Table 6.
Evaluation Metrics of ResNet-14 CNN | |||||
---|---|---|---|---|---|
Multi Classes | |||||
Approaches | Evaluation | Healthy Tear | Partial Tear | Full Torn | Average |
Without class balancing and data augmentation (5-fold cross-validation) | Precision | 0.85 | 0.57 | 0.57 | 0.663 |
Sensitivity | 0.96 | 0.39 | 0.22 | 0.523 | |
F1-Score | 0.90 | 0.47 | 0.31 | 0.563 | |
Specificity | 0.78 | 0.86 | 0.95 | 0.863 | |
Accuracy | 0.81 | ||||
AUC | 0.87 | 0.81 | 0.91 | 0.863 | |
Without class balancing with data augmentation (5-fold cross validation) |
Precision | 0.83 | 0.47 | 0.47 | 0.590 |
Sensitivity | 0.94 | 0.29 | 0.22 | 0.483 | |
F1-Score | 0.88 | 0.36 | 0.30 | 0.513 | |
Specificity | 0.70 | 0.78 | 0.96 | 0.813 | |
Accuracy | 0.77 | ||||
AUC | 0.83 | 0.76 | 0.91 | 0.833 | |
Hybrid class balancing without data augmentation (Random Splitting) | Precision | 0.87 | 0.81 | 0.96 | 0.880 |
Sensitivity | 0.85 | 0.79 | 0.99 | 0.877 | |
F1-score | 0.86 | 0.80 | 0.98 | 0.880 | |
Specificity | 0.90 | 0.92 | 0,99 | 0.910 | |
Accuracy | 0.88 | ||||
AUC | 0.96 | 0.95 | 0.99 | 0.967 | |
Hybrid class balancing with data augmentation (random splitting) | Precision | 0.89 | 0.84 | 0.94 | 0.890 |
Sensitivity | 0.86 | 0.81 | 0.99 | 0.887 | |
F1- score | 0.88 | 0.83 | 0.97 | 0.893 | |
Specificity | 0.91 | 0.92 | 0.99 | 0.940 | |
Accuracy | 0.90 | ||||
AUC | 0.97 | 0.96 | 0.99 | 0.973 | |
Hybrid class balancing with data augmentation (3-fold cross validation) | Precision | 0.90 | 0.83 | 0.94 | 0.890 |
Sensitivity | 0.87 | 0.80 | 0.99 | 0.887 | |
F1- score | 0.88 | 0.82 | 0.97 | 0.890 | |
Specificity | 0.91 | 0.92 | 0.99 | 0.940 | |
Accuracy | 0.90 | ||||
AUC | 0.97 | 0.94 | 0.99 | 0.967 | |
Hybrid class balancing with data augmentation (5-fold cross validation) | Precision | 0.92 | 0.87 | 0.96 | 0.917 |
Sensitivity | 0.89 | 0.87 | 0.99 | 0.917 | |
F1-score | 0.90 | 0.87 | 0.98 | 0.917 | |
Specificity | 0.93 | 0.92 | 0.99 | 0.947 | |
Accuracy | 0.92 | ||||
AUC | 0.98 | 0.97 | 0.99 | 0.980 |