Skip to main content
. 2021 Jan 11;11(1):105. doi: 10.3390/diagnostics11010105

Table 6.

Performance Metrics of model ResNet convolutional neural network (CNN).

Evaluation Metrics of ResNet-14 CNN
Multi Classes
Approaches Evaluation Healthy Tear Partial Tear Full Torn Average
Without class balancing and data augmentation (5-fold cross-validation) Precision 0.85 0.57 0.57 0.663
Sensitivity 0.96 0.39 0.22 0.523
F1-Score 0.90 0.47 0.31 0.563
Specificity 0.78 0.86 0.95 0.863
Accuracy 0.81
AUC 0.87 0.81 0.91 0.863
Without class balancing with
data augmentation (5-fold cross validation)
Precision 0.83 0.47 0.47 0.590
Sensitivity 0.94 0.29 0.22 0.483
F1-Score 0.88 0.36 0.30 0.513
Specificity 0.70 0.78 0.96 0.813
Accuracy 0.77
AUC 0.83 0.76 0.91 0.833
Hybrid class balancing without data augmentation (Random Splitting) Precision 0.87 0.81 0.96 0.880
Sensitivity 0.85 0.79 0.99 0.877
F1-score 0.86 0.80 0.98 0.880
Specificity 0.90 0.92 0,99 0.910
Accuracy 0.88
AUC 0.96 0.95 0.99 0.967
Hybrid class balancing with data augmentation (random splitting) Precision 0.89 0.84 0.94 0.890
Sensitivity 0.86 0.81 0.99 0.887
F1- score 0.88 0.83 0.97 0.893
Specificity 0.91 0.92 0.99 0.940
Accuracy 0.90
AUC 0.97 0.96 0.99 0.973
Hybrid class balancing with data augmentation (3-fold cross validation) Precision 0.90 0.83 0.94 0.890
Sensitivity 0.87 0.80 0.99 0.887
F1- score 0.88 0.82 0.97 0.890
Specificity 0.91 0.92 0.99 0.940
Accuracy 0.90
AUC 0.97 0.94 0.99 0.967
Hybrid class balancing with data augmentation (5-fold cross validation) Precision 0.92 0.87 0.96 0.917
Sensitivity 0.89 0.87 0.99 0.917
F1-score 0.90 0.87 0.98 0.917
Specificity 0.93 0.92 0.99 0.947
Accuracy 0.92
AUC 0.98 0.97 0.99 0.980