversity
further revealed that plant assemblages found in low to mideleva-
tion habitats, with more alkaline soils, possessed greater phyto-
chemical diversity, whereas alpine habitats possessed higher
phytochemical endemism. Altogether, we present a general tool
that can be used for predicting hotspots of phytochemical diversity
in the landscape, independently of plant species taxonomic identity.
Such an approach offers promising perspectives in both drug
discovery programs and conservation efforts worldwide.
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Phytochemical diversity describes the richness and abundance
of the specialized metabolites produced by vegetation. It is a

key aspect of plant functional diversity and, thus, affects plant
fitness (1), ecosystem functioning (2), and services to humankind
(3). Despite its relevance, chemical ecologists still struggle to
understand both the evolutionary origin of phytochemical di-
versity and its variation across ecosystems (4). Only a small
fraction of the >300,000 currently described phytochemicals (5)
has been ascribed to a known ecosystem function or process (6).
This is because most identification work has been undertaken on
model organisms, such as crop plants (7), and because drug
discovery programs have so far been based on prior ethno-
medicinal knowledge or random sampling, rather than system-
atic sampling from the tree of life (8) or guided by ecologically
relevant information (9). The ability to better predict the pres-
ence and diversity of phytochemicals of interest from phyloge-
netic information, or from specific environments or habitat
types, could uncover the full spectrum and function of phyto-
chemicals in the landscape while also orienting drug discovery
research (10). Moreover, documenting landscape variability in
phytochemical diversity is particularly important in the context of
land use change, which is causing losses of plants that possess a
yet-unknown value to medicine and science (11).
The plant metabolome includes both primary functions,

expected to be conserved across species, and specialized func-
tions, associated to specific lineages or environments (1). Thus,

phytochemical variation in the landscape is expected to arise
from a combination of evolutionary (12, 13) and ecological (14,
15) constraints. From a macroevolutionary standpoint, some
classes of phytochemical compounds are specific to plant clades
(e.g., glucosinolates in Brassicaceae, or tropane alkaloids in
Solanales; ref. 16). Such lineage-dependent variation is thought
to be driven by chemical defense innovations followed by co-
evolutionary dynamics with herbivores (17, 18). In particular, the
escape-and-radiate model (13) predicts that plant lineages di-
versify by creating novel, more potent, or complex chemical
mixtures in response to biotic pressure (19). Therefore, plant
lineages that have experienced more evolutionary split events are
predicted to have evolved higher levels of phytochemical diver-
sity (13). From an ecological perspective, phytochemical diversity
is expected to be the result of plant adaptation to abiotic and
biotic conditions, both of which vary along ecological gradients in
landscapes (2, 20). For example, habitats that impose constraints
on plant growth, such as cold and resource-poor environments,
may be expected to drive selection toward potent chemical defense
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mechanisms that reduce tissue loss (21). At the same time, it is well
established that herbivores and pathogens can promote divergent
selection between plant congeners, leading to increasing chemical
dissimilarity (22). As such, species relatedness alone is a poor
predictor of site-level phytochemical diversity.
Here, we questioned whether phytochemical diversity can be

predicted from the phylogenetic and ecological heterogeneity
observed in the landscape. We hypothesized that phytochemical
diversity is not only related to local plant species diversity but is
also constrained by other ecological factors, especially trophic,
climatic, edaphic, and topographic variation. We developed a
methodological framework involving: 1) comprehensive sam-
pling of plant species along ecological transects that cover the
entire range of regional vegetation ecological boundaries; 2)
assessing species-level phytochemical composition and combin-
ing it with species distribution models (SDMs) for extrapolating
phytochemical diversity across the landscape based on species
occurrences; 3) extracting climatic and topographical variables
associated with each unique molecule observed across all species
to build molecular distribution models (MDMs); and 4) projec-
ting phytochemical diversity and composition across the land-
scape based on these MDMs (SI Appendix, Fig. S1). Here, we
consider phytochemical diversity both as the richness of clustered
metabolic features and the presence/absence of the families of
compounds they represent. We expected that phytochemical di-
versity values compiled from the projected MDMs would better
explain plot-level phytochemical diversity and composition than
phytochemical diversity calculated from plant species composition
alone.

Results and Discussion
To combine phylogenetic and ecological information for pre-
dicting phytochemical diversity in the landscape, we screened the
metabolomes of a representative fraction of grassland plant
species occurring in the Swiss Alps (n = 416), specifically cov-
ering 55% of the total diversity of genera in Swiss grassland
vegetation types (23). We sampled leaves of multiple individuals
per species across six elevation gradients encompassing a range
of soil conditions and four alpine bioclimatic regions (SI Appen-
dix, Fig. S2), which we processed using UHPLC-MS (ultra-high
performance liquid chromatography coupled to mass spectrome-
try) in untargeted fragmentation mode. By organizing the spectral
dataset through molecular networking (24), the raw metabolome
was processed into a functional representation of each species’
phytochemical diversity. Spectra collectively represent metabolic
structures, and since those structures are tightly related to me-
tabolites’ biological function, it is possible to approximate the
functional representation of phytochemical diversity directly from
the organized spectral space. This spectral space includes highly
heterogeneous structures of both structurally known and unknown
compounds, with reported or yet-undocumented biological func-
tion. Across the 416 vascular plant species measured, we detected
more than 43,000 metabolic features encompassing 6,012 molec-
ular families, here defined as spectrally clustered metabolic fea-
tures (SI Appendix, Fig. S3). While 10% of the molecules were
present in more than 80% of species, most molecular families
(60%) were specialized metabolites and were produced by less
than 20% of species (Fig. 1A). Furthermore, we show that a
random sampling of about 100 species is sufficient to describe the
full molecular family diversity displayed by all species combined
(Fig. 1B). While we found a positive relationship between plant
species diversity and phytochemical diversity (i.e., the number of
unique molecular families; Fig. 1B, gray ribbon), we also show
that this relationship was variable. Specifically, we observed that
by randomly sampling 10,000 assemblages of 20 species, molec-
ular family diversity varied 1.3-fold (Fig. 1B). This indicates that
molecular family diversity, in addition to being related to plant
species richness, is also constrained by plant species-specific

phytochemical fingerprint. Sensitivity analyses based on null
models also showed that the magnitude and trend of this rela-
tionship was dependent on the specific structure of the phyto-
chemical diversity and the frequency of unique molecules across
plant species (SI Appendix, Fig. S4). Importantly, we show that
phytochemical diversity of plant assemblages is constrained by
both abiotic and biotic axes (Fig. 1B), revealing that predicting
molecular family richness based on plant species identity alone is
biased in the absence of additional information.
Across the 6,012 molecular families, 40% were assigned to a

known compound class or infraclass, including metabolite classes
known to be related to plant–environment interactions, such as
phenolic compounds, terpenes, and alkaloids (1) (SI Appendix,
Fig. S5). We further confirmed that phytochemical diversity
carries functional value to plants in different environments. We
used the calculated phytochemical diversity for each plant spe-
cies to construct experimental communities of high and low
molecular family diversity. Each experimental community was
built by randomly selecting 10 plant species from a pool of 50
commonly occurring species, following which five pairs of high
and low phytochemical diversity communities were placed at low,
mid, and high elevation along two elevational transects (transects
1 and 5 in SI Appendix, Fig. S2, respectively). Plot-level arthro-
pod sampling across the growing season showed that experi-
mental plots containing low molecular family diversity attracted
41% more total arthropod abundance than plots with high mo-
lecular family diversity (P = 0.02; SI Appendix, Fig. S6). These
results suggest that molecular family diversity affects higher bio-
logical diversity at the ecosystem level (25) and that phytochemical
diversity among plant species affects ecosystem properties.
We show that functional phytochemical diversity is predictable

from phylogenetic branching and ecological properties of spe-
cies. We coupled the database of molecular families identified
for each species with species phylogenetic information, climate-
based distribution models, and machine learning to determine
the best predictors of molecular family richness (i.e., the number
of unique molecular families per species). We found that mo-
lecular family richness was predictable from both phylogenetic
branching (Fig. 1C and SI Appendix, Fig. S7) and environmental
variation combined (Fig. 1 D and E, Pearson correlation: n =
416, r = 0.49, P < 0.001, SI Appendix, Fig. S8). Specifically, we
discovered a phylogenetic signal for molecular family richness
(Pagel’s lambda [λ] = 0.72, P < 0.001) and found that molecular
family richness increased on average by 20 molecular families
with each new evolutionary split event (i.e., evolving from 60
molecular families in Equisetum telmateia with 3 split events up
to 440 molecular families for Veronica teucrium with 22 split
events in our phylogeny; SI Appendix, Fig. S7). Moreover, we
found that molecular family richness was negatively correlated
with both vegetation productivity (i.e., mean normalized differ-
ence vegetation index [NDVI], r = −0.10, P = 0.04) and soil
moisture (r = −0.11, P = 0.01), but was positively correlated with
solar radiation (r = 0.12, P = 0.01) and soil pH (r = 0.11, P =
0.03; SI Appendix, Fig. S8 and Fig. 1E). We thus confirm that
phytochemical diversity is, at least in part, driven by functional
adaptations of plants to their environment (26).
We next built MDMs by geographically mapping the distribu-

tions of the 6,012 molecular families (see workflow in SI Appendix,
Fig. S1). This was achieved by combining molecular family iden-
tification for each plant species with its corresponding range map
based on plant SDMs, the latter of which we predicted from cli-
matic and topographic information (SI Appendix, Fig. S9). In
doing so, we were able to predict phytochemical diversity, and its
inherent composition, across the landscape (Fig. 2A). Analyses of
phytochemical diversity–environment interactions revealed strong
associations between phytochemical diversity and mean annual
temperature (variable importance: 23%), precipitation (variable
importance: 13%), NDVI (variable importance: 19%) and soil
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moisture (variable importance: 18%) (Fig. 2B). Specifically,
habitats with more thermal energy and resources (2), but also
comprising a higher risk of attack by herbivores and pathogens,
such as those situated at low to mid elevation (25), displayed
higher molecular family richness. The robustness of MDM pre-
dictions was assessed by two means. First, spatial predictions of
phytochemical diversity from MDMs generated the same type of
relationship between plant species diversity and chemical diver-
sity as that generated from the HPLC-measured plant species
chemical composition (SI Appendix, Fig. S10). We observed up
to a 12-fold increase in accuracy (dependent on the number of
species sampled per community) when using MDM predictions
rather than plant species richness for predicting phytochemical
diversity (SI Appendix, Fig. S11). Second, while molecular family
richness from in situ plant communities sampled along the six
transects correlated strongly with the sampled plant species
richness (SI Appendix, Fig. S12; Pearson correlation between
empirical and estimate values; n = 48; r = 0.87, P < 0.001), such
correlation was replicated using MDMs (correlation between
empirical chemical diversity and MDM-derived chemical diver-
sity; n = 48, r = 0.64, P < 0.001), a correlation accuracy that was

17% stronger than a similar correlation based on SDMs (cor-
relation between empirical chemical diversity and SDM-derived
species richness n = 48, r = 0.53, P < 0.001). These results hence
indicate that MDMs can provide robust predictions of phyto-
chemical diversity from any location where environmental vari-
ables can be derived (Fig. 2B) (27).
Elevation, which integrates multiple ecological variables in a

single axis (28), was associated with shifts in the distributions
of specific molecular families. Overall, abundance of molecular
families was generally higher at mid to low elevations than at high
elevation (average elevation: 1,303 m above sea level [a.s.l.]);
(Fig. 3A). Nevertheless, we also detected elevation-specific dis-
tributions for different major classes of molecules (Fig. 3B). For
instance, phenol-based compounds, such as anthocyanin and nu-
merous flavonoids, were more common at high elevations, cor-
roborating the protective role of these compounds against stressful
abiotic conditions of high elevation (high ultraviolet, high wind,
and freezing cold) (29). This result is independent from phylo-
genic constrains, since we found no phylogenetic convergence for
high elevation plant assemblages (standardized effect sizes of
mean pairwise distance calculated using 999 permutations = 0.03;

A B

D

C

E

Fig. 1. Phylogenetic, abiotic, and biotic factors together predict phytochemical richness across species. (A) Frequency distribution of unique molecular
families across all plant species sampled. (B) Number of unique molecular families as a function of the increasing number of species sampled. The gray shaded
area represents the variance around molecular families’ prediction based on 1 million randomly sampled plant species assemblages covering 2 to 100 plant
species. The different colored lines represent the average relationship for conditioned sampling based on three different elevational bands (Low = 400–900 m
a.s.l.; Mid = 900–1,600 m a.s.l., and High = 1,600–3,000 m a.s.l.). Finally, the red dotted line represents the same sampling but constrained by phylogenetic
proximity of species. (C) Phylogenetic tree of all plant species sampled (n = 416), where branch tips are colored by molecular family richness (low: blue, high:
red). (D) Association between observed and predicted values of molecular family richness (Pearson correlation: n = 416, r = 0.49, P < 0.001) derived from an
ensemble machine learning algorithm with variable selection. (E) Variable importance for the same machine learning algorithm, colored by variable class
(red: phylogenetic variables [Phylo], Nn = number of intervening nodes, C1/C2 = first/second axes of cophenetic distance matrix; yellow: soil variables, pH =
soil pH 95% quantile, Rh = soil moisture 5% quantile; blue: climate variables [Clim], Te = average annual temperature 95% quantile, Ra = median solar
radiation 95% quantile; green: vegetation productivity [Prod], ND = mean NDVI 95% quantile).
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P < 0.53; ref. 30). We further found that the average elevational
range of molecular families with a restricted spread along the el-
evation gradient (i.e., endemic to a narrow elevation band, SI
Appendix, Fig. S11) was located approximately about 300 m higher
than the average elevation observed for total molecular family
diversity (i.e., 1,640 m a.s.l. for endemic molecular families; SI
Appendix, Fig. S11A). Taken together, these results indicate that a
random sampling of a low-elevation plant assemblage would, on
average, yield more phytochemical diversity than a random sam-
pling of a high-elevation community. However, a random sampling
of high elevation plants would likely result in finding unique
molecules that are not present at low elevation. Such results are in
line with assembly theory (31), which suggests that low elevation
habitats are stable and productive, creating higher biotic pressure
between species and, thus, favoring increased phytochemical di-
versity for protection (25, 32). Conversely, high elevation habitats,
where competition and antagonistic interactions are less intense
(33), but habitat heterogeneity is much larger (34), favor a general
decrease of overall phytochemical diversity but select for specific
molecules essential for survival in stressful environments (35)
(i.e., molecular endemism).
To date, studies addressing variation of phytochemical diversity

across taxa have focused on specific classes of metabolites, such as
terpenes (36), cardenolides (17), or glucosinolates (37). Further
studies have addressed the entire phytochemical makeup of
coexisting plant species within specific genera, such as Inga (22), or
Piper (25), but they have not considered how the metabolome
changes along environmental clines. By coupling a suite of latest
generation methodologies in computational metabolomics and

spatial modeling, we provide untargeted, multispecies evidence
that phytochemical diversity is constrained not only by phyloge-
netic history (13), but also by environmental variation (38). We
thus propose that phytochemical families exist within a deter-
mined environmental domain, akin to the species ecological niche
concept (39), which makes them spatially predictable.
In summary, we show that plant phytochemical diversity in

plant species results from the sum of many specialized molecular
families on top of more widespread molecules, and that such
patterns of phytochemical diversity are predictable across species
and ecosystems (Fig. 2). We show that molecular endemism is
generally strong at higher elevations (SI Appendix, Fig. S13),
which could explain why plants from alpine regions of the world
have historically provided a large number of medicines (40). This
is important because alpine habitats are highly vulnerable to
climate change (41), which could lead to the disappearance of
currently uncharacterized phytochemicals. Altogether, we show
that variation in biotic and abiotic factors, at least within the
boundaries of the mid-European continental climate, can be
used to predict which molecules, broad classes of molecules, or
even molecular functions are likely to occur at a given location,
thus improving our capacity to seek molecules of interest over
entire landscapes (10). By mapping landscape-level phytochemical
diversity, we ultimately provide an approach for orienting the
discovery of bioactive molecules outside well-established biodi-
versity hotspots (i.e., chemodiversity hotspots), and for prioritizing
areas for future conservation efforts in light of climate and land
use change.
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Fig. 2. Geographic mapping of phytochemical diversity. (A) A geographic representation of phytochemical diversity across ∼20,000 km2 in Switzerland.
Colors are as described for B, with white and black additionally showing snowy summits and lakes, respectively. (B) PC1 and PC2 scores from a PCA of
phytochemical diversity data extrapolated from a random sample of 20,000 geographic pixels (∼100-m resolution) from A. Arrows represent loadings for the
environmental variables annual mean temperature (Temperature), annual precipitation sum (Precipitation), annual sum of solar radiation (Solar radiation),
topographic position index (aspect, or hills versus depressions in the landscape), topographic roughness index (slope and terrain roughness), topographic
wetness index, inner forest density (Forest height Q25), mean NDVI, soil moisture, and soil acidity. Point colors represent phytochemical richness (low: blue,
high: red).
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Methods
Field Sampling and Plant Species. We aimed to establish a representative
metabolomics dataset for the most frequent plant species spanning most of
the ecological conditions for Switzerland. To this end, we sampled 48 veg-
etation plots supporting grassland communities across six transects of the
Swiss Alps every 200 m of elevation (SI Appendix, Fig. S2). The six elevation
transects spanned all the elevation bands and the four bioclimatic regions of
the Central European Alps and included both calcareous and acidic soil types
(SI Appendix, Fig. S2). We sampled ∼80% of all vascular plant species found
in the vegetation plots. For each species, we sampled between 2 and 10 of
the youngest fully expanded leaves from a total of two to three individuals.
Plants were all sampled during peak flowering season across the different
bands of the elevational gradient in order to mitigate potential phenolog-
ical and ontogenetic factors. Leaves were stored at 4 °C for less than 5 h
before being dried at 40 °C for 5 d and ground to powder using a MM400
Retch TissueLyser (Qiagen).

Environmental Variables. We selected a set of 10 environmental variables to
describe the main ecological gradients in the region: annual mean tem-
perature, annual precipitation sum, annual sum of solar radiation, topo-
graphic position index, topographic roughness index, topographic wetness
index, inner forest density (Forest height Q25), mean NDVI, soil moisture,
and soil pH. Predictors were not strongly correlated (Pearson correlations

|r| < 0.59) and were selected due to being established descriptors of plant
distributions in Switzerland (42). See SI Appendix, Supplementary Meth-
ods, for description of environmental variables calculations.

Metabolome Analysis by Mass Spectrometry and Chemical Data Processing. We
performed untargeted metabolomics analyses to estimate phytochemical
diversity of all plant species collected in the field (n = 416 species). We
extracted 20 mg of each of the dry ground tissue with 0.5 mL of extraction
solvent (MeOH: MilliQ water: formic acid; 80:19.5:0.5). The mixture was
thoroughly homogenized for 3 min at 30 Hz using glass beads and centri-
fuged for 3 min at 14,000 rpm. The supernatant was transferred to a chro-
matographic vial, and a volume of 2.5 μL was injected into an Acquity UPLC
C18 column (50 mm × 2.1 mm, 1.7 μm; Waters). We analyzed the sample via
UHPLC-quadrupole time‐of‐flight mass spectrometry (QTOFMS) using an
Acquity UPLC coupled to a Synapt G2 MS (Waters). We used a binary solvent
system consisting of H2O and acetonitrile, both supplemented with 0.05%
formic acid. The chromatographic separation was carried out at a flow rate
of 0.6 mL/min at a temperature of 40 °C using a linear gradient of 2–100%
acetonitrile in 6.0 min. MS detection was done in positive electrospray ion-
ization over a mass range of 85–1,200 Da. Data were acquired in the data-
independent acquisition (DIA) mode, in which all precursor ions from the full
mass range are fragmented to yield MS/MS spectra. Quality control samples
made of a pool of all samples were run at the beginning of each batch and
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Fig. 3. Elevational distributions of phytochemical families. (A) Optimal distribution of 6,012 phytochemical families found in the Swiss Alps along the el-
evation (km a.s.l.). Distribution is based on the niche of each plant species identified through spatial modeling plus the presence of the molecule in the plant
species. Colors reflect probability of occurrence (red, maximal [1]; blue, absent [0]), with the dotted white line showing the average probability of occurrence
considering all molecular families. (B) Inferred major classes of metabolites ordered by average elevation optima, with the gray line representing the global
median value.
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after every 30 injections. The MS source was cleaned before each of the five
batches running over 5 d.

Molecular Networking and Annotation. We used MS-DIAL (43) for peak de-
tection and assignment of the parent mass to each of the fragmented
spectra of the DIA data. The output of MS-DIAL was implemented in the
Global Natural Products Social (GNPS) to cluster the MS/MS spectra into
compound families based on their cosine similarity and molecular net-
working (24, 44) (SI Appendix, Fig. S3, MS/MS data andmolecular network can
be accessed through GNPS in the webpage: https://gnps.ucsd.edu/ProteoSAFe/
static/gnps-splash.jsp). Each feature was annotated by spectral matching
against an in silico spectral database version of the Dictionary of Natural
Product according to a previously described methodology (45). The Classy-
Fire taxonomy was employed (46) to estimate the consensus classes, or su-
perclasses, of the molecular families. Despite the presence of partially
convoluted spectra (as typically obtained in DIA) and the presence of de-
generate features (adducts, dimers), the clusters of the molecular network
appeared as an efficient proxy to evaluate the chemical diversity of this wide
spectral dataset. Output feature data were combined and averaged per
plant species. To obtain an index of expression for each molecular family per
plant species, we summed the scaled peak height within species and mo-
lecular families. To estimate chemical diversity, we summed the number of
molecular families present in each plant species. Because MS/MS spectra
were clustered by their fragmentation profile, the total number of molec-
ular families reflects the maximal potential functional chemical diversity as
analyzed by the mass spectrometer.

Predictive Model of Chemical Diversity at the Species Level. To explore the
structure of phytochemical diversity across our 416 plant species, we first
estimated the distribution of each molecular family across all plant species.
Additionally, we performed rarefaction curve analyses by, 1) simulating
1,000,000 randomly sampled plant species assemblages covering 2 to 100
plant species (gray area in Fig. 1B), 2) splitting the 416 plant species into
three groups (Low = 400–900 m a.s.l.; Mid = 900–1,600 m a.s.l., High =
1,600–3,000 m a.s.l.) based on the elevation optima of each species, which
was obtained from the calculated SDMs (n = 100,000 species assemblages
per elevational group in Fig. 1B, green lines), and 3) constraining the sam-
pling according to the minimal phylogenetic distance from the initially
randomly sampled plant species (Fig. 1B, dashed red line). To obtain the
phylogenetic relationship of the 416 plant species, we pruned the DaPhnE
0.1 supertree of the European vascular plant species (47). We then predicted
the chemical diversity combining species phylogenetic information and en-
vironmental conditions. We measured the phylogenic signal for phyto-
chemical diversity across species using Pagel’s lambda (phylosig in the
phytools package; ref. 48). A lambda value of 1 indicates phylogenetic
conservatism consistent with the tree topology and a random walk model
(i.e., chemical diversity similarity is directly proportional to the extent of
shared evolutionary history). A lambda value of 0 indicates phylogenetic
independence. To test the escalation of chemical diversity hypothesis (13),
we regressed the number of splitting nodes (distRoot in the adephylo
package; ref. 49) against the chemical diversity of each plant species (SI
Appendix, Fig. S7). From the phylogenetic tree, we computed the pairwise
cophenetic distance for each species and projected it on two dimensions
using multidimensional scaling. These two metrics of phylogenetic similarity
were then used with the number of splitting nodes as phylogenetic vari-
ables. To test for the relationship between species-level chemical differ-
ences, phylogenetic and environmental variables extracted from the species-
distribution models, we calculated a correlation matrix with all pairwise
combinations (SI Appendix, Fig. S8). To explore the predictability of species-
level phytochemical diversity from evolutionary and environmental vari-
ables, we performed a machine learning ensemble model composed of
Random Forest (Ranger packages; ref. 50), recursive partitioning (Rpart
package; ref. 51) and Extreme Gradient Boosting (Xgboost package; ref. 52).
To build the predictive model we first performed variable selection based on
rank importance [vip package (53)]. The variables that ranked in the top 10
in at least two of the three models were retained, i.e., number of nodes,
cophenetic Dimension 1 and 2, NDVI quantile 0.95, soil moisture quantile
0.05, soil pH quantile 0.95, annual temperature average quantile 0.95, solar
radiation median. For all species, we predicted phytochemical diversity from
a model trained recursively on a dataset excluding the target species. The
correlation between the predicted and observed phytochemical diversity
values indicates an ability to forecast phytochemical diversity at the species
level. Finally, we estimated variable importance for the ensemble learning
model (vimp package; ref. 54).

Geographic Mapping of Phytochemical Diversity. We modelized the distribu-
tion of the 6,012 chemical families across the alpine landscape by combining
the 416 species metabolomics dataset and SDMs. First, we mapped the po-
tential distribution of all the 416 plant species at a ∼100-m spatial grid
resolution using SDMs (55) (see SI Appendix for SDM construction). To rep-
resent the probability of a specific molecular family being present in the
landscape (i.e., the environmental conditions corresponding to each spa-
tial grid pixel), we summed the value of expression index related to that
molecular family for all the plant species present in the pixel grid that
produced the molecule. All the data were scaled between 0 and 1 within a
molecular family to allow interfamily comparison. We then extracted the
probability of the presence of molecular families from 20,000 randomly
chosen spatial points, which we related to corresponding environmental
variables. We next coupled this dataset with a machine learning algorithm
(extreme gradient boosting model XGBoost; ref. 56) to build MDMs based
on the environmental variables found to be related to each molecular
family. MDMs were trained on 70% of the data and validated on the
remaining 30% (mean validation accuracy = 0.94). This training process
was also used to compute the importance of each environmental factor
from the 6,012 MDMs. We projected the probability of presence of all the
6,012 molecular families on 20,000 km2 of Switzerland using the produced
MDMs. By stacking the 6,012 projection maps, we estimated an index of
local molecular diversity (sum of potentially present molecular families) at
a scale of 100 m2 resolution and used it for the geographic mapping of
phytochemical diversity. By using the value of the predicted phytochemical
diversity index in the 20,000 randomly chosen locations, we next built an
environmental principal component analysis (PCA) to describe the phyto-
chemical diversity distribution across the multivariate environmental
space.

To validate the MDM approach for predicting phytochemical diversity
across the landscape, we first correlated plant species richness extracted from
the SDMs with the number of unique molecular families (based on field-
collected chemical composition) from 50,000 randomly chosen locations. We
used this dataset to build a predictive model of phytochemical diversity
based on Gradient Boost Model (GBM). Second, we correlated plant species
richness from the SDMs and the MDM-based predictions of phytochemical
diversity from the same locations. Finally, we compared the accuracy of our
MDMs predictions versus the GBM predictions.

To further validate our approach, we calculated plant assemblage-level
phytochemical diversity values for the 48 experimental communities sam-
pled established along the six elevation transects for which metabolomics
data were directly available (SI Appendix, Fig. S9). We assessed the effect of
elevation on community-level plant species richness and phytochemical
richness (separately) using quadratic regression analyses. Next, we extracted
the phytochemical diversity index at each corresponding location of the 48
vegetation plots from the MDM mapping exercise. Finally, we performed
three correlations tests: 1) field-sampled chemical diversity versus field-
sampled plant species richness, 2) field-sampled chemical diversity versus
SDM-based plant species richness, and 3) field-sampled phytochemical di-
versity versus MDM-based chemical diversity.

Distribution of Molecular Families along Elevation. As in integrative ecological
axis, we plotted the probability values of presence for each molecular family
obtained from MDMs along an elevation axis generated with the 20,000
randomly chosen pixels of the spatial grid. We chose to represent the ele-
vation axis due its integrative representation of contrasted environmental
conditions in the Alps (see correlation with PCA axis 1 in Fig. 2A). We used a
locally polynomial quantile regression to estimate changes to the distri-
bution of each molecular family with elevation (lprq in the Quantreg
package (57), probs = 0.95). We then estimated an elevation optimum for
each molecular family by extracting the elevations corresponding to the
highest probability of a molecular family’s presence. Elevation optima
where used to illustrate the environmental specificity of large functional
classes of molecules. Finally, we identified the molecular families ende-
mism related to elevation by filtering the quantile 0.8 of molecular fam-
ilies elevational range for a probability of presence corresponding to 0.5
(SI Appendix, Fig. S13).

Data Availability. Raw data for plant species andmolecular families have been
deposited in Figshare (https://doi.org/10.6084/m9.figshare.13032740).
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