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Abstract: This paper presents the results of the design, simulation, and implementation of a virtual
vehicle. Such a process employs the Unity videogame platform and its Machine Learning-Agents
library. The virtual vehicle is implemented in Unity considering mechanisms that represent accurately
the dynamics of a real automobile, such as motor torque curve, suspension system, differential, and
anti-roll bar, among others. Intelligent agents are designed and implemented to drive the virtual
automobile, and they are trained using imitation or reinforcement. In the former method, learning
by imitation, a human expert interacts with an intelligent agent through a control interface that
simulates a real vehicle; in this way, the human expert receives motion signals and has stereoscopic
vision, among other capabilities. In learning by reinforcement, a reward function that stimulates the
intelligent agent to exert a soft control over the virtual automobile is designed. In the training stage,
the intelligent agents are introduced into a scenario that simulates a four-lane highway. In the test
stage, instead, they are located in unknown roads created based on random spline curves. Finally,
graphs of the telemetric variables are presented, which are obtained from the automobile dynamics
when the vehicle is controlled by the intelligent agents and their human counterpart, both in the
training and the test track.

Keywords: machine learning; intelligent agents; autonomous vehicle; reinforcement learning;
behavioural cloning

1. Introduction

In 1954, Farley et al. simulated a neural network on a computer, adding the notions of
weights and thresholds [1]. In 1955 McCarthy et al. organized a conference on Artificial
Intelligence (AI) in which they delivered a presentation on artificial neural network [2].
In 1958, Rosenbalt published an article that introduced the concept of perceptron, which
took the eye’s retina as a reference [3]. Since then, the advances reached through these
theories, as well as the power of the computer calculations available nowadays, allow for
conducting research and simulation oriented to the development of autonomous vehicles
in the field of artificial intelligence.

A work conducted by Pfeiffer et al. [4] focuses on planning the movement of au-
tonomous robots. The study deals with an algorithm for an individual robot to learn how
to navigate towards a target based on expert demonstrations. The learned navigation
model is transferrable not only to virtual environments but also to real, and even unknown,
settings. While imitating, the robot learns how to avoid collisions. The main disadvantage
mentioned in this study is the poor performance of the algorithm in open spaces with reflec-
tive surfaces as training was conducted using ideal conditions. The authors propose that
perhaps retraining with real data could reduce this defect. The robot used was a Kuboki
Turtle Bot that employed information from the environment –supplied by a laser range
finder sensor– and used convolutional neural networks for the planning of the trajectory to
be followed.
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Chen et al. [5] presents a study in which information is extracted from images to plan
the movement of an autonomous automobile.

From the emergence of the first videogames, programmers and scientists have com-
mitted themselves to create AI algorithms for computers to imitate and compete with their
human counterpart. For example, there are multiple chess, backgammon and go engines,
as well as RPG, MOBA, shooter games, which have defeated world champions. This has
given rise to the so-called e-sports [6–8]. In addition, some companies in this industry have
released platforms for the development of videogames, for example, Cryengine, Unreal
Engine and Unity [9].

Currently, most videogame developers are assisted by IAs in the design and evaluation
process. To use them, two characteristics are assessed: Skills and game style, in order to
quantify “how human” an IA is. This type of application is different from the common
use given to IAs, which normally compete to defeat human players. Nevertheless, testing
their training, satisfaction and/or acceptance degree before commercializing a videogame
is challenging [10–12].

Regarding autonomous vehicles, most part of the current applications are based on
a set of semantic definitions related to the tasks these vehicles need to learn and perform
in motion. Additionally, tests to measure performance quantitatively during these tasks
are implemented. These applications integrate field tests and simulated tests—which are
correlated—and whose assessment is conducted through quantitative performance indexes
for each predefined task [13–15].

Most methods and applications associated with autonomous vehicles include sensors
of different nature. This has made deep multi-modal learning popular. These autonomous
vehicles should anticipate or predict the movement of the detected objects, –such as people
or animals–, which is fundamental to avoid accidents during their trajectory. In this context,
some object detection techniques such as Faster R-CNN, One Stage Detector (OSD), Two
Stage Detector (TSD) and Single Shot Detector (SSD) are usually utilized [16–19].

2. State of Research on Intelligent Agents

The concept “Intelligent Agent” (IA) has been defined by several authors, most of
whom agree on the fact that an IA is an entity, computer system or software that perceives
its surroundings by means of sensors, and that executes actions to achieve the goals
set by a designer. Some of its characteristics are autonomy, learning capacity, reasoning,
reactive behavior, mobility social skills, and perception of its environment and goal-oriented
behavior. Besides the characteristics above, an IA is considered to exhibit other human
traits such as knowledge, intention, and emotions [9,20,21].

In 2017, Shah et al. [22] created a simulator called Airsim for testing and developing AI
algorithms in Unreal Engine, which offered realistic physical and graphical representations.
This simulator yielded good results when a flying quadrotor was simulated both in the
software and in the real world.

In the field of Machine Learning (ML), an approach widely used for IA learning is
Reinforcement Learning (RL), which originates from behavioral psychology and neuro-
science [23]. RL provides a framework for IAs to learn in the same way humans do, i.e.,
through sequential interaction with their environment and other agents. These IAs develop
decision-making sequences that maximize the reward for a future goal. Table 1 presents a
summary of RL types based on IAs, which are used in the modeling [24].
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Table 1. Summary of RL types based on IAs, which are used in the modeling [24].

Reinforcement Learning Type Description Reference

Bush-Mosteller (BM) A type of statistical learning where a predictive
function is derived from data. Bush & Mosteller (1955) 1

Learning Automata (LA)
Simple algorithm operating in a stochastic
environment where agents can improve their actions
during operation.

Narendra & Thathachar (1974) 2

Q-Learning (QL)

A policy, expressed as a matrix of values for states
and actions, is learned so an agent knows what to do
in different circumstances. It does not require a
model of the problem to be solved.
(State→Action→Reward).

Watkins (1989) 3

State→ Action→ Reward→ State→
Action (SARSA)

Extends Q-Learning by also considering the future
selected state-action. Uses a model it builds. Rummery & Niranjan (1994) 4

Temporal-Difference (TD)
Learning from experience without an environmental
model, which updates estimates before outcome is
known.

Sutton (1988) 5

1 (Bush, R.R.; Mosteller, F. Stochastic Models for Learning. John Wiley & Sons, Oxford, UK, 1955); 2 (Narendra, K.S.; Thathachar, M.A.
Learning Automata—A Survey. IEEE Transactions on Systems, Man, and Cybernetics, 1954, 4, 323–334); 3 (Watkins, C.J. Learning from
Delayed Rewards. PhD Thesis, King’s College, London, UK, 1989); 4 (Rummery, G.A.; Niranjan, M. On-Line Q-Learning Using Connectionist
Systems, Technical Report CUED/F-INFENG/TR 166. University of Cambridge, Department of Engineering, Cambridge, UK, 1994); 5 (Sutton,
R.S. Learning to Predict by the Methods of Temporal Differences. Machine Learning, 1988, 3, 9–44.).

On their part, Bennewitz et al. [25] present an approximation that considers move-
ments and ML. The authors propose a learning technique based on the collection of
trajectories that characterize typical movement patterns of people. The information to
be used, which originates from the environment, is gathered by a rangefinder laser and
grouped using the expectation maximization algorithm. This generates a Markov model
for estimating the current and future position of people, through which, for example, a
mobile robot equipped with a laser beam and a camera can predict the position of elements
in its surroundings. This approximation can be applied to the improvement of mobile
robot navigation. In these cases, a laser and a camera are used, which are two elements
frequently employed in videogames. This laser generates a beam denominated Raycast
(Raycast: Function that releases a beam with arbitrary direction and origin and returns
–among other variables– the distance from the object that is intercepting.).

Machine learning has been used in the creation of autonomous vehicles. Since con-
ducting these experiments with real automobiles could be expensive and/or dangerous,
simulators like CARLA (https://carla.org/) have been developed, which allow for the val-
idation and training of autonomous driving systems [26–37]. Other simulators like TORCS
(https://sourceforge.net/projects/torcs/) have been used with entertainment purposes,
but also as AI research platforms [38]. In this way, ML could be applied to the driving of a
motorized vehicle within a three-dimensional (3D) environment [39].

For a long time, software agents have been considered a key technology for diverse
control applications due to their operation based on distributed architectures. From this
departure point, different works have been conducted.

In Ref. [40], a negotiation-based control approach is proposed to deal with the vari-
ability within a production system, where the agents involved can operate with direct
communication and interaction.

A multiagent architecture based on the cloud and autoreactive is presented in [21].
This architecture allows the agents, clients and production entities subscribed to exchange
information in real time.

https://carla.org/
https://sourceforge.net/projects/torcs/
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In Ref. [41], a large number of Multi Agent System (MAS) patterns is compared,
which leads to the conclusion that such agents could tremendously benefit the design of
Cyber-Physical-Production-Systems (CPPS). In the same work, MAS-based production is
discussed as an efficient approach for addressing the complexity of CPPS development.

In Ref. [9], Unity has been used as a simulation environment for ML algorithms due
to its graphic capacities, physical and programming representations, and its “ML-Agents”
plug-in, which was especially created with this purpose.

In the field of manufacturing system representation, several studies have been con-
ducted using modeling languages. In this context, the automatic initialization of each
agent has been proposed as a pre-created knowledge basis based on semantic web tech-
nologies [42]. This approach allows for verifications of specification coherence and a more
efficient communication centered on the aspects that require real time management.

In Ref. [43], manufacturing systems based on scalable and flexible agents are presented,
whose production plan is created by autonomous agents that exploit a semantic description
of web-based artifacts.

In another vein, in Ref. [44] an ontology-based model is proposed for the abstraction
of devices and components as a way of allowing their interaction and achieving a plug and
produce function.

3. Problem to Be Addressed

If there autonomous vehicles existed, passengers could be transported from A to B
without human intervention. For years, aircraft navigation systems have had automatic
pilot devices and can fly thousands of miles on their own, albeit always supervised by hu-
mans through a pre-set course. However, to date, the implementation of semi-automation
in motorized terrestrial vehicles, like automobiles, has been very complex. Additionally,
experiments on real vehicles, whose mass and potential energy are high, are not an easy
task either, making the process costly and risky. Nevertheless, thanks to the advent of 3D
engines and physics solvers, a virtual vehicle with a behavior similar to that of its real
counterpart was created. Therefore, if the simulation of a virtual vehicle with an AI system
are adequately combined, a vehicle could be controlled autonomously in the real world.

In this paper, the design, simulation, training, and implementation of a virtual au-
tomobile programmed in C# language with its own codes is presented. This brings the
advantage of having access to simulation data and, in turn, being able to command the
physical parameters of the vehicle. The techniques explored in this study are Imitation
Learning (IL) and RL.

IL is a method that feeds from expert demonstrations [45,46]. Therefore, in this paper,
the design and implementation of a movement platform with 2 Degrees of Freedom (DoF),
which allows for emulating the main controls of a vehicle, are also presented. In this way,
the human expert has a steering wheel, stereoscopic vision, and pedals, among other
elements. Conversely, RL requires the adequate tailoring of a reward function, which
encourages the IA to make the best decisions in order to obtain the best possible gain [46].

An IA can be trained using a data set from which general rules can be created. After
training, the IA will be able to deal with similar problems successfully. Therefore, following
these guidelines, this paper models a close loop lane with traffic barriers using the Blender
software, in order to provide a training track. Conversely, for the trial stage, which uses
spline curves, a script is implemented that generates a road with a transversal section
identical to the test track, but with a random trajectory.

4. Material and Methods

The design and implementation of intelligent agent training systems for virtual vehi-
cles addressed in this work could be classified as a physics-based motion study in which
the position, speed, and acceleration of a virtual vehicle are governed by Newton’s laws.
A virtual vehicle is implemented considering mechanisms that represent accurately the
dynamics of a real automobile, such as motor torque curve, suspension system, differential,
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and anti-roll bar, among others. A control interface for the automobile movement is de-
signed and implemented by building a 2-DoF physical platform. This interface is used by a
human expert in the case of the IA trained by imitation. The platform is equipped with a
virtual reality system, movement cancelling and control commands, among other elements.
To drive this automobile, IAs are designed and implemented, and then trained by IL and
RL, which also enables the comparison of different driving methods.

To achieve this, the following steps are presented below:

1. An application with high-quality graphic capacities, which is also able to provide
physical representations realistic and suitable for the simulation of a real automobile,
is created. In this way, an IA could be trained and tested when taking over such an
automobile.

2. A movement platform with control commands and Virtual Reality (VR) adequately
linked to the same was designed to act as a human control interface. This platform pro-
vides the user with stereoscopic vision, a steering wheel, pedals, and movement signs.

3. Both training and test tracks are developed.
4. Once the IAs are trained, their performances are compared to that of the human

expert on both tracks.

4.1. Analysis and Selection of Learning Platforms

An analysis of the main learning platforms currently being researched in the AI field
is presented below:

1. Arcade Learning Environment (ALE) [47]: A simple framework oriented to objects
that allows researchers to develop IA for Atari 2600 games. However, it lacks realistic
physical representations, and its graphs are over-simplistic.

2. DeepMind Lab [48]: A 3D game platform in the first person, designed for AI and
ML system researchers. It can be used to study how autonomous artificial agents
learn complex tasks in larger realms, partly observed and visually diverse. DeepMind
Lab uses the graphic engine of the videogame Quake III and lacks realistic physical
representations.

3. Project Malmo [49]: A platform designed for research and experiments on AI. It is based
on the videogame Minecraft, has polygonal graphs and poor graphic representations.

4. Unity [9]: Videogame engine that has a Graphic User Interface (GUI). It provides
rendering of high-quality graphs (close to photo realistic), contains physical represen-
tations of Nvidia PhysX (Nvidia PhysX is a proprietary mid-layer software engine
and development kit designed to perform very complex physical calculations. PhysX
is a proprietary “middleware” software layer engine and development kit designed
to carry out very complex physical calculations. https://www.ecured.cu/PhysX) and
supports scripts in C# programming language. In relation to its simulation potential,
the calculations conducted by Unity are independent from rendered photograms and
the simulation parameters can be changed during use. Additionally, this software has
a free version that offers most of the features in the paid version.

5. UE4: High quality videogame engine with realistic graphics. It has a plug-in for
TensorFlow. However, both user documentation and quantity of demos offered by
the program are poor compared to Unity. Therefore, after the analysis of the main
learning platforms currently in use on AI research, Unity was selected for the design
and implementation of the development environment presented in this paper, due to
its outstanding features.

4.2. Advantages of the Proposed Research

The main advantages of the proposed research are presented in Table 2.

https://www.ecured.cu/PhysX
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Table 2. Advantages of the proposed research.

Features

Development of open programming codes.
Promotion of the use of free software, such as: Unity3d and its Unity ML-Agents Toolkit.
Supports virtual reality.
The user can train IAs using the driving simulator.
Democratizes Access to ML research.
The system proposed, as an open system, would support the incorporation of new algorithms, the creation of training environments
for other types of robots and/or learning paradigms.

5. Design of the Virtual Vehicle

The virtual vehicle requires to represent the dynamic behavior or a real automobile
accurately. Table 3 shows the design characteristics considered [50]:

Table 3. Vehicle components and their design features.

Component Design Characteristics

Traction and suspension

Front-wheel drive.
Suspension with a rigid axle in the front and the rear.
Anti-roll bar in the front axle.
Ackerman steering geometry and differential.

Weight 1000-kg mass.

Engine 100 HP maximum power at 5500 rpm.
134 Nm maximum torque at 3500 rpm (includes look up table with torque curve).

Transmission Automatic 5 speed transmission.

Controls
Acceleration pedal.
Brake pedal.
Steering wheel.

From these considerations, the virtual vehicle is designed using the following objects
and physical components offered by Unity presented below in Table 4:

Table 4. Objects and physical components.

Unity Objects Components

Rigid bodies Mass.
Joints Hinge and ball joints.
Colliders Box and capsule colliders.

Figures 1 and 2 show the virtual vehicle designed, with the joints marked by yellow
arrows and the colliders structures in green. Figure 3 presents the vehicle with an over-
lapped rendered avatar, which was modeled using Blender. Additionally, a path that has
an asphalt texture is created. The scene presents shadows caused by the sunlight and a
skybox that simulates a clear sky. The avatar allows for visualizing more realistically the
virtual automobile on the road, but without interacting with the dynamic characteristics of
the vehicle.
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5.1. Control Interface

The control interface of the vehicle’s movement corresponds to a physical platform
equipped with 2-DoF, which comprises of the following components shown in Table 5:
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Table 5. Simulator components.

Components Detail

Actuators

Two direct current electric motors.
12 V; 1350 W peak, and 28:1 gear box equipped with two optical quadrature encoders
–one for each motor– that estimate the turning angle of the motors.
Two Pololu VNH519 H bridges of 12 V and 30 A, respectively, model.
Driven from a 12 V and 60 A power source.

Microcontrollers
Two Arduino Uno development boards; the first one estimates the rotation angle of both
motors by means of interruptions via hardware and the second one to achieve the serial
communication and control of the two H bridges by PWM signals.

Steering wheel and pedals Logitech g27 steering wheel.

Virtual Reality System HTC VIVE Pro Virtual Reality System.
Headset and two hand controllers.

Figure 4 shows the control interface for the movement of the vehicle implemented. It
may be observed how this physical movement platform is being employed in the training
of IA. Movement cancelling is achieved via software, using the rotation of one of the hand
controllers coupled to the movement physical platform.
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5.2. Training Track

The IAs are trained in the track shown in Figure 5. This track has been designed with
an “8” shape and its length is 2000 m, has four lanes with a width of 15 m in total, a slope
whose difference in height is 20.1 m, and backstops.
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5.3. Test Track

The test tracks are designed using a script that generates a soft trajectory from the
sections of cubic spline curves. Then, a two-dimension profile is extruded through these
trajectories, thereby creating a road. The splines designed with random control points give
the script enough flexibility to create multiple geometries in the highways. In particular, this
research work considers 64 sections of splines with control points that allow for generating
tracks where the IAs are tested. Figure 6 shows that the road is not uniform and that
has backstops.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 25 
 

 

 
Figure 5. Training track. 

5.3. Test Track 
The test tracks are designed using a script that generates a soft trajectory from the 

sections of cubic spline curves. Then, a two-dimension profile is extruded through these 
trajectories, thereby creating a road. The splines designed with random control points give 
the script enough flexibility to create multiple geometries in the highways. In particular, 
this research work considers 64 sections of splines with control points that allow for gen-
erating tracks where the IAs are tested. Figure 6 shows that the road is not uniform and 
that has backstops. 

 
Figure 6. Road generated with cubic splines and random control points. 

6. Theory/Calculation 
The two experiments conducted for the IA to learn are an algorithm for learning by 

reinforcement ‒called Proximal Policies Optimization (PPO)‒ and learning by imitation, 
using the Behavioral Cloning (BC) algorithm [51,52]. 

The IA has two action vectors: Torque and steering, and perceives its environment 
through one, or a combination of the following techniques: Distance toward obstacles 
(roadside barriers) by means of raycasting, speed, and acceleration. 

Evidently, the IA has not access to the road map, and the rewards or penalties in the 
case of RL would be dependent on at least the following elements: Avoiding high g (9.81 
m/s2) forces, avoiding collisions, and not being detained. 

Figure 6. Road generated with cubic splines and random control points.

6. Theory/Calculation

The two experiments conducted for the IA to learn are an algorithm for learning by
reinforcement -called Proximal Policies Optimization (PPO)- and learning by imitation,
using the Behavioral Cloning (BC) algorithm [51,52].
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The IA has two action vectors: Torque and steering, and perceives its environment
through one, or a combination of the following techniques: Distance toward obstacles
(roadside barriers) by means of raycasting, speed, and acceleration.

Evidently, the IA has not access to the road map, and the rewards or penalties in
the case of RL would be dependent on at least the following elements: Avoiding high g
(9.81 m/s2) forces, avoiding collisions, and not being detained.

6.1. Implementation of Learning by Reinforcement and Imitation

RL has three fundamental elements: observation of the environment, the IA’s actions,
and the reward or prize received by the IA. However, IL methods do not involve any
reward or prize. The next subsection deals with how the RL and IL for the vehicle are
designed and implemented.

6.1.1. Observation Vectors

It must be noted that in this study, IAs do not have any type of artificial vision of
their environment. Nevertheless, the variables that the IA senses for its environment are
constituted by 23 continuous vectors [-1, 1]. These observation vectors are: 10 remote field
Raycast, 10 close field Raycast, normal speed, tangential speed, and acceleration.

Figure 7 shows the virtual vehicle on the training track. The sensing between the
vehicle and its remote and close surroundings can be observed thanks to the distance
detector rays the virtual vehicle projects.
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Figure 7. Virtual automobile deploying its distance detection rays on the training track.

According to the classification presented in Li et al. [18], IAs could be assessed based
on two criteria: Scenario-based testing and functionality-based testing. The first one judges
the degree of intelligence thanks to which the IA reaches or not specific objectives, for
example, whether an IA achieves circulation without any collision, or detecting a traffic sign.
The second criterion establishes that a completely intelligent vehicle is one that executes all
the functions that a human expert usually performs, such as visually recognizing vehicles,
signs, pedestrians, or animals. Therefore, considering this classification, the IAs trained in
this research would be closer to being evaluated according to their functionality, which is
understood as the capacity of controlling the speed and direction of the virtual automobile
in a way similar to a human expert. However, as presented by Li et al. [13], the assessment
of the performance of the trained IAs should also be encompassed by a subjective appraisal,
for example, a human could perfectly evaluate the quality of an IA in driving a car by
simply observing the movement, maneuvers, and telemetric statistics that the IA generates.

6.1.2. Reward Function

The mathematical-logical functions that assess the performance of IAs trained by
reinforcement to generate new behaviors, reinforcing or punishing the previous actions,
are designed based on the criteria shown in Table 6:
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Table 6. Design criteria.

Feature Detail

Distance of the virtual automobile from the road barriers Punishment for the virtual automobile performance when this is too close to the
road barriers.

Virtual automobile speed
Reward if speed is positive.
Reward if speed is within a specific interval.
Punishment if speed is negative.

Virtual automobile acceleration Punishment for positive and negative acceleration.
Collisions Punishment if the automobile collides with the road barriers.
Steering angles Punishment if the virtual automobile is not at the left of the track.

Mathematically speaking, each of these criteria are implemented by means of the
following functions,

Rdistance= −
20

∑
r=1

0.5
dr

(1)

Rspeed=


−0.1 · f i f v < 0

2 · f i f v > 0
v · f i f 2 < v < 12

0.1 · f i f 12 < v < 27

(2)

Rcollision = −0.1 · f (3)

Racceleration = −0.1 · f · a (4)

Rsteeringangle= −0.01 · steering2 (5)

where R represents the reward; the sub-indexes represent distance, speed, collision, ac-
celeration, and steering angles, respectively; dr represents the distance perceived by each
detector ray in meters; v represents the tangential speed of the virtual automobile, in m/s;
a represents acceleration, in m/s2; steering angle is the rotational angle, in degrees, reached
by the steering wheel and the parameter f represents a dimensionless factor that allows
for adjusting gains. In the experiment, a factor f = 0.1 is selected so the award function is
defined for each step as:

R = Rdistance + Rspeed+Racceleration+Rsteering angle (6)

Based on these criteria, the virtual vehicle can circulate at a safe distance, respecting
the road barriers; moving at a constant and positive speed as long as possible; avoiding
collisions and driving in a straight line most of the time. The following algorithm shows
the programming of these criteria.

Algorithm 1 Award accumulated in each IA’s observation-action cycle

for i = 1:20
if ray[i].hit = true
Add reward(−0.5/ray[i].distance);
end
end
if velocity ≤ 0
AddReward(−0.1 · f );
if velocity > 0
AddReward(2 · f );
if 2 < velocity < 12
AddReward(velocity · f );
if 12 < velocity ≤ 27
AddReward(0.1 · f );
AddReward(−0.1 · acceleration);
AddReward(−0.01 · steer · steer);
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6.1.3. Action Vectors

Action vectors define how an IA reacts to stimuli, and they are designed based on
the following considerations: Steering, where positive angles imply a turn to the right
and negative angles imply a turn to the left; and torque, where positive torque means
acceleration and negative torque means brake.

The PPO and BC training methods are configured using numerical sets called hy-
perparameters. These values include both the characteristics of the neural networks to
be trained and the behavior of the algorithm during its convergence process. Below, the
definition of the hyperparameters used are presented in Table 7:

Table 7. Hyperparameters and their descriptions.

Hyperparameter Description

Batch size Number of experiences within each iteration of the gradient descent. This number is expected to be a fraction
of the buffer size.

Beta Force with which entropy stabilizes. Entropy causes random policies through which the IA explores the action
space during training.

Buffer size Number of experiences gathered before updating the random policy model that allows for the learning of the IA.

Epsilon Acceptable divergence threshold –while the gradient descent is being updated– between new and old random
policies. This threshold allows for determining how fast the random policy model evolves during IA training.

Gamma Discount factor for future rewards. This factor allows for determining whether the agent should value the
current gains or worry about potential future rewards.

Hidden units Number of units in the hidden layer of the neural network.

Lambda

Factor used to calculate the General Advantage Estimator (GAE). This factor allows for determining –after
calculating a new value estimation– to what extent the IA is dependent on its previous value estimation
compared to the new estimation. The IA could trust more in the previous estimation, or more in the rewards
received from its environment (corresponding to the new value estimation).

Learning rate Initial learning rate from the gradient descent. During the initial learning of the IA, this rate represents the
weight of each update stage.

Max steps Number of steps in the IA training process.
Num epoch Number of iterations, through the experience buffer, when conducting the gradient descent optimization.
Num layers Number of hidden layers in the neural network.
Time horizon Number of experience steps gathered before sending them to the experience buffer.

ML-Agents gives the user the possibility of building these hyperparameters, which are
structured in two dedicated text files based on the IA training method (PPO or BC). In the
training phase, the user can modify these hyperparameters depending on IA behavior. In
this paper, for PPO and BC, the hyperparameters specified in Tables 8 and 9 are employed.

Table 8. Configuration hyperparameters for the IA trained by reinforcement through the PPO
algorithm.

Trainer PPO

Batch size 16
Beta 0.01

Buffer size 256
Epsilon 0.15
Gamma 0.9

Hidden units 64
Lambda 0.9

Learning rate 5 × 10−4

Max steps 10 × 104

Num epoch 10
Num layers 3

Time horizon 4
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Table 9. Configuration hyperparameters for the IA trained by reinforcement through the BC algorithm.

Trainer BC (Online) 1

Batch size 16
Hidden units 128
Learning rate 5 × 10−5

Max steps 5 × 105

Batches per epoch 2
Num layers 5

Time horizon 2
1 Online emphasizes that learning is conducted in real time, that is to say, the IA and the human expert circulate
on the training track at the same time.

To assess the performance of both IA after training, the data generated during the
virtual automobile’s movement are recorded as a comparative tool. By means of these
data, both the control signals and the dynamic performance of the vehicle are numerically
identified. The next section specifies the telemetric data collected.

7. Results

This section presents the comparison of the telemetric results of the variables repre-
senting the real vehicle when this circulates on both the training and the test tracks. For
each execution, the data set to be compared is registered on a list. To this end, a script is
designed, which allows for exporting all these data in a simple text file. By means of a
calculation table, the information to be delivered can be processed at the same time as a set
of graphs that show the evolution of the automobile variables:

• Gas: A positive torque –representing how open or closed is the flow of fuel to the
motor– is obtained for positive values, which enables the vehicle to speed up. Instead,
negative values imply that the automobile activates its brakes.

• Steering: This angle allows for controlling the automobile’s steering wheel. Positive
values translate into turns to the right, while negative ones indicate turns to the left.

• Lateral acceleration: This acceleration is the result of variation in the direction angle.
• Longitudinal acceleration: This acceleration is the result of gas variation.
• RPM: Number of turns the motor crankshaft conducts per minute.
• Instant rapidity: The speed vector tangential to the automobile trajectory.
• Gear: Number of gears used by the automobile transmission. The vehicle considered

has five gears in total.

Regarding the training time of IAs, this varies greatly depending on the method
used. In the case of the PPO algorithm, the training time is 10 h approximately, processing
100,000 steps at a speed 10 to 20 times the real time. Conversely, the BC method takes only
some minutes to imitate the human expert. All the physical calculations of the simulations
are renderized in a fixed 5 ms interval.

7.1. Case 1: Telemetry on the Training Track

Telemetric data from both IAs (RL and IL), as well as the human expert, driving the
automobile on the training track were obtained for this case. These data are presented by
means of graphs, considering a time interval of 240 s as it is the approximate time for an
automobile to complete, at least, one lap in a test track. Each sample is captured with a
sampling frequency of 10 Hz. The first experimental results show the presence of jitter
in the torque and direction controls of the IA trained by reinforcement. To soften this
behavior, a moving average filter is designed and employed, thereby improving the results
for direction control but not for torque control. Therefore, the graphs below consider a
filter in the direction control for the IA trained by reinforcement. In Figures 8–11, the metric
estimators of the automobile can be observed. In the training of IA by RL a behavior with
noise both in the torque and direction controls indicates that the automobile suffers small
vibrations during its trajectory, which is reflected clearly in its net acceleration. Conversely,
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training IA by BC, the torque and direction controls exhibit a more refined behavior similar
to that of a human expert.
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Figure 11. Case 1. Automobile’s revolutions per minute and gear number.

Figure 12 presents a histogram of the net acceleration distribution during the 240 s
of test, grouped in 200 intervals with a size equal to 0.1 m/s2. This histogram allows for
observing the frequency of all 2400 samples captured for both the IAs and the human
expert. In addition, the IAs display sporadic accelerations that surpass 7 m/s2 more than
once. Table 10 presents a summary of Case 1.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 25 
 

 

In addition, the IAs display sporadic accelerations that surpass 7 m/s2 more than once. 
Table 10 presents a summary of Case 1. 

 
Figure 12. Case 1. Net acceleration histogram for training track. 

Table 10. Case 1. Mean speed and statistics derived from acceleration of IAs and human expert on 
the training track. 

Statistics/Actor IA IL IA RL Human 
Mean speed (m/s) 11.22 9.75 12.8 

Effective acceleration (m/s2) 0.84 0.55 0.63 
Abs(a) mode, bin = 0.1 (m/s2) 0.1 0.1 0.2 
Abs(a) statistical frequency 1.012 970 369 

Abs(a) median (m/s2) 0.12 0.16 0.52 
Abs(a) standard deviation (m/s2) 2.44 1.53 1.51 

Abs(a) maximum (m/s2) 15.7 14.9 6.5 
N over 6 (m/s2) 123 35 13 

The RPM and gear values that complement the other dynamic variables of the vehicle 
show the consistency of the results. This is because, for example, when an automobile 
requires higher torque (in positive slopes), gears are lowered so RPMs increase. However, 
in straight trajectories (without positive slopes), there is a tendency to use the fifth gear. 

7.2. Case 2: Telemetry on the Test Track 
In this case, telemetric data for both IA (RL and IL) were employed when they were 

driving the automobile on the test tracks. It should be noted that the test tracks are not the 
same for RL and IL, since these have been created based on the parameters that enable 
some randomness in their morphologies, in order to represent in the most realistic way 
the infinite possibilities of vehicle track designs. Nevertheless, obviously, a similar level 
of morphological difficulty is maintained between the tracks to be used for both IAs. The 
telemetric data considered are presented through graphs, taking a time interval of 60 s, 
although for statistical calculations 240 s are taken into account. Each sample is captured 
with a sample frequency of 10 Hz. Figures 13–16 present the metric estimators of the ve-
hicle. Table 11 presents a summary of Case 2.  

Figure 12. Case 1. Net acceleration histogram for training track.



Sensors 2021, 21, 492 17 of 25

Table 10. Case 1. Mean speed and statistics derived from acceleration of IAs and human expert on
the training track.

Statistics/Actor IA IL IA RL Human

Mean speed (m/s) 11.22 9.75 12.8
Effective acceleration (m/s2) 0.84 0.55 0.63

Abs(a) mode, bin = 0.1 (m/s2) 0.1 0.1 0.2
Abs(a) statistical frequency 1.012 970 369

Abs(a) median (m/s2) 0.12 0.16 0.52
Abs(a) standard deviation (m/s2) 2.44 1.53 1.51

Abs(a) maximum (m/s2) 15.7 14.9 6.5
N over 6 (m/s2) 123 35 13

The RPM and gear values that complement the other dynamic variables of the vehicle
show the consistency of the results. This is because, for example, when an automobile
requires higher torque (in positive slopes), gears are lowered so RPMs increase. However,
in straight trajectories (without positive slopes), there is a tendency to use the fifth gear.

7.2. Case 2: Telemetry on the Test Track

In this case, telemetric data for both IA (RL and IL) were employed when they were
driving the automobile on the test tracks. It should be noted that the test tracks are not the
same for RL and IL, since these have been created based on the parameters that enable
some randomness in their morphologies, in order to represent in the most realistic way
the infinite possibilities of vehicle track designs. Nevertheless, obviously, a similar level
of morphological difficulty is maintained between the tracks to be used for both IAs. The
telemetric data considered are presented through graphs, taking a time interval of 60 s,
although for statistical calculations 240 s are taken into account. Each sample is captured
with a sample frequency of 10 Hz. Figures 13–16 present the metric estimators of the
vehicle. Table 11 presents a summary of Case 2.
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Table 11. Case 2. Mean speed and statistics derived from net acceleration of IAs on the test track.

Statistics/Actor IA IL IA RL

Mean speed (m/s) 10.44 10.84
Effective acceleration (m/s2) 0.84 0.79

Abs(a) mode, bin = 0.1 (m/s2) 0.5 0.3
Abs(a) statistical frequency 246 247

Abs(a) median (m/s2) 1.09 0.77
Abs(a) standard deviation (m/s2) 2.22 2.06

Abs(a) maximum (m/s2) 18.7 56.4 1

N over 6 (m/s2) 66 74
1 This high value originates from some glitch in the physics of Unity. No collisions were observed during the
test stage.

8. Discussion
8.1. Case 1: Telemetry on the Training Track

In general, the human counterpart achieves a more precise global control of the
automobile. This outcome is attributed to the fact that the human expert has several
practice minutes before developing the skill, which may be seen in the graphs obtained. It
must be noted that its net acceleration in the moments of highest stress oscillates between
2 m/s2 and 6 m/s2. In fact, in the routes “curve to the right ascending and then descending”
(at second 50 and 234, respectively), and “curve to the left ascending and then descending”
(at second 120), net accelerations present values within that range.

The IA trained by imitation loses both direction and torque control more often than
the IA trained by reinforcement. This occurs with both track curves at seconds 53 and 140,
approximately. Nevertheless, in the straight routes on the tracks no significant differences
are appreciated since both the AIs and the human expert have an adequate command of
the automobile.

As for instant rapidity, the IA trained by reinforcement has a smooth performance
close to the speed of maximum reward (around 12 m/s) when driving in straight segments.
Conversely, the IA trained by imitation tends to be more reckless, reaching speeds higher
but less stable than those exhibited by the IA trained by reinforcement. On his part, the
human expert achieves a more average speed, in such a way that in 240 s he makes 1.25 laps
in the circuit approximately. In the training of IA by RL, on average, an absolute acceleration
lower than in the training of IA by BC is observed, with an effective acceleration value of
0.55 m/s2 and 0.84 m/s2, respectively. However, the human expert achieves 0.63 m/s2 in
that same circuit.
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8.2. Case 2: Telemetry on Test Tracks

During IA training by RL, a lower absolute acceleration may be seen on average than
in the training by BC, with an effective acceleration value of 0.79 m/s2 and 0.89 m/s2,
respectively. Regarding mean rapidity, the IA trained by BC reaches 10.44 m/s, while the
IA trained by RL achieves 10.84 m/s.

Figure 17 contains a histogram with the distribution of net acceleration during the
240 s of tests, grouped in 200 intervals with a size of 0.1 m/s. These histograms show the
occurrence frequency of each of the 2400 samples captured for the two IAs. Again, more
than once, the IAs present sporadic accelerations that exceed 7 m/s2 along the tests.
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From a functional point of view, it can be asserted that both IAs are components
and have enough AI to control the virtual vehicle both in terms of speed and direction
in the straight segments. In the zones with curves and slopes, although the IAs survive
and manage to complete both tracks (training and test) without colliding, the quality of
the control exerted decreases to the extent of presenting a behavior far from the control
executed by a human expert. Additionally, considering the difficulty-based criterion on the
scenario that simulates a four-lane highway and specifically assessing direction, torque,
and quantity of collisions, the IAs are competent for all these requirements separately.

9. Conclusions and Future Work

This work presented the design, simulation and implementation of a virtual auto-
mobile equipped with mechanisms that represent real components, such as motor torque
curve, suspension system, differential, and anti-roll bar. To achieve this, the video platform
Unity and the ML-Agents library were used. A control interface for the automobile move-
ment was designed and implemented by building a 2-DoF physical platform. This interface
was used by a human expert in the case of the IA trained by imitation. The platform
was equipped with a virtual reality system, movement cancelling and control commands,
among other elements. To drive this automobile, first IAs were designed and implemented,
and then trained by IL and RL, which also enabled the comparison of different driving
methods. A training environment for the IA was built in Unity with capacity to control the
automobile by taking 23 input data and performing two actions as output. Regarding the
IAs performance on the training track, it is concluded that the IA trained by reinforcement
presents the lowest effective acceleration, surpassing even the human expert. In the case of
the IA trained by imitation, this exhibits a performance below its counterpart trained by
reinforcement but surpasses it in mean speed by 18%. This is due to the reward function
implemented, which compels the IA trained by reinforcement to seek those policies that
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ensure its subsistence in the highway, avoiding high g forces and collisions, among other
elements. However, in contrast, this IA has a mean speed lower than the three IAs actors
considered. Occasionally, both IAs generate transient accelerations of large amplitude and
short duration, which even reach values above 1 g. The movement of a human being in a
vehicle with these accelerations would not be comfortable. However, the human expert that
controls the virtual automobile through the movement simulator did not generate these
transient accelerations. During the test phase, both IAs demonstrated being competent in
the control of the automobile, circulating without difficulties on an unknown track for more
than 4 min. On the other hand, net effective acceleration increased by almost 6% for the IA
trained by imitation, and by 43% for the IA trained by reinforcement. Additionally, both
IAs presented an increase in abrupt accelerations, although from a practical perspective,
this would not imply a disadvantage necessarily because, for example, in an unmanned or
an exploration vehicle such accelerations are discarded. Therefore, it is concluded that IAs
were successfully trained and, thus, they can control a virtual automobile.

In this research, microcontroller programming codes were used to control the robo-
tized platform implemented, scripts for handling and generating 3D objects, serial commu-
nication without latency and VR technologies were also designed integrated and simulated.
The computer simulations for the automobile were conducted with a very realistic physical
representation thanks to an adequate analysis and synthesis of basic components such as
curve toque of an Otto cycle motor, suspension system and anti-roll bar.

In relation to the review of current research on autonomous vehicles and its associated
algorithms, it can be asserted that an advantage of the method proposed in this work is
that IAs are effectively trained through a simulation that includes sensors similar to those
of real vehicles. In addition, while the virtual vehicle was stopped, it was started by the
IAs as a consequence of the environment stimuli. In addition, being able to accelerate the
simulation time and of visualizing the progress during the training stage allow for refining
the configuration of the hyperparameters and the coefficients of the reward function.

Using a human control interface like the one considered in this work opens the possi-
bility to study algorithms for generating reward functions based on expert demonstrations.

Given the flexibility offered by intelligent agent training systems for virtual vehicles
developed in this work, any future study or implementation in such systems could be
tested from both the AI and a functional perspective, comparing the results in terms of
the performance of human experts. Therefore, the results in this work can be extended
to several contexts related to machine learning. However, as specific future research, it is
planned to adapt the IAs designed to interact with a real industrial or mobile robot.

An explanatory video on the design and implementation of intelligent agent training
systems for virtual vehicles developed in this work can be found in the Supplementary
Materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-822
0/21/2/492/s1, Video S1: Explanatory video on the design and implementation of intelligent agent
training systems for virtual vehicles.
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Abbreviations

Initials Meaning
ALE Arcade Learning Environment
AI Artificial Intelligence
BC Behavioral Cloning
BM Bush-Mosteller
CPPS Cyber-Physical-Production-System
DoF Degrees of Freedom
GAE General Advantage Estimator
GUI Graphic User Interface
IA Intelligent Agent
IL Imitation Learning
QL Q-Learning
LA Learning Automata
ML Machine Learning
MAS Multi Agent System
OSD One Stage Detector
PPO Proximal Policy Optimization
RL Reinforcement Learning
SSD Single Shot Detector
SARSA State-Action-Reward-State-Action
TD Temporal-Difference
TORCS The Open Racing Car Simulator
TSD Two Stage Detector
VR Virtual Reality
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