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Abstract: The essential oil (EO) from basil—Ocimum basilicum—was characterized, microencapsu-
lated by vibration technology, and used to prepare a new type of packaging system designed to extend
the food shelf life. The basil essential oil (BEO) chemical composition and antimicrobial activity were
analyzed, as well as the morphological and biological properties of the derived BEO microcapsules
(BEOMC). Analysis of BEO by gas chromatography demonstrated that the main component was
linalool, whereas the study of its antimicrobial activity showed a significant inhibitory effect against
all the microorganisms tested, mostly Gram-positive bacteria. Moreover, the prepared BEOMC
showed a spheroidal shape and retained the EO antimicrobial activity. Finally, chitosan-based edible
films were produced, grafted with BEOMC, and characterized for their physicochemical and biologi-
cal properties. Since their effective antimicrobial activity was demonstrated, these films were tested
as packaging system by wrapping cooked ham samples during 10 days of storage, with the aim of
their possible use to extend the shelf life of the product. It was demonstrated that the obtained active
film can both control the bacterial growth of the cooked ham and markedly inhibit the pH increase of
the packaged food.

Keywords: basil essential oil; microencapsulation; chitosan film; food shelf life; food packaging;
cooked ham

1. Introduction

Food industry is developing new packaging materials, even by the incorporation of
volatile antimicrobial agents, such as essential oils (EOs), into the polymeric films [1]. EOs,
obtained from different plant organs (flowers, buds, seeds, leaves, twigs, etc.), are complex
mixtures of volatiles compounds endowed with antimicrobial and antifungal, as well as
antioxidant properties [2]. Therefore, their addition to packaging materials can lead to
incorporation of their components into the food, neutralizing spoilage microorganisms
present in the packaged food and extending product shelf life [3,4]. In particular, the EOs
of the different cultivars of basil (Ocimum basilicum L.) (BEO) have been shown to possess
analgesic, anti-inflammatory, antibacterial, hepatoprotective, and immunomodulatory
properties [5]. In fact, BEO is sometimes used as an additive to avoid food oxidation or as
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an antimicrobial agent, or as an ingredient to affect the flavor and aroma of different prod-
ucts [6,7]. The microencapsulation is one of the most effective new techniques for protecting
compounds against volatilization, oxidation, and thermal degradation [8,9]. Various meth-
ods are employed to form microcapsules, the most remarkable of which are spray drying,
spray air suspension coating, centrifugal extrusion, centrifugal suspension–separation and
vibration technology [10]. Vibration technology, generally used for the production of micro-
spheres and microcapsules, consists of breaking up a laminar liquid stream into droplets by
a superimposed vibration. This technique has gained a significant interest in the last years
mainly due to the possibility to produce very uniform monodisperse microcapsules [11]
and represents a potentially significant growth area in food industry [12].

Microencapsulation of EOs in edible films and coatings has been advocated as a
“natural” alternative procedure to the addition of chemical, and often potentially toxic,
antimicrobial agents to food packaging materials [13]. In addition, it has a great prospective
in the industry due to its capability to transform conventional polymers or biopolymers
into intelligent and multifunctional materials useful for food preservation. In particular,
chitosan (CH) edible films containing microcapsules of EOs may be an innovative pack-
aging system to extend the commercial shelf-life of various food products, avoiding the
addition of chemical preservatives [14]. Although numerous studies on the antimicrobial
effectiveness of free and microencapsulated EOs are available [15–17], very few data are
available on EO microencapsulation by vibration technology in packaged foods. The aim
of this work, thus, was to evaluate the effectiveness of an innovative active CH-based
packaging system containing BEO microcapsules to extend the shelf life of cooked ham.

2. Materials and Methods
2.1. Chemicals and Microorganisms

BEO was purchased from Sinergy Flavors Italy S.p.A. (Trieste, Italy). BEO was ex-
tracted by hydro distillation as reported in the technical sheet of the product. CH (mo-
lar mass 3.7 × 104 g/mol, 91% N-deacetylation) was a gift from prof. R.A.A. Muz-
zarelli (University of Ancona, Italy) and characterized as previously described [18]. All fur-
ther chemicals and solvents were analytical grade and are cited with supplier and code in
bracket. Gram-positive and Gram-negative bacteria reported in Table 1 were from the cul-
ture collections of the Department of Agricultural Sciences, University of Naples Federico II.
All of them were previously identified at genome level by 16S rRNA gene sequencing. Mi-
crobial strains were routinely grown in tryptone soya broth (TSB, Thermo Fisher Scientific,
Rodano, Italy) for 24 h.

2.2. GC-FID Analysis of BEO

The GC-FID analysis of basil EO was performed with a gas chromatograph Pekin
Elmer Sigma-115 equipped with a flame ionization detector and HP-5 MS fused silica
capillary column (30 m × 0.25 mm × 0.25 mm film thickness). The detector and injector
temperatures were 250 ◦C and 290 ◦C and the injection modes spitless was 1 mL of a
1:1000 n-hexane. Analysis was also run by using a fused silica HP Innowax capillary
column (50 m × 0.20 mm, 0.25 mm film thickness). In both cases, the carrier gas was
helium at flow rate of (1.0 mL/min).

2.3. GC/MS Identification of Single Constituents of BEO

The composition of volatile constituents of basil EO was analyzed by Agilent 6850 Ser.
Equipped with MSD 5973 mass selective spectrometer (ionization energy 70 Ev, capil-
lary column 30 m × 0.25 mm × 0.33 film thickness, electron voltage energy 2000 V. The sam-
ples were injected as mentioned above and the Injector was heated to a temperature of
295◦.The identification of major constituents was achieved by comparing their retention in-
dices relative to C10–C35 n-alkanes with either those of the literature [19–21], through mass
spectra analysis on both columns and by their comparison with those of the authentic
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compounds available in our laboratories by means of NIST 02 and Wiley 275 libraries [22].
Finally, components’ relative concentrations were obtained by peak area normalization.

Table 1. Source and optimal growth conditions of microorganisms.

Gram Microorganism Source Growth Condition

Positive Brochothrix thermosphacta 7R1 Meat TSB 24 h at 20 ◦C

Brochothrix thermosphacta D274 Meat TSB 24 h at 20 ◦C

Carnobacterium maltaromaticum 9P Meat TSB 24 h at 20 ◦C

Carnobacterium maltaromaticum
D1203 Meat TSB 24 h at 25 ◦C

Enterococcus faecalis 226 Milk TSB 24 h at 30 ◦C

Staphylococcus xylosus ES1 Fermented meat TSB 24 h at 37 ◦C

Staphylococcus saprophyticus 3S Fermented meat TSB 24 h at 37 ◦C

Listeria innocua 1770 Milk TSB 24 h at 30 ◦C

Streptococcus salivarius GM Milk TSB 24 h at 30 ◦C

Negative Hafnia alvei 53M Meat TSB 24 h at 30 ◦C

Serratia proteamaculans 20P Meat TSB 24 h at 30 ◦C

Escherichia coli 32 Meat TSB 24 h at 37 ◦C

2.4. Antimicrobial Activity of BEO

The antimicrobial activity of BEO was tested against the different indicator strains
reported in Table 1 by the filter paper disc diffusion method [23]. In particular, 0.1 mL of
an overnight culture of each indicator strain with 107 colony forming units (CFU)/mL was
spread directly on Tryptone Soy Agar (TSA); TSB with addition of 7.5 g/L agar and yeast
extract (Agar bacteriological n.1, Oxoid). Sterile filter paper discs (6 mm in diameter) were
first soaked with 20 µL of BEO and then placed on TSA. Finally, all plates were incubated
at optimal growth condition culture of each indicator strain for 24 h. The inhibition zones
were measured with a caliper and recorded in mm. All tests were performed in triplicates.

The minimum inhibitory concentration (MIC) and the minimum lethal concentration
(MLC) of BEO were determined only against the microorganisms that exhibited a strong
sensitivity in the previous assay. MIC of BEO was determined using broth dilution method.
A serial dilution of BEO, ranging from 40 mg/mL to 0.3 mg/mL, was prepared in test
tubes containing Tryptone Soy Broth [24]. Each tube was inoculated with the same volume
of bacterial suspension adjusted to 106 CFU/mL. MIC values were defined as the lowest
concentration of BEO at which the absence of growth was recorded. Controls of medium
with either microorganisms or BEO alone were included. BEO MLC was determined by
sub culturing 10 µL from the last four wells without visible bacterial growth onto TSA plate.
After incubation at optimal growth conditions for 24 h, MLC was defined as the lowest
concentration resulting in a negative subculture or giving presence of only one colony after
incubation.

Ethanol (code 02483 Sigma-Aldrich, Milan, Italy) was used as negative control; tetra-
cycline (10 µg) and gentamicin (10 µg) were used as positive control.

2.5. Microencapsulation of BEO

Basil EO was microencapsulated by vibration technology [25], using the Encapsulator
B-395 Pro (BUCHI, Flawil, Switzerland) equipped with the syringe pump and a nozzle
diameter of 120 µ. Briefly, the system is based on the extrusion of a laminar jet of a calcium
alginate solution subjected to a preset high frequency mechanical vibration, resulting in
a controlled break-up of the laminar jet in spherical drops. The fall in a calcium chloride
bath of droplets leads to the gelation of the alginate microbeads under the form of calcium
alginate. The feeding solution was carried out by mixing 10 mL of BEO, 0.5 mL of Tween
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80 emulsifier and 35 mL of alginic acid sodium salt solution (previously degassed and
sterilized by autoclaving at 121 ◦C for 15 min). Then, the prepared mixture (pH 6.8) was
loaded in a 50 mL luer-lock syringe and forced into the pulsation chamber to be further
extruded through the nozzle. The microencapsulation parameters were adjusted to flow
rate, 3 mL/min, vibration frequency, 200 Hz; electrode voltage, 1800. Microcapsules of BEO
were obtained by hardening of the droplets in 150 mL of CaCl2 solution continuously stirred
at 100 rpm. All the process was performed at room temperature. Finally, the obtained
suspension was recovered in batch and stored at 4 ◦C. After separation of microcapsules
and the solution, a final volume of 25 mL of microcapsules of BEO were obtained.

The encapsulation efficiency (EE) was determined using the following equation:

EE = m1/m2 ∗ 100 (1)

where m1 is the amount, expressed in g, of essential oil contained in the microcapsules,
and m2 is the total amount, expressed in g, of BEO used. The amount of BEO contained in
the microcapsules (m1) was determined using the following equation:

m1 = m2 − m3 (2)

where m3 is the amount, expressed in g, of BEO from aqueous phase collected after
microcapsule filtration by solvent extraction. All experiments were carried out in triplicate
and results presented are the average values.

Size and morphology of BEO microcapsules (BEOMC) were examined using both
a Zeiss light (200× magnification and calibrated micrometer) and scanning electron mi-
croscope (SEM-Evo 40, Carl Zeiss, Oberkochen, Germany). Microcapsules from each en-
capsulation were visualized immediately after the process by optical microscopy, with no
special sample preparation. On the contrary, for SEM analysis, microcapsules were initially
rinsed three times with MilliQ water (Lichrosalv water for Chromatography) and then
10 µL of each sample were placed on a pin type SEM specimen mount and maintained at
45 ◦C for 2 h in order to achieve a gentle dehydration of the microcapsules and their fixing.
All samples were sputter treated in a metallizer (Agar Sputter Coater) with gold palladium
to reach a thickness of coating of 100 Å and then observed by SEM high vacuum mode
(EHT, 20.00 Kv).

2.6. Antimicrobial Activity of BEOMC

Resting cell experiment was carried out in order to evaluate BEOMC antimicrobial
activity. One mL of microcapsules was added to a bacterial suspension to reach a cell
concentration of 106 CFU/mL. The viable count of indicator strain was evaluated by plate
counting on TSB agar both immediately (T0) and after incubation for 1, 2, 3, 4, 5, and 24 h at
4 ◦C. A cell suspension without microcapsules was used as control. At T0 and after 24 h of
incubation, an aliquot of each sample was stained using a LIVE/DEAD BackLight Bacterial
Viability Kit (Molecular Probes, Eugene, OR, USA) in order to investigate cell membrane
damage. Accordingly to the procedure previously described by Ercolini et.al 2006 [26],
fluorochrome stock solution (6 µL) was added to 10 µL of each sample and incubated in
the dark for 15 min at room temperature. At the end of incubation, samples were observed
using a Nikon Eclipse E400 epifluorescence microscope (Nikon, Tokyo, Japan) equipped
with a UV lamp and a 100X magnification objective.

2.7. CH-Based Film Preparation

A 3% CH film forming solution (FFS) was prepared as previously described [18,27]
with some modifications. CH was dissolved in 0.1 M HCl (code 1.13386 Sigma-Aldrich
Italy) at room temperature using an overhead stirrer homogenizer (IKA overhead stirrer
homogenizer, RW 20. USA) for about 24 h to complete solubilization, then the pH was ad-
justed to 4.0 by adding 1 M NaOH (code S5881 Sigma-Aldrich Italy). Glycerol (code G7893
Sigma-Aldrich, Italy) was then added (30% w/w of CH) and stirred for 3 h at room tem-
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perature. Where indicated, BEOMC at different concentrations (1, 2, and 3% w/v) were
added and mixed by vortex. Seventy-five milliliters of the final mixture were casted on a
24 × 18 cm2 polypropylene sheet.

FFSs were spread by using COATMASTER device model 510 (ERICHSEN GmbH and
Co. Hemer, Germany) with spiral size 80 µm, and then were kept for 5 h to dry at room
temperature under ventilated cabinet. Films were peeled from the casting surface and
stored at 25 ◦C and 50% RH for further experiments.

2.8. CH-Based Film Properties

Films were characterized for their thickness on six different points by using an elec-
tronic digital micrometer with sensitivity of 0.001 mm. Film tensile strength (TS), elonga-
tion at break (EB), and Young’s modulus (YM), were determined [28] on six specimens
of each different films (5 cm gage length, 1 kN load and 5 mm/1 min speed) by using
an Instron universal testing instrument model no. 5543A (Instron Engineering Corp.,
Norwood, MA, USA). Film opacity was determined as previously described by Giosafatto
et al. (2019) [29], six times for each film by measuring:

Opacity
(

mm−1
)

= A600/x (3)

where A600 is the absorbance at 600 nm and x is the film thickness (mm).
The assessment of film antimicrobial activity was carried out on S. saprophyticus 3S as

Gram-positive and E. coli 32 as Gram-negative. For each bacterial strain, inoculum from the
stock was revived in Tryptone Soy Broth and incubated at 37 ◦C for 24 h. Thereafter, the bac-
terial broth was diluted serially till final concentration of 106–107 CFU/mL (colony forming
units/mL) is achieved. One milliliter of the diluted culture broth was taken in a test tube
and test film of specific dimension was cut and immersed into the culture broth. The tubes
were then incubated at 37 ◦C for 24 h to allow the interaction between the film and the
bacteria. Control samples were simultaneously run without film addition. The viable count
was evaluated by plate counting on TSA.

2.9. Cooked Ham Wrapping

Cooked ham, obtained from a local supermarket (Naples, Italy), was cut to obtain slices
of 10 g and then wrapped with the prepared CH films containing different concentrations
of BEOMC. Two control samples were used in this experiment: unwrapped ham and ham
wrapped with films prepared with CH alone. Each sample was placed in Petri dishes,
as shown in Figure 1, and stored at 4 ◦C for 10 days.
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Cooked ham samples aliquot (10 g) were taken every 2 days during storage and
homogenized in a stomacher with 90 mL of sterile buffered peptone water for the determi-
nation of total aerobic mesophilic bacteria (AMB) on PCA (Plate Count Agar) incubated
at 37 ◦C for 48 h. Mesophilic lactic acid bacteria (LAB) were determined in MRS agar
incubated under anaerobiosis at 37 ◦C for 72 h. Enterobacteria were determined in VRBGA
(Violet Red Bile Glucose Agar) incubated at 37 ◦C for 24 h. Yeasts were determined in Rose
Bengal Agar with chloramphenicol incubated at 28 ◦C for 3 days. Results were expressed as
logarithm of colony forming units per gram of ham. The pH was measured by a HI 221 pH
meter (HANNA Instruments, Ronchi di Villafranca Padovana, Italy) and 3 measurements
were taken.

2.10. Statistical Analysis

John’s Macintosh Project (JMP) software 8.0 (SAS Institute, Cary, NC, USA) was used
for all statistical analyses. The data were subjected to analysis of variance (ANOVA),
and the means were compared using the student’s-t test. Differences were considered to be
significant at p < 0.05.

3. Results and Discussion
3.1. BEO Chemical Composition

The detected chemical composition of BEO, reported in Table 2, shows that 52 com-
pounds were identified, and that the component most present by far is linalool (41.3%) fol-
lowed by 1,8-cineole (9.6%), (Z)-isoeugenol (5.9%), 1-epi-cubenol (4.8%), α-transbergamotene
(4.6%), and (Z)-anethol (3.2%). Further compounds, occurring in amounts between 2 and
3%, are trans-muurola-4-(14), 5-diene (2.8%), €-caryophyllene (2.4%), isobornylacetate
(2.1%), whereas all the others are present in amounts lower than 2%.

Table 2. Basil essential oil (BEO) chemical composition *.

N. Compound Name % KI a KI b Identification c

1 Santolina triene 1.2 863 908 1,2
2 Artemisia triene Traces 875 929 1,2
3 α-pinene 1.8 899 939 1,2,3
4 β-pinene 1.0 919 979 1,2,3
5 δ-3-Carene Traces 939 1011 1,2
6 p-Cymene 0.1 948 1024 1,2,3
7 1,8-Cineole 9.6 953 1096 1,2,3
8 dehydro-sabina ketone 0.3 973 1120 1,2
9 neo-isopulegol 0.3 989 1148 1,2

10 iso-isopulegol 0.7 994 1159 1,2
11 Linalool 41.3 1033 1096 1,2,3
12 Terpinolene 0.1 1035 1088 1,2,3
13 (6Z)-Nonenal 0.1 1037 1097 1,2
14 iso-3-thujanol 0.2 1039 1138 1,2
15 neo-allo-ocimene 0.1 1048 1144 1,2
16 neo-iso-3-thujanol Traces 1050 1151 1,2
17 iso-borneol 0.3 1058 1160 1,2
18 3-thujanol Traces 1060 1168 1,2,3
19 thuj-3-en-10-al 0.2 1062 1184 1,2
20 cis-dihydrocarvone 0.1 1080 1192 1,2
21 trans-pulegol 0.6 1091 1214 1,2
22 cis-sabinene hydrate 1.4 1099 1221 1,2
23 (Z)-Anethole 3.2 1106 1252 1,2,3
24 isobornyl acetate 2.1 1189 1285 1,2
25 δ-elemene 0.2 1232 1338 1,2,3
26 trans-p-menth-6-en-2,8-diol 0.2 1240 1374 1,2
27 α-ylangene 0.1 1244 1375 1,2,3
28 (z)-isoeugenol 5.9 1259 1407 1,2
29 α-gurjunene 0.5 1269 1409 1,2
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Table 2. Cont.

N. Compound Name % KI a KI b Identification c

30 €-Caryophyllene 2.4 1288 1419 1,2,3
31 β-Ylangene 1.1 1304 1420 1,2,3
32 β-copaene 0.5 1314 1432 1,2,3
33 α-trans-bergamotene 4.6 1326 1434 1,2
34 Aromadendrene 0.3 1330 1441 1,2,3
35 α-humulene 0.8 1338 1454 1,2,3
36 allo-aromadendrene 1.1 1347 1460 1,2
37 cis-muurola-4-(14),5-diene 0.9 1365 1466 1,2
38 γ-gurjunene 0.5 1371 1477 1,2,3
39 γ-muurolene 0.8 1380 1479 1,2,3
40 Aristolochene 1.4 1391 1488 1,2
41 γ-himalachene 0.4 1396 1482 1,2
42 trans-muurola-4-(14),5-diene 2.8 1395 1493 1,2
43 cis-calamenene 0.3 1402 1529 1,2
44 δ-cadinene 0.4 1403 1523 1,2
45 10-epi-cubebol 0.1 1410 1,2
46 trans-cadina-1,4-diene 0.2 1416 1534 1,2
47 cis-muurol-5-en-4-β-ol 0.1 1435 1551 1,2
48 germacrene B 0.3 1444 1561 1,2,3
49 Spathulenol 1.0 1456 1578 1,2,3
50 cis-β—elemenone 0.4 1481 1589 1,2
51 1,10-di-epi-cubenol 1.2 1492 1619 1,2
52 1-epi-cubenol 4.8 1514 1628 1,2

Total 97.8
Monoterpene hydrocarbons 3.1
Oxygenated monoterpenes 66.4

Sesquiterpene hydrocarbons 19.5
Oxygenated sesquiterpenes 7.6

Other 1.2
* The compounds are listed according to their elution order on a HP-5MS column. a: Linear retention index on a
HP-5MS column; b: Linear retention index on a HP Innowax column; c: Identification method, 1 = linear retention
index; 2 = identification based on the comparison of mass spectra; 3 = Co-injection with standard compounds.

The study of taxonomy of BEO is quite complex because of the numerous botanical
varieties, cultivar, and chemotypes [30]. Moreover, a variability due to climatic factors
has been described by Milenković et al. (2019) [31], who demonstrated that shade-grown
basil plants have a high content of eugenol with respect to plants grown without shading
that contain more linalool than eugenol. Olugbade et al. (2017) [32], examined BEO from
Sierra Leone and Nigeria; the first was clearly identified as the methyl eugenol chemotype
(89.7%), whereas the second was the methyl chavicol (89.8%) chemotype. Moreover,
Ghasemi Pirbaoluti et al. (2017) [33], reported that the major constituents of EO extracted
from the aerial parts of Iranian O. basilicum were methyl chavicol (49.7%), linalool (10.7%),
α-cadinol (5.9%), (Z)-β-farnesene (3.8%), and 1,8-cineole (3.5%). Conversely, further studies
reported methyl chavicol or estragol as one of the main BEO constituents that instead
resulted totally absent in the BEO analyzed in the present study, even if also sweet basil,
the European type, contains both linalool and methylchavicol as the major constituents [30].
For example, linalool is the most abundant component in Serbian BEO (31.6%) followed by
methyl chavicol (23.8%) [34], whereas the BEO tested in the present study derives from
the cv. Genovese Gigante, the most used in the production of a typical Italian sauce called
“pesto” and shows linalool and eugenol as the main components [35].

3.2. BEO Antimicrobial Activity

The results reported in Table 3 show that B. thermosphacta D274, E. faecalis 226, are the
strains more sensitive to BEO respect to the two antibiotics used as control. Instead against
C. maltaromaticum 9P, C. maltaromaticum D1203, E. coli 32 and S. salivarius GM, BEO ex-
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hibits an antimicrobial activity higher than that of gentamicin but similar or lower than
tetracycline. Conversely, for E. faecalis E21 and H. alvei 53M.

Table 3. Antimicrobial activity of BEO compared to gentamicin and tetracycline *.

Scheme Gentamicin Tetracycline BEO

B. thermosphacta 7R1 18.3 ± 1.5 19.3 ± 1.2 17.3 ± 1.1
B. thermosphacta D274 6.0 ± 0.0 8.7 ± 1.2 17.7 ± 0.6 a,b

C. maltaromaticum 9P 6.0 ± 0.0 24.3 ± 1.2 11.7 ± 0.6 a

C. maltaromaticum D1203 6.0 ± 0.0 22.3 ± 0.6 20.0 ± 1.0 a

E. coli 32 14.7 ± 0.6 18.7 ± 1.2 20.7 ± 0.6 a

E. faecalis 226 6.0 ± 0.0 9.0 ± 1.0 12.7 ± 0.6 a,b

E. faecalis E21 6.0 ± 0.0 14.7 ± 0.6 11.3 ± 1.1 b

H. alvei 53M 11.7 ± 1.5 9.6 ± 0.6 11.7 ± 0.6 b

L. innocua 1770 25.3 ± 0.6 20.3 ± 1.5 16.3 ± 1.1
S. proteamaculans 20P 12.3 ± 0.6 24.3 ± 1.2 10.3 ± 0.6

S. salivarius GM 6.0 ± 0.0 18.7 ± 1.2 19.7 ± 0.6 a

S. saprophyticus 3S 24.0 ± 1.0 29.0 ± 3.6 17.7 ± 0.4
S. xylosus ES1 19.3 ± 1.2 29.3 ± 1.2 18.0 ± 1.0

* Results are the mean of three tests ± standard deviation (SD) of the inhibition zone expressed in mm of diameter;
ANOVA test vs. Gentamicin (a) or Tetracycline (b) p < 0.05.

Moreover, the data obtained from disc diffusion method, followed by measurement
of MIC, indicate that E. coli 32, S. salivarius GM, and C. maltaromaticum D1203 showed the
lower values of MIC (1.25 mg/mL, respectively) (Table 4).

Table 4. BEO minimal inhibitory concentration and minimal lethal concentration.

Strains
BEO

MIC (µL/mL) MLC (µL/mL)

C. maltaromaticum D1203 1.25 2.50
S. salivarius GM 1.25 2.50

S. saprophyticus 3S 2.50 2.50
E. coli 32 1.25 1.25

Therefore, BEO was shown to exhibit strong antimicrobial activity against all mi-
croorganisms tested, both Gram-positive and Gram-negative bacteria, in agreement with
previous investigations [36], even though Gram-positive strains seem to be more sensitive
to BEO [37–39]. Overall, the observed antimicrobial activity of BEO might be attributed
to the high contents of linalool that possesses a stronger antimicrobial activity against
Gram-positive bacteria than against Gram-negative bacteria [40,41].

3.3. BEO Microencapsulation and Antimicrobial Activity of BEOMC

BEO was successfully microencapsulated by vibration technology with a process
efficiency of about 87%. Results of size analysis of BEOMC showed a diameter range
of 120–150 µm with more represented size in the range of 140–150 µm. Gap between
nozzle size (120 µm) and BMCO size, as well as the size variability of BEOMC, is much
probably due to the complexity and interaction of equipment parameters involved, as well
explained by Chen et al. (2014) [17]. Figure 2 illustrates BEOMC optical microscopy image
immediately after the microencapsulation (panel A) and before (a) and after (b) washing
with sterile water to eliminate the oil outside the capsules, whereas Figure 3 shows the
BEOMC SEM image. Images of Figure 2 show the presence of highly light refracting
areas that likely are the droplets of BEO. Interestingly, after washing of BEOMC the
presence of these areas seems decreasing letting thinking that part of BEO droplets were
on the surface of the microcapsules before washing. On the other hand, we found, as up
reported, that about 13% of BEO were not entrapped during the microencapsulation
process. SEM image shows a smooth surface of BEOMC, in contrast to previous our
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results on alginate microcapsules containing bacterial cells [25], in which surface appeared
rough. This result suggests that the surface morphology of alginate microcapsules could
be affected by the nature of material is encapsulated. We hypothesize that materials like
bacterial cells and nisin can chemically interact with alginate promoting perturbation of
the polymer network, visible as roughness. On the contrary, components of BEO are much
less reactive towards alginate.
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The study of antimicrobial activity of BEOMC showed that the inhibitory effect
of BEO against all microorganisms tested was fully preserved. Total viable counts of
the strains tested in contact with BEOMC are reported in Figure 4. All data indicate
that the bacterial load decreased in the presence of microcapsules. More in particular,
the number of CFU/mL of E. coli 32 remained constant for the first 2 h of contact with
BEOMC, starting then to decrease and reaching a dramatic reduction after 24 h (Figure 4,
panel A). A similar behavior, even though quantitatively less marked, was observed by
testing C. maltaromaticum D1203 (Figure 4, panel B), S. xylosus ES1 (Figure 4, panel C) and
B. thermosphacta 7R1 (Figure 4, panel D). Supplementary Materials Figure S1 reports vi-
ability images of E. coli using fluorescence microscopy. Panel a of Figure S1 shows that
all cells were green-stained, and thus alive, in the absence of microparticles. In contrast,
when E. coli cells were in contact with BEOMCs, the red staining indicated the beginning of
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their viability loss after 1 and 5 h of contact (Figure S1, panel b and c, respectively) whereas,
after 24 h, the almost the entire bacterial population resulted damaged (Figure S1, panel d).
The lethal effect of BEOMCs has been attributed to the high level of linalool, able to pro-
duce membrane and cell wall damage, causing leakage of macromolecules and cell lysis.
These results are in agreement with previous studies demonstrating that BEO microen-
capsulated by spray drying decreased initial population of E. coli 32 from 5 Log CFU/mL
to 2.9 Log CFU/mL after 6 h of incubation, and that the antimicrobial effect was due to
compounds present in the EO able to alter the cytoplasmic membrane, allowing the leakage
of intracellular constituents, because of their hydrophobic characteristics [42–45].
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3.4. Preparation and Physicochemical Properties of CH-Based Films Grafted with BEOMC

CH films were prepared both in the presence and absence of BEOMC and some of
their main physicochemical features were investigated. Firstly, the presence of micro-
capsules was clearly visible into the film to the naked eye (Figure S2). Figure 5 reports
the changes observed in thickness, TS, EB, and YM of the CH films grafted with differ-
ent BEOMC concentrations. Adding 2 and 3% of BEO containing microcapsules to CH
FFS led to produce films exhibiting a significantly increased thickness (71.0 ± 0.4 and
73.0 ± 1.0, respectively), compared to that of control films (68.0 ± 0.7). The presence of
BEOMC, increasing the free volume inside the CH network and, consequently, enhancing
the distance between the CH chains into the polymeric matrix, results at the end in the
production of a relatively thicker material [46,47]. Conversely, the TS of CH film con-
taining 1, 2, and 3% of BEOMC was (13.0 ± 4.3 MPa; 10.8 ± 1.7 MPa and 10.5 ± 2.3 MPa,
respectively) and EB (23.0 ± 0.7%; 22.0 ± 5.4% and 22.0 ± 4.8%, respectively) were found
to be significantly lower in comparison with the control films were the TS and EB was
(30.5 ± 5.0 MPa and EB 73.2 ± 7.3% respectively). These results are agreement with those
recently obtained by Jang et al. (2020) with CH films containing encapsulated lemon
EO. Whereas the YM was markedly increased in the presence of 1, 2, and 3% of BEOMC
(780.0 ± 28.0 MPa; 763.0 ± 55.0 MPa and 758.0 ± 42.0 MPa, respectively) comparing to CH
film alone (11.3 ± 1.7 MPa), we concluded that the presence of microcapsules gave rise to
heterogeneous film networks with a discontinuous microstructure due to a rearrangement
of the CH chains into the matrix [47–49].
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Since the obtained BEO encapsulated materials might be used to wrap food products,
the appearance of the packaging material represents a very critical parameter for the
consumers. Thus, film opacity was evaluated by detecting the light transmission at 600 nm
through the CH films containing different amounts of BEOMCs. Figure 6 shows that film
opacity was significantly increased, more than doubling, in the films containing even only
1% (6.7 ± 0.08 mm−1) of microcapsules compared to the control samples (3.1 ± 0.07 mm−1),
confirming previous studies that have demonstrated that film transparency decreased in
all the films prepared in the presence of either nanoparticles or microcapsules [29,50,51].
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3.5. Antimicrobial Activity of CH Films Grafted with BEOMC

The antimicrobial activity of CH edible films grafted or not with microencapsulated
BEO was investigated against Gram-positive S. saprophyticus 3S and Gram-negative E. coli
32 bacteria. The results reported in Figure 7 show that CH-based films prepared in the
absence of BEOMC did not exhibit antimicrobial effects against the evaluated strains
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in comparison with the control samples. Conversely, CH films containing increasing
concentrations of BEOMC were able to significantly reduce cell viability of both strains,
films containing 3% of microcapsules being able to reduce the total initial population of
E. coli 32 by 3 Log (Figure 7, panel A) and that of S. saprophyticus 3S by 2 Log (Figure 7,
panel B). Although CH is known to possess antimicrobial activity, it was shown to be
inactive against a serials of pathogenic and spoilage bacteria [52–54], probably because of
different factors including experimental conditions (concentrations, pH, type of microorgan-
ism, and neighboring components) as well as its molecular properties (molecular weight,
degree of deacetylation, and original source) [55]. In general, however, incorporation of the
EOs conferred or enhanced antibacterial efficiency of CH films against different spoilage mi-
croorganisms and food-borne pathogens [56–58]. In this respect, Cristani et al. (2017) [59],
reported that the observed antimicrobial action can be attributed to the EO content in
terpenes that affect the permeability and other functions of the bacterial membranes.
Monoterpenes would increase the concentration of lipidic peroxides, such as hydroxyl,
alkoxyl and alkoperoxyl radicals, causing cell death. In the present study this effect could
be due to specific chemical components present in BEO [36], which could be responsible
for cell membrane disruption thereby leading to cell death.
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3.6. Cooked Ham Wrapped with BEOMC Containing CH Films

To investigate the possible preservative effect of food packaging by CH films contain-
ing BEOMC, microbiological analyses at different times of refrigerated storage of cooked
ham samples, wrapped with films containing different amounts of microcapsules, were car-
ried out. Population of enterobacteria, lactic acid bacteria, aerobic mesophilic bacteria,
and yeasts was taken into account. The results reported in Figure 8 indicate an almost
general similar trend for all microbial populations examined (Figure 8, panels A, B, C and
D). In fact, with the exception of yeast (Figure 8, panel D) resulting unaffected, the counting
of all the viable cells of both controls (unwrapped and CH film-wrapped samples) was
always higher compared to that detected, at the same time of cooked ham storage, with the
food samples wrapped by CH films containing BEOMC. More in particular, the food
wrapping with CH films containing only 1% of microcapsules was effective in reducing
microbial counts with the maximum effect observed on the aerobic mesophilic bacteria
at 8–10 days when the presence of BEOMC decreased the cell count by 3 log CFU/mL
(Figure 8, panel C). Similar results were previously obtained by using thyme and oregano
EOs [60–63].

Finally, the variation of pH value of both unwrapped and differently wrapped cooked
ham samples was investigated during the food storage. Figure 9 shows that the pH of all
cooked ham samples increased during the storage, but the pH increase observed in the
samples wrapped with CH films containing BEOMC (Figure 9) was lower than that of both
controls at all times of storage. Similar results have been reported by analyzing chicken
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thigh [64] and EO-packaged poultry meat [65]. In this respect, Silva et al. (2002) [66],
suggested that the increase in pH during food storage is related to the formation and
accumulation of amines and ammonia probably due to an increase of the lactic acid
bacteria population.
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Figure 9. pH increase in cooked ham samples unwrapped (control, C) and wrapped with films of chitosan (CH) alone or
with CH films containing different concentrations of basil essential oil microcapsules (MC) at different times of storage.
The asterisks indicate the values significantly different at p < 0.05 from those obtained with unwrapped (C) or CH film
wrapped cooked ham samples in the absence of MC.
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4. Conclusions

The present study demonstrated that BEO have a marked antimicrobial activity,
it could be attributed to its high content of linalool, both in its free form and when it
is microencapsulated, as well as the BEOMC were incorporated in CH films. Moreover,
the wrapping of cooked ham samples with CH films containing BEOMC was found to
decrease mainly the growth of aerobic mesophilic bacteria and the enhancement of food
pH during its storage. Therefore, these findings suggest that CH films containing BEOMC
might be used as preservative active packaging to enhance the safety and prolong the shelf
life of different kinds of food. However, other issues need to be addressed in future works
such as the sensorial characteristics (flavor, color, and odor).
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24 h (d), Figure S2: CH film containing microcapsules of BEO.
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