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Abstract

Motivation: Oxford Nanopore technologies (ONT) add miniaturization and real time to high-throughput sequencing.
All available software for ONT data analytics run on cloud/clusters or personal computers. Instead, a linchpin to true
portability is software that works on mobile devices of internet connections. Smartphones’ and tablets’ chipset/
memory/operating systems differ from desktop computers, but software can be recompiled. We sought to under-
stand how portable current ONT analysis methods are.

Results: Several tools, from base-calling to genome assembly, were ported and benchmarked on an Android
smartphone. Out of 23 programs, 11 succeeded. Recompilation failures included lack of standard headers and
unsupported instruction sets. Only DSK, BCALM2 and Kraken were able to process files up to 16 GB, with linearly
scaling CPU-times. However, peak CPU temperatures were high. In conclusion, the portability scenario is not favor-
able. Given the fast market growth, attention of developers to ARM chipsets and Android/iOS is warranted, as well
as initiatives to implement mobile-specific libraries.

Availability and implementation: The source code is freely available at: https://github.com/marco-oliva/portable-
nanopore-analytics.

Contact: marco.oliva@ufl.edu or m.prosperi@ufl.edu

1 Introduction

Third-generation DNA/RNA sequencing added miniaturization
and portability to cost-effective, high-throughput data yield of the
second-generation sequencers, e.g. Illumina or Ion Torrent (Jain
et al., 2016; Low and Tammi, 2017). For example, Oxford
Nanopore technologies (ONT) include the MinION, which weighs
90 g and measures 10�3�2 cm. MinION’s throughput ranges
from a few to 20 GB, sequence read length ranges from thousands
to hundred thousand of nucleotide bases, and many sequencing
kits complete in <1 h (Ma et al., 2017). Given this size, MinION
is well-suited for in field applications and mobile labs. Proof-of-
concept studies showed how MinION can be used to detect
pathogens with rapid turnaround time, e.g. Ebola or Zika (Faria
et al., 2016; Hoenen et al., 2016), enabling real-time diagnostics
and public health interventions, such as food safety monitoring or
water contamination testing. However, while a number of com-
mercial and open-source software are available for ONT data ana-
lysis (de Lannoy et al., 2017), all data processing happens on the
cloud, high-performance computing cluster or powerful desktops/
laptops, where the analysis is performed. Hence, there is no soft-
ware built to only use computing resources (RAM, external disk,
CPU) available on portable devices, e.g. smartphones and tablets.
These devices have different chipset/memory architectures than

personal computers or servers, and different operating systems,
but in principle existing software could be recompiled to run on
such devices. This lack of ONT analytics software that works on
a mobile device independently from a wireless connection is a
shortcoming to enable true portability. To make an example,
MinION could be employed to test for water contamination, e.g.
cholera, in a disaster area with power and network outages, or in
extreme environments, e.g. space missions (Castro-Wallace et al.,
2017). In these settings, where wireless connection is not available
or apt to send a process several GB of data over the cloud, even a
laptop may not be the preferred choice given weight (e.g. a re-
searcher carrying a backpack with all mobile equipment), power
restrictions (backup batteries) and ergonomic needs (swift disinfec-
tion of surfaces, touchscreens). In addition, significant improve-
ments in data structures and algorithms have enabled reasonably
large-sized datasets to be analyzed and assembled with small
amounts of memory and external disk, making the analysis theor-
etically possible on a portable device (Conway and Bromage,
2011; Milicchio and Prosperi, 2017; Muggli et al., 2019;
Nagarajan and Pop, 2013; Pandey et al., 2018; Simpson and
Durbin, 2012). In this article, we identified a number of key steps
in the analysis of sequence data—from base-calling to genome as-
sembly—and the corresponding software methods built specifically
for ONT, recompiled them for mobile devices and benchmarked
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their performance on smartphones. We chose smartphones for
testing because they are architecturally identical to tablets, yet
much handier and lighter. Our results were somewhat surprising
in that although there are methods specifically designed for ONT
data, they are not capable of running on a portable device. Only
11 out of the 23 methods studied were able to be successfully
recompiled and ported and only 3 of the remaining methods were
able to scale to reasonably sized dataset.

2 Materials and methods

Analytic pipelines for high-throughput sequence data typically use some
combination of base-calling, error correction, k-mer counting, mapping
to a reference genome and de novo genome assembly (Goodwin et al.,
2016). We briefly discuss these steps, and note that, we tested tools that
fall into each of these four categories. Base-calling uses the signal pro-
duced by the sequencer to determine the nucleotide sequence correspond-
ing to a genome fragment. Next, all unique k-length subsequences (k-
mers) and their quantity are identified for a set of sequence reads. These
k-mers are not useful per se, but are crucial for many other analytic steps,
from read mapping and species annotation to genome assembly. For in-
stance, de novo assemblers based on the de Bruijn graph construct a
directed edge for each unique k-mer and label the nodes of each edge
with the (k�1)-length prefix and suffix of that k-mer; nodes that have
the same label are merged into a single node. In a de Bruijn graph, paths
correspond to longer contiguous regions (contigs) of the genome.
Another approach to de novo assembly is the overlap-layout-consensus,
where an overlap or alignment between reads is computed and a graph
representation of this is constructed. Both de Bruijn graph and overlap-
layout-consensus approaches are used in modern assemblers due to dif-
ferent advantages they offer (Li et al., 2012). It is worth noting that for
both approaches, efficient compression methods that save memory time
have been devised (Simpson and Durbin, 2012). Lastly, we note that,
there are a number of other types of analysis other than the ones that we
tested in this article, including single-nucleotide polymorphism character-
ization (usually done after reference mapping), functional analysis, struc-
tural variation detection or transcriptomics analysis (yet it uses many
steps of the reference mapping). For this work, we have chosen the
Android operating system and among the ONT software, we selected:
Nanocall (David et al., 2017), BasecRAWller (Stoiber and Brown,
2017), Flappie (Runnie) (Technologies, 2019) and Chiron (Teng et al.,
2018) for base-calling; LoRMA (Salmela et al., 2017), MarginPolish
(ONT, 2019) and Racon (Vaser et al., 2017) for error correction or pol-
ishing; DSK (Rizk et al., 2013) for k-mer enumeration; Bowtie2
(Langmead and Slazberg, 2012), BWA (Li and Durbin, 2010), Lambda2
(Hauswedell et al., 2014), Diamond (Buchfink et al., 2015), BLAST
(Altschul et al., 1997), Kraken (Wood and Salzberg, 2014) and
Minimap2 (Li, 2018) for reference mapping; htslib, SAMtools and
BCFtools (Li, 2011; Li et al., 2009) for SAM/BAM analysis; ABruijn
(Lin et al., 2016), BCALM2 (Chikhi et al., 2016), Canu (Koren et al.,
2017), HINGE (Kamath et al., 2017), SMARTdenovo (Ruan, 2019)
and TULIP (Jansen et al., 2017) for de novo assembly, graph compaction
and scaffolding. The software choice has been guided primarily by pub-
lished reviews (de Lannoy et al., 2017). The selection was meant to be
comprehensive but also by speed-memory tradeoff, availability of source
code and of language compilers for Android. For instance, we did not se-
lect the SPAdes genome assembler because of it is very demanding in
terms of hardware resources and requires short sequence reads as in-
put—alone or in combination with third-generation sequence reads.
Recompiling software for the Android platform, even though a complete
toolchain is provided by Google, is often not straightforward. In fact,
two major issues are present: the tools of choice must be cross-
compilable, and the Android NDK does not always provide all C/Cþþ
standard headers and functions.

2.1 Base-calling
Nanocall is an open-source base-calling software that allows off-line
and private analysis of MinION data. It takes as input a set of seg-
mented event sequences stored in ONT-specific FAST5 files and pro-
duces nucleotide sequences in FASTQ format. It processes each file

separately, performing several rounds of training to obtain valid
scale parameters via an expectation–maximization algorithm, and
then performs standard Viterbi decoding. Even though it has not
been trained specifically for the newer R9.4 MinION’s chemistry it
can, in theory, be re-trained. Chiron and BasecRAWller are both
base-callers that exploit deep neural network models; while Chiron
is batch and optimizes accuracy, BasecRAWller features on-line
base-calling during sequencing. Flappie and Runnie are two open-
source ONT’s base-callers, both can be directly used on MinION
data.

2.2 Error correction
LoRMA is an error correction approach tailored to long reads and
high coverage, composed of two main steps: an alignment-free cor-
rection based on an iterative de Bruijn graph construction and a pol-
ishing step based on long-distance dependencies inferred through
multiple alignments. Racon is a parallelized method that corrects
post-assembly contigs that did not undergo a consensus step; it is
therefore used in conjunction with assemblers like Canu or
Minimap2. Racon maps reads to a layout sequence, performing a
sliding window and then populating a sliced overlap graph on to
which the consensus steps are calculated. MarginPolish is a graph-
based assembly refinement tool similar to Racon, takes as input a set
of reads and the derived assembly producing a refined assembly by
attempting to correct the errors.

2.3 K-mer counting
Counting k-mers is at the base of many high-throughput analytic
methods, including de Bruijn graph assembly. Despite the apparent
simplicity of this task, sophisticated algorithms and an accurate allo-
cation of resources are required to handle large datasets. DSK uses
an out-of-core approach to ensure an efficient use of memory. The
algorithm is divided into partitioning and counting. Partitioning is
performed in three possible modalities: hashing, frequency-based
minimizer and lexicographic-based minimizer. The frequency-based
technique has been indicated by the authors as more accurate and
more suitable for production of partitions of equal size, and there-
fore, has been adopted in our tests. The counting is accomplished
through hash maps initialized with a constant size of memory. The
DSK output consists of a file containing solid k-mers, namely a set
of k-mers whose abundance exceeds a given threshold.

2.4 Read alignment
Bowtie2, Minimap2, Lambda, Diamond, Kraken, Blast and BWA
are programs that align reads to a reference genome. Bowtie2 uses a
full-text index in minute space (FM-index) (Ferragina and Manzini,
2000) of the genome reference sequence based on the Burrows–
Wheeler transform (Burrows and Wheeler, 1994) and performs
gapped alignment through two stages: first, an ungapped alignment
is performed using ‘seed’ substrings from a read (and its reverse
complement) using the FM-index, then a gapped extension stage
that uses dynamic programing and parallel processing (Langmead
et al., 2019) follows. BWA also uses the Burrows–Wheeler trans-
form: it has been designed originally for short sequences, but then
extended to handle longer reads—i.e. BWA-MEM. The algorithm is
robust to sequencing errors, automatically chooses between local
and end-to-end alignments, supports paired-end reads and performs
chimeric alignment. Minimap2 has been developed as the successor
of BWA-MEM. Minimap2 uses a seed-chain-align procedure based
on detection and indexing of minimizers that makes possible the
execution of efficient queries to the reference genome obtaining
exact matches, i.e. anchors, to the reference. Like Bowtie2 and
BWA, Minimap2 also perform a base-level alignment through dy-
namic programing. Notably, a recent release Minimap2
(Gamaarachchi et al., 2019) introduced an out-of-core option. By
storing a split index on disk, a query file is read multiple times and
mapped against a batch of target sequences, thus limiting the num-
ber of target bases stored in the RAM. This feature leads to a signifi-
cantly reduced memory consumption, even though more CPU time
is required; the memory efficiency also varies when mapping on to a
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reference genome or on an all-versus-all mapping. Lambda uses a
Radix-tree of the queries’ seeds to search in a suffix array built over
the subject sequences in order to identify seeds. Then dynamic pro-
graming is used during the extension phase. Diamond uses a double-
indexing algorithm based on sort-merge join to optimize memory
consumption and cache hits. After the indexing part, the two sorted
sets are iterated together to identify seeds and then dynamic pro-
graming is performed. Kraken is used to assign taxonomic labels to
metagenomic DNA sequences. It uses exact k-mer matches and a
taxonomy tree to identify matches. Since its approach does not re-
quire dynamic programing it is faster than the other alignment meth-
ods. After the alignment step, different tools can be used to analyze
the output. SAMtools is a set of tools that can be used to interact
with SAM, BAM or CRAM files. BCFtools is a suite focused on vari-
ance calling. Both belong to the same library HTSlib.

2.5 Genome assembly
BCALM2 is a tool for constructing a compacted de Bruijn graph,
which is then used in de novo assembly. The algorithm is divided
into three steps: bucketing of k-mers (through the DSK program),
compaction of each bucket in parallel mode and, in the last step, k-
mers are glued from different buckets with duplicates removed.
BCALM2 allows for good balance of memory usage throughout its
execution: for instance, for human sequencing data, BCALM2 com-
pacts the de Bruijn graph in roughly an hour using 3 GB of memory.
Canu is a revision of Celera, which is a genome assembler specifical-
ly developed for long reads. It uses an overlap-layout-consensus
strategy with a novel adaptive overlapping strategy (tf-idf weighted
MinHash) and a sparse graph build-up that avoids repeat collapsing,
with many advantages in terms of coverage requirements and run-
time. It also features scaffolding for finishing the genome assembly.
ABruijn is another assembler based on the de Bruijn graph that is
tailored to long reads. It retains high-frequency k-mers and builds
consensus reads, creating a so-called ‘solid’ spectrum, and operates a
series of informed choices on the k-mer graph to look for paths sup-
ported by k-mer and read solidity. HINGE is an assembler that opti-
mizes repeat resolution by combining the error-resilient overlap-
layout-consensus approach with repeat-resolution capabilities of de
Bruijn graph assemblers; in detail, it separates repeat regions that
are entirely spanned by a read (more easily resolvable) from those
that are not, resolving repeats by adding ‘hinges’ emulating a de
Bruijn graph repeat collapse. SMARTdenovo performs all-versus-all
raw read alignments without error correction and outputs consensus
sequences, and recommends its combination with polishing tools
like Racon. TULIP tackles the computational burden of all-versus-
all read alignments by dividing short ‘seed’ reads from long reads
used to connect seed regions. TULIP is fast and memory efficient, al-
though it does not perform any error correction and performance
can vary sensibly on the choice of seeds.

2.6 Testing layout
We chose and Android smartphone as testing hardware for a num-
ber of reasons, including:

• Android smartphones use ARM CPUs, which is the same archi-

tecture across all the portable devices like tablets or battery oper-

ated programable boards, including edge computing devices.
• Android smartphones can be cheaper than the other commercial

options and can be easily purchased by every research group.
• Offer more functionalities than FPGA devices.
• The Android operative system is open source and can be freely

customized to fit in bioinformatics pipelines.

We selected MinION sequencing experiment datasets publicly
available on NCBI Genbank sequence read archive (SRA), with file
sizes ranging from a few hundred MB to 16 GB. We included both
single organisms (with a corresponding reference genome, if avail-
able) as well as metagenomics samples to explore different genome
lengths, base coverage and k-mer spectra. Table 1 shows the

sequencing experiments selected for the tests. We calculated with
DSK the number of total k-mers (k ¼ 31) and the proportion of
unique k-mers: the first one is useful because the file size is not ne-
cessarily indicative of genome length or genomic diversity, whilst
the second is a rough indicator of errors. The total number of
k-mers was highly correlated with the file size (R2¼0.99), and on
average the percentage of unique k-mers was 71%.

Each of the aforementioned ONT software, except for Diamond
and Kraken that we will discuss later, was run on these datasets on a
standard desktop computer as well as on an Android smartphone, if
recompilation was successful. For each run, we recorded exit status,
CPU time, average/maximum RAM usage and average/maximum
CPU temperature. We kept track of the temperature because it can
be interpreted as an indicator of the stress to which the device is sub-
jected, also affecting battery consumption and performance. A dif-
ferent test has been designed for Diamond and Kraken. Since
Diamond have been specifically designed to be able to analyze data-
base of big size using a customizable quantity of memory we decided
to map the metagenomic files of the dataset on UniProt50 (UniProt
Consortium, 2018) in order to simulate a real-case scenario. An
analogous test has been designed for Kraken but the files have been
mapped against the Kraken’s default database built to be of
400 MB.

3 Results

3.1 Software recompilation
In this section, we present the compilation steps, the description of
relevant dependencies and the adjustments operated to recompile
(successfully or not) the ONT software selected in this work. We
used the Android NDK version r17 (Google, 2019a). Nanocall
requires zlib (Gailly and Adler, 2019) and HDF5 (HDFgroup,
2019). We gathered platform specific information required by
HDF5 from an armv8/arm version of the library and then adjusted
for Android. While Flappie has the same external dependencies as
Nanocall, it has not been ported because it uses double precision
SIMD instructions that are not implemented in Neon. Both Chiron
and BasecRAWller require a Python interpreter, Tensorflow
(Google, 2019b) and the CUDA platform (Nvidia, 2019). There are
Python interpreters for Android and it is possible to build
Tensorflow, but CUDA is not available for ARM. Of note,
Tensorflow can be run without CUDA but the performance
degrades significantly; we decided not to go through this option. We
could not recompile LoRMA because it required headers not offered
by the NDK Racon (and the SPOA library on which this tool rely)
were compiled by including the ‘sse2neon.h’ header in order to con-
vert the Intel AVX instructions to Neon instructions. Note that, this
cannot be done for all the tools since the Intel AVX instruction set is
wider then Neon. Both DSK and BCALM2 are based on a compre-
hensive library named GATB (Drezen et al., 2014). This library,
written in Cþþ, provides two options for disk storage: standard
files and HDF5. Even though we recompiled HDF5 for Nanocall,
we decided to remove this dependency from GATB and to adopt the
standard file mode in order to simplify maintenance. Bowtie2 has
been succesfully compiled since from the last version it uses the
SIMDe library to mimic the AVX instruction set when it is not avail-
able. BWA could not be recompiled because it required SIMD
instructions not available for ARM chipsets. BLAST could not be
recompiled because of features incompatibility with the NDK com-
piler. Minimap2 and Kraken have no external dependencies, other
than zlib that is included in the NDK, so recompilation was success-
ful. Canu requires the GNU gcc compiler and no external dependen-
cies. The latest version of the NDK provides only the clang compiler
so we were not able to port Canu on Android using the NDK r17.
We also tried a previous version of the NDK (r13) that included gcc
but the compilation stopped due to a lack of standard headers. One
of the ABruijn submodules, GraphMap, requires a recent version of
gcc, which is not available and prevented the recompilation; of note,
GraphMap also requires a lot of RAM to generate his index during
execution. SMARTdenovo requires Streaming SIMD Extensions
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(SSE), making it not compilable under ARM. For HINGE, we were
able to compile the core C/Cþþ files but then we could not continue
because of the CUDA requirement under Tensorflow. TULIP is writ-
ten in Perl; although there are available Perl interpreters for
Android, some of TULIP’s preprocessing steps call BWA. We also
ported SAMtools, BCFtools and the underlying library htslib.
MarginPolish could not be ported because of the lack of some
instructions in the pthread header.

In conclusion, we recompiled successfully 11/23 (47%) of the
ONT analytics tools. Table 2 summarizes the tools tested and gives
information about dependencies and recompilation issues.

3.2 Software performance
We benchmarked the test layout on a Samsung Galaxy S9þ with
6 GB of memory, an ARM v8 processor Exynos 9810 Octa-core
(4�2.7 GHz & 4�1.7 GHz), 4 GB LPDDR4X RAM and 64GB of
storage. We also evaluated performances on a Linux desktop with

32 GB of memory, an IntelV
R

Core i7-6700 CPU @
3.4 GHz�8.64 GB of internal storage and 1 TB of external storage.

3.2.1 Base-calling

We tested Nanocall on the standard FAST5 files provided with the
program. Since FAST5 raw files are split and do not exceed 50 MB
in size, Nanocall did not present any issue running on the Android
phone.

3.2.2 Assembly and consensus

We run DSK and BCALM tools on all files using the desktop
and the Android phone. On the phone, DSK processed on aver-
age 1 GB in 289 s, whilst BCALM2 took 933 s per GB. The k-
mer counting time increased linearly with the file size
(R2¼0.996), as shown in Figure 1A, and the de Bruijn graph as-
sembly exhibited a similar behavior, although with higher vari-
ance (R2¼0.783). In terms of RAM usage, both DSK and

Table 1. MinION sequencing experiments downloaded from Genbank’s SRA in FASTQ format and used for software benchmarking

Genbanks SRA Id. Organism File size (GB) Unique k-mers (%)

ERR2900440 Fermentation M 0.02 53

ERR2900442 Fermentation M 0.04 49

ERR2900428 Fermentation M 0.25 35

DRR164915 Leptotrichia trevisanii 0.28 83

SRR7765365 Acanthamoeba castellanii 0.68 99

ERR2625614 Marine V 0.72 57

SRR6037114 Food M 1.85 42

SRR6037129 Food M 2.64 31

ERR2564376 Brassica oleracea 4.01 91

ERR2571299 Musa schizocarpa 6.11 91

ERR2662964 Sludge M 13.23 94

SRR5889392 Oryza coarctata 13.51 97

SRR7762336 Phaeodactylum tricornutum 15.10 85

ERR2612749 Magnaporthe oryzae 16.37 81

Note: Species with name in italic have a reference genome available.

Table 2. Summary of ONT analytics tools tested, with information about language, dependencies, instruction sets, compilers and recompil-

ation status (with description of issues in case of failure)

Tool Language Link-time dependencies Instruction sets Compilers Recompilation (issue)

Nanocall Cþþ HDF5; zlib — gcc/clang Successful

Flappie Cþþ openblas; hdf5; math SSE gcc/clang Not successful (instruction set)

Chiron Python Tensorflow CUDA — Not successful (dependencies)

BasecRAWller Python Tensorflow CUDA — Not successful (dependencies)

LoRMA C/Cþþ GATB; zlib; boost — gcc/clang Not successful (headers)

Racon Cþþ bioparser; spoa; edlib Neon gcc/clang Successful

MarginPolish Cþþ openmp; hts — gcc/clang Not successful (NDK’s implementation of pthread)

DSK Cþþ HDF5 — gcc/clang Successful

BCALM2 Cþþ HDF5 — gcc/clang Successful

Bowtie2 Cþþ/Python zlib — gcc/clang Successful

BWA C zlib AVX gcc/clang Not successful (instruction set)

Minimap2 C zlib Neon gcc/clang Successful

Diamond C zlib — gcc/clang Successful

Lambda2 Cþþ zlib; SeqAn — gcc/clang Successful

Kraken Cþþ — — gcc/clang Successful

Canu C/Cþþ openmp; math — gcc Not successful (compiler)

Abruijn Cþþ zlib; math; openmp — gcc Not successful (compiler)

SMARTdenovo C math SSE gcc Not successful (instruction set)

HINGE C/Cþþ/Python HDF5; boost; Tensorflow CUDA gcc/clang Not successful (dependencies)

TULIP Perl BWA — — Not successful (dependencies)

Samtools C zlib — gcc/clang Successful

Bcftools C zlib — gcc/clang Successful

Blast Cþþ — — gcc/clang Not successful (compiler)
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BCALM2 respected the set RAM limits (800 MB) on average, al-
though a few peaks above the limit (i.e. over 1 GB) were regis-
tered. Racon in principle could be run but on our dataset
mapping BCALM’s unitigs on the reads file generated SAM files
too big to be analyzed.

3.2.3 Reference mapping

Minimap2 completed the reference mapping of all the files. The file
indexing CPU-times were in the range of 5 s across the whole file size
spectrum, while the mapping times increased with the file size (1825 s/
GB on average). The average RAM usage for Minimap2 was relatively
stable for all file sizes in indexing and increased while mapping, with
an average of 23 and 1372 MB, respectively. We also tested Minimap2
all-versus-all mapping on the files without a reference genome but it
could not process files larger than 250 MB due to its high RAM con-
sumption, and failed to complete in one of the smaller files. Bowtie2
and Lambda were not able to process files bigger than 250 MB. Both
samtools and BCFtools include a variety of different possible analysis
so the usability would depend on which analysis and on which input.
We tested the command ‘view’ and it worked.

3.2.4 Metagenomic analysis

Kraken was able to complete all the analysis of all the files comput-
ing on average 38 MB/s of the input file. Diamond was able to com-
plete the analysis computing on average 1 MB of the input file every
minute.

Figure 1 summarizes the performances on mobile showing CPU
time (Panel A), average memory consumption (Panel B) and average
CPU temperature (Panel C) of DSK, BCALM and Kraken. These
tools showed a linear trend on CPU time. On average, BCALM2
and DSK programs reached a CPU temperature of 48

�
and 49

�
, with

peaks of 69
�

and 68
�
. As a comparison, the average operating tem-

perature for a Galaxy S9 is 30
�
, and the operating system usually

shuts off the device when overheating by, although we could not
find documentation on the maximum temperature or for how long
high temperature can be sustained.

3.2.5 Desktop

In Figure 2, we plotted the CPU time on the phone versus the CPU
time on the desktop by DSK and BCALM2 to see if processing times
on the different architectures were correlated. For DSK, they were
linearly correlated (R2¼0.7752) with the desktop being on average
four times faster; BCALM2 exhibited also good linear correlation
(R2¼0.8841) and it was four times faster on the desktop, although
with higher variation.

4 Discussion

In this work, we analyzed the portability of ONT analytics on to
mobile architectures (an Android smartphone in our case) by select-
ing, recompiling and benchmarking a set of commonly used soft-
ware, from base-calling to genome assembly. We were able to
compile only 11 out of 23 tools. The reason behind the difficulties

encountered in porting the software includes lack of standard head-
ers, compilers and unsupported library dependencies or instruction
sets. Maintenance is a big problem in porting, because many adapta-
tions are necessary during the compilation and they challenge repro-
ducibility from version to version. Unfortunately Canu, which is in
the ONT assembly pipeline endorsed by Oxford’s Nanopore (Jain
et al., 2018), could not be compiled and tested on the smartphone.
The programs written in Python (Chiron, BasecRAWller and
HINGE) could have been in principle ported, but the Tensorflow li-
brary would have not made use of the CUDA acceleration. RAM
usage made Minimap2 all-versus-all unusable even at relatively
small file sizes (250 MB and up), which led only Minimap2 refer-
ence mapping, Kraken, DSK, BCALM2 to run successfully on all
files up to 16 GB. Moreover, Diamond was able to map small files
(i.e. 400 MB) to the entire UniProt50 database. It has to be noticed
that some of this softwares partition the input in order to obey a
memory constraint, usually through an informed guess, but this
could lead to unusual RAM usage peaks that may pose problems if
they get close to the maximum usable RAM in absence of an effi-
cient out-of-core handling. In terms of CPU time, DSK, BCALM2,
Kraken and Minimap2 mapping scaled linearly with the desktop
time, which is a reassuring result, and the overall timing of data
processing is bearable if thought for real-time settings. MinION
Flow Cells output data from a few GB to 20 GB, and in this work
1 GB was processed in 5–10 min by DSK/BCALM2, and in less than
a minute by Kraken, on the phone. It is expected that newer chemis-
try for MinION will allow for 40 GB per flow cell. Since a MinION
sequencing experiment can take �40 min including sample prepar-
ation, faster methods to allow portable analytics in real time will be
needed. A more serious concern is that CPU temperature rose dra-
matically for all programs: apart from system-forced shutdowns
that would prevent completion of analyses, high temperature would
also affect battery, device and CPU life. It would be difficult to

Fig. 1. Performance of DSK and BCALM2 on the Android smartphone, all benchmark files (0.02–16 GB), measured by means of CPU time (A), average RAM usage (B) and

average temperature (C)

Fig. 2. Comparison of data processing times by DSK and BCALM2 on the Android

smartphone versus the desktop execution for all benchmark files (0.004–16GB).

Note that, for smartphone runs, an 800-MB ram limit have been imposed on both

DSK and BCALM
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handle the device and it could lead to a fire hazard. These issues are
non-negligible in mobile lab settings. This work has limitations:
first, we tested only a relatively small number of software, which
may not be fully representative of the entire ONT software available
on the market; second, we did not altered the source code other than
providing instruction set conversion headers; third, we used only the
Android operating system, while porting could be different and lead
to different results using Apple’s iOS; finally, we did not analyze
battery consumption. In conclusion, the software scenario for ONT
analytics does not seem to be suitable to enable true portability
now: we are not there yet. Development of new tools tailored to
ONT should be carried on with special attention to mobile architec-
tures: if not purposely built for ARM-based system-on-chip, at least
the code writing should be attentive to portable headers, library
dependencies and usage of instruction sets that are also available for
Android or iOS. Further development should also focus on opti-
mization in resource-constrained settings, which include not only
RAM, but also CPU-temperature throttling. There are preliminary
approaches to develop ONT analytic tools specifically tailored to
mobile architectures but they are at a very nascent stage, e.g.
NanoPAL, a generic programing library that exploits out-of-core
approaches (Milicchio et al., 2016, 2018). Besides command-line de-
velopment, another critical area for ONT portable analytics is
expected to be the development of graphical user interfaces and visu-
alization, given the small screen size of portable devices. Existing
end-to-end and touch-app solutions like Illumina’s BaseSpace
(Illumina, 2019) or ONT MinION Mk1C might be a starting point
but they are not open source or free, and it may be difficult to de-
velop pipelines within their systems, unless the companies decide to
do so. As a final message, testing compilation on mobile architec-
tures and provide binaries could be a good recommendation for
ONT software developers, especially with the upcoming release of
the SmidgION sequencers that directly plug into a smartphone.
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