Skip to main content
. 2021 Jan 11;11(1):105. doi: 10.3390/diagnostics11010105

Table 7.

Comparison state of the art works with our proposed model.

Author, Year Model Dataset Target Output Evaluation
Accuracy Sensitivity Precision Specificity AUC
Štajduhar et al. [23] HOG+ Linear-kernel SVM (k = 10) KneeMRI
917 (exams)
partial tear - - - - 0.894
ruptured tear - - - - 0.943
Bien et al., 2018 [27] AlexNet MRNet
1370 exams
ACL tear 0.867 0.759 - 0.968 0.965
abnormal 0.850 0.879 - 0.714 0.937
meniscus tear 0.725 0.892 0.741 0.847
Logistic Regression KneeMRI
917 exam
partial tear,
ruptured tear
- - - - 0.911
Chang et al., 2019 [33] Dynamic patch + ResNet 260 MRI coronal volumes partial AC,
full torn
0.967 1.00 0.938 0.933 -
Liu et al., 2019 [34] VGG16 sagittal MR 175 (exams) full thickness ACL tear,
Intact ACL
- 0.92 - 0.92 0.95
DenseNet - 0.96 - 0.96 0.98
Alex Net - 0.89 - 0.88 0.90
Namiri et al., 2019 [39] 2D CNN
3D CNN
NIH MRI
1243
(exams)
Intact ACL - 0.22
0.89
- 0.90
0.88
-
2D CNN
3D CNN
Partial tear - 0.75
0.25
- 1.00
0.92
-
2D CNN
3D CNN
Full tear - 0.82
0.76
- 0.94
1.00
-
Zhang et al., 2020 [40] 3D DenseNet sagittal MR 408 (exams) ACL tears
Intact ACL
0.957
0.943
0.899
0.976
0.952
0.912
0.940
0.952
0.869
0.944
0.909
0.886
0.960
0.946
0.859
ResNet
VGG16
Irmakci et al., 2020 [41] AlexNet MRNet
1370
exams
abnormal 0.8583 0.978 - 0.400 0.891
ACL tear 0.833 0.685 - 0.954 0.938
ResNet-18 abnormal 0.825 0.968 - 0.280 0.811
ACL tear 0.866 0.777 - 0.939 0.954
GoogleLeNet abnormal 0.833 0.978 - 0.280 0.909
ACL tear 0.808 0.666 - 0.924 0.890
Tsai et al., 2020 [42] EfficientNet MRNet
1370
abnormal 0.917 0.968 - 0.72 0.941
ACL tear 0.904 0.923 - 0.891 0.960
ELNet 5 -fold KneeMRI
917 exams
ruptured ACL - - - - 0.913
Proposed
Customized ResNet-14
5-fold cross-validation
KneeMRI
917 exams
ACL Intact 0.92 0.89 0.92 0.93 0.98
partial tear 0.91 0.87 0.87 0.92 0.97
ruptured 0.93 0.99 0.96 0.99 0.99