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Abstract

Alternative translation initiation (ATLI) refers to the existence of multiple translation initiation sites per gene and is
a widespread phenomenon in eukaryotes. ATLI is commonly assumed to be advantageous through creating proteome
diversity or regulating protein synthesis. We here propose an alternative hypothesis that ATLI arises primarily from
nonadaptive initiation errors presumably due to the limited ability of ribosomes to distinguish sequence motifs truly
signaling translation initiation from similar sequences. Our hypothesis, but not the adaptive hypothesis, predicts a series
of global patterns of ATLI, all of which are confirmed at the genomic scale by quantitative translation initiation
sequencing in multiple human and mouse cell lines and tissues. Similarly, although many codons differing from AUG
by one nucleotide can serve as start codons, our analysis suggests that using non-AUG start codons is mostly disadvan-
tageous. These and other findings strongly suggest that ATLI predominantly results from molecular error, requiring
a major revision of our understanding of the precision and regulation of translation initiation.
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Introduction
The translation of mRNA in eukaryotes is a complex multi-
step process consisting of initiation, elongation, and termi-
nation, among which initiation is considered the most
important step because it largely determines the amount
of translation (Jackson et al. 2010; Aitken and Lorsch 2012).
During the initiation, the initiator tRNA and 40S and 60S
ribosomal subunits are assembled by initiation factors into
an 80S ribosome at a start codon in an mRNA molecule to
initiate the translation (Pestova et al. 2001). Most initiation
events occur via a cap-dependent mechanism requiring the
recognition of the m7G(50)ppp(50)N structure termed cap
that is located at the 50 end of most mRNA molecules,
whereas a minority of initiation events occur by a cap-
independent mechanism that relies on internal ribosome
entry site (IRES) elements in the 50 untranslated region
(UTR) of mRNAs (Sonenberg and Hinnebusch 2009;
Martinez-Salas et al. 2012). Both mechanisms primarily
abide by a scanning model in which the 40S ribosome sub-
unit does not bind to a start codon directly but first binds to
the cap or IRES and then scans the mRNA until meeting a
start codon (Sonenberg and Hinnebusch 2009; Jackson et al.
2010). Needless to say, translation initiation regulation is a
crucial step in the control of protein synthesis (Pestova et al.
2001; Sonenberg and Hinnebusch 2009; Jackson et al. 2010;
Martinez-Salas et al. 2012).

For a given gene, translation may start from one of several
translation initiation sites (TISs), a phenomenon known as
alternative translation initiation (ATLI) (Kochetov 2008).

ATLI may occur in the same transcript by leaky scanning,
reinitiation, or IRES-dependent initiation (Kochetov 2008).
It may also occur because of the presence of multiple tran-
script isoforms resulting from alternative transcriptional start
or alternative splicing (de Klerk and ’t Hoen 2015). ATLI may
lead to the formation of upstream open reading frames
(uORFs), whose translation tends to repress the translation
of the main ORF (Morris and Geballe 2000; Johnstone et al.
2016). For example, a mutation in the 50 UTR of human
CDKN2A creates a uORF that suppresses the translation of
CDKN2A, which predisposes the affected individuals to mel-
anoma (Liu et al. 1999). ATLI may cause the production, from
the same gene, of multiple proteins with different sequences
due to in-frame extensions, truncations, or frameshifts
(Kochetov 2008) and these different protein isoforms may
possess different functions. For instance, the human la
antigen-associated invariant chain (ln) exists in two major
forms, p33 and p35, as a result of ATLI (Strubin et al. 1986).
In another example, human MAVS produces a full-length
MAVS and a truncated mini-MAVS that are functionally
different from each other; although both proteins
positively regulate cell death, mini-MAVS interferes with in-
terferon production induced by full-length MAVS (Brubaker
et al. 2014).

ATLI may also arise from the use of non-AUG start
codons; in most of such cases, a near-cognate codon, which
differs from AUG by one nucleotide (e.g., CUG, AGG, and
AUA), serves as the start codon (Peabody 1989; Kearse and
Wilusz 2017). Despite translation initiation from non-AUG
codons, proteins synthesized may still be functional. For
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example, DAP5, a translation initiation factor, plays a critical
role in IRES-mediated translation initiation; its translation is
initiated from a GUG start codon in human and mouse
(Imataka et al. 1997).

Thanks to recent developments of high-throughput tech-
nologies for genome-wide studies of translation, ATLI and
non-AUG initiation are now known to be widespread in
eukaryotes (Ingolia et al. 2011; Fritsch et al. 2012; Lee et al.
2012). Even within one cell line, on average 2.5 and 2 TISs per
gene have been reported in human and mouse, respectively
(Lee et al. 2012; Wan and Qian 2014). Along with the previ-
ously known cases, the high prevalence of ATLI recently
revealed from genomic studies led to the prevailing view
that ATLI is a widely used, regulated, and beneficial mecha-
nism to increase proteome diversity and regulate protein
translation (Kochetov et al. 2005; Kochetov 2008; Bazykin
and Kochetov 2011; Ivanov et al. 2011, 2017; Lee et al. 2012;
Ingolia 2014, 2016; de Klerk and ’t Hoen 2015; Kearse and
Wilusz 2017). We will refer to this hypothesis as the adaptive
hypothesis. It is important to stress that the adaptive hypoth-
esis asserts that the vast majority if not all instances of ATLI
are beneficial. For instance, Lee et al. (2012) discussed exten-
sively the potential benefits of ATLI without mentioning the
possibility that ATLI could be deleterious or neutral. Similarly,
Kearse and Wilusz (2017) rejected the notion that non-AUG
translation initiation is an error and wrote that “non-AUG
initiation events are not simply errors but instead are used to
generate or regulate proteins with key cellular functions.”

Nevertheless, only a tiny fraction of ATLI has verified func-
tions, whereas most ATLI has no known functions.
Furthermore, the number of AUGs in 50 UTR is significantly
lower than the random expectation (Iacono et al. 2005; Lynch
et al. 2005; Zur and Tuller 2013), suggesting that upstream
alternative TISs are selected against rather than selected for.
These observations question whether ATLI is generally adap-
tive as many have assumed, because ATLI could also arise
from imprecise translation initiation. We thus propose and
test the hypothesis that most ATLI reflects nonadaptive mo-
lecular errors. Such errors could occur because of the chance
occurrence of sequence motifs that resemble translation ini-
tiation signals. The error hypothesis makes a series of distinct
predictions about genomic patterns of ATLI that are not
expected a priori under the adaptive hypothesis. By analyzing
high-throughput translation initiation data from multiple cell
lines and tissues of humans and mice, we provide unequivocal
evidence for the error hypothesis.

Results

TIS Diversity Decreases with the Amount of
Translation
If ATLI is mostly caused by molecular errors, it can be del-
eterious for a number of reasons. First, it may lower the
proportion of protein molecules with normal functions.
Second, it could waste cellular resource and energy in pro-
tein synthesis and degradation. Third, some proteins pro-
duced via ATLI may even be toxic. Given the rate of
translation initiation error, the detriment from the above

second and third reasons should rise with the number of
protein molecules synthesized. Consequently, the overall
harm of imprecise translation initiation of a gene is expected
to increase with its amount of translation. Hence, natural
selection against translation initiation error of a gene inten-
sifies with its amount of translation. As a result, the error
rate and the extent of ATLI should decline with translational
amount. By contrast, the adaptive hypothesis of ATLI does
not predict this negative correlation a priori, because, under
this hypothesis, the extent of ATLI of a gene depends on the
specific function and regulation of the gene.

To distinguish between the error hypothesis and the
adaptive hypothesis, we analyzed the TISs identified by
quantitative translation initiation sequencing (QTI-seq) in
human and mouse cells. QTI-seq enriches mRNA fragments
protected by initiating ribosomes, enabling the capture of
real-time translation initiation events in a quantitative man-
ner (Gao et al. 2015). The TIS data sets used here are from
five human samples (HeLa and its YTHDF1 mutant, HEK293
and its eIF2a mutant, and HEK293 under amino acid star-
vation) and four mouse samples (MEF cell line, MFF under
amino acid starvation, normal mouse liver, and fasting
mouse liver) (supplementary table S1, Supplementary
Material online). Because only AUG and its nine near-
cognate codons are thought to be able to serve as start
codons (Peabody 1989; Kearse and Wilusz 2017), TISs in
this study were predicted using these ten codons unless
otherwise noted. To measure the extent of ATLI of a gene
in a sample, we quantified its TIS diversity using the Simpson
index (Simpson 1949) and Shannon index (Shannon 1948),
following the recent studies of alternative transcriptional
start and alternative polyadenylation (Xu and Zhang 2018;
Xu et al. 2019). Briefly, both Simpson and Shannon indices
consider the number of TISs and fractional use of each TIS,
but the Simpson index gives more weights to the frequently
used TISs than does the Shannon index. The higher the
Simpson and Shannon indices, the greater the extent of
ATLI. Because TIS diversity is poorly estimated when the
number of QTI-seq reads mapped to a gene is too small,
only genes with at least ten reads in a sample were analyzed.
By counting TISs as well as QTI-seq reads mapped to each
TIS in a gene, we calculated the gene’s TIS diversity. We
measured the translational amount of the gene by the total
number of QTI-seq reads mapped to the gene per million
reads mapped in the entire sample (RPM; see Materials and
Methods).

We started by analyzing the QTI-seq data from human
HEK293 cells. Consistent with the prediction of the error
hypothesis, the rank correlation (q) between the transla-
tional amount of a gene and its Simpson index of TIS diver-
sity is significantly negative (q ¼ �0.28, P¼ 2.9� 10�56;
fig. 1A). Using the Shannon index to measure TIS diversity
similarly yielded a negative correlation (q ¼ �0.19,
P¼ 4.5� 10�28; fig. 1B).

Because sequencing depth and the precision of TIS survey
for a gene rise with its translational amount, it is possible that
the correlations in figure 1A and B originate from unequal TIS
surveys among genes. To eliminate this potential bias, we
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constructed “supergenes” with equal sequencing depths.
Specifically, we ranked genes by their QTI-seq read number
and then grouped all genes into 25 bins such that each bin
contained the same total read number. We then considered
all genes in a bin together as a supergene. Briefly, reads from
the most commonly used TIS of each gene were combined to
represent the reads of the most commonly used TIS of the

supergene, reads from the second most commonly used TIS
of each gene were combined to represent the reads of the
second most commonly used TIS of the supergene, and so on
(see Materials and Methods). The number of TISs of the su-
pergene is the maximum number of TISs of any gene belong-
ing to the supergene. We then computed the TIS diversity of
the supergene. The uniformity of read number among
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FIG. 1. TIS diversity of a gene generally decreases with the translational amount of the gene. (A) The Simpson index of TIS diversity in human
HEK293 cells declines with the translational amount. (B) The Shannon index of TIS diversity in human HEK293 cells declines with translational
amount. In (A) and (B), each dot represents a gene. Spearman’s rank correlation coefficient (q) and associated P value are presented. RPM, number
of QTI-seq reads mapped to a given gene per million reads mapped to all genes in the sample. (C) Simpson and Shannon indices of TIS diversity in
HEK293 decline with translational amount. Each triangle/circle represents a supergene that is composed of many individual genes. All supergenes
have the same total translational amount. X-axis shows the median translational amount of all genes belonging to the supergene. (D) Spearman’s
correlation between median translational amount and Simpson or Shannon index of TIS diversity among supergenes in each sample examined.
Sample IDs listed in the X-axis refer to those in supplementary table S1, Supplementary Material online. P< 0.05 for all correlations except for the
mouse liver under fasting (sample #7).
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supergenes eliminates the potential bias aforementioned. Yet,
the TIS diversity of a supergene decreases with the median
read number (i.e., translational amount) of all genes belonging
to the supergene, regardless of whether Simpson (q¼�0.95,
P¼ 1.2� 10�6; fig. 1C) or Shannon index (q ¼ �0.93,
P¼ 1.5� 10�6, fig. 1C) is used in measuring TIS diversity.
Importantly, this negative correlation is apparent across the
entire range of translational amount (fig. 1C). Other human
and mouse samples similarly exhibit a negative correlation
(fig. 1D).

To exclude the possibility that the above results are statis-
tical artifacts of our analyses, we performed a computer sim-
ulation where we randomly generated genes whose read
numbers and relative TIS usages respectively follow the actual
distributions of the data from HEK293. We analyzed the sim-
ulated genes as if they were real genes but found a positive
correlation between translational amount and TIS diversity
among genes (supplementary fig. S1A and B, Supplementary
Material online); this correlation was even stronger in the
supergene analysis (supplementary fig. S1C, Supplementary
Material online). These simulation results suggest that, if any-
thing, our analyses are conservative in detecting the negative
correlation between translational amount and TIS diversity
among actual genes.

To investigate the robustness of our findings, we per-
formed several additional analyses using the supergene ap-
proach. First, the TISs above considered were identified using
the cutoff of P< 0.05 in Ribo-TISH (Zhang et al. 2017) (see
Materials and Methods), so may contain some false positives.
Using only the TISs under the cutoff of Q< 0.05 (i.e., after
correcting for multiple testing) should reduce false positives.
Nevertheless, we found the negative correlation between
translational amount and TIS diversity among supergenes
qualitatively unchanged (supplementary fig. S2A,
Supplementary Material online). Second, even when only
AUG was considered to be the start codon, the obtained
result was qualitatively unchanged (supplementary fig. S2B,
Supplementary Material online). Third, despite the validity of
our analysis demonstrated by the simulation (supplementary
fig. S1, Supplementary Material online), one might argue that
it is better to measure translational amount and TIS diversity
independently in order to study their biological relationship.
Because the translational amount of a gene should rise with
its mRNA concentration, we predict a negative correlation
between mRNA concentration and TIS diversity. Indeed,
mRNA concentration quantified by RNA sequencing (RNA-
seq) and TIS diversity measured using QTI-seq are negatively
correlated (supplementary fig. S2C, Supplementary Material
online).

Because the likelihood of ATLI increases with the transcript
length, we further computed the partial correlation between
the translational amount of a gene and its TIS diversity after
controlling for the transcript length of the gene, which is
defined by the total length of its annotated UTRs and exons.
However, because the transcript length cannot be controlled
in the supergene approach, we used another statistical ap-
proach referred to as downsampling. Specifically, we down-
sampled our data by randomly picking ten QTI-seq reads per

gene for all genes with at least ten reads to equalize the
sequencing depths of different genes before estimating the
Simpson or Shannon index (see Materials and Methods). We
observed a negative correlation between the translational
amount and Simpson (supplementary fig. S3A,
Supplementary Material online) or Shannon (supplementary
fig. S3B, Supplementary Material online) index of TIS diversity
among genes before and after controlling for the transcript
length.

Because different genes differ in multiple aspects in
addition to translational amount, we further minimized
the influences of potential confounding factors by com-
paring between human paralogous genes, because paral-
ogous genes are similar in gene structure, DNA sequence,
regulation, and function (Zhang 2013). Because the su-
pergene approach cannot pair paralogous genes, we used
the downsampling approach before estimating the
Simpson or Shannon index. Consistent with the error
hypothesis, Simpson and Shannon indices tend to be
higher for the relatively lowly translated paralog than
the relatively highly translated one in a pair of paralo-
gous genes (supplementary fig. S4, Supplementary
Material online). For example, in human HEK293,
�62% of gene pairs show such a trend when the
Simpson index is considered, significantly more than
the random expectation of 50% (P¼ 6.4� 10�4, bino-
mial test; supplementary fig. S4A, Supplementary
Material online). This pattern holds in most samples an-
alyzed, with two exceptions (supplementary fig. S4B,
Supplementary Material online). Nevertheless, in each
of these exceptions, although the corresponding fraction
is below 50%, it is not significantly below 50%. Similar
patterns were observed when we downsampled 20 in-
stead of 10 reads per gene (supplementary fig. S4C,
Supplementary Material online).

Usages of All but the Major TISs Decline with
Translational Amount
Although the above analyses suggest that using many TISs of
a gene is generally deleterious such that the overall TIS diver-
sity declines with the translational amount as a result of nat-
ural selection against detrimental ATLI, it does not tell us
using which TISs is harmful. To address this question, we
ranked all TISs of a gene by their fractional usages. The frac-
tional usage of a TIS is measured by the number of QTI-seq
reads mapped to the TIS divided by the total number of reads
mapped to all TISs of the gene. For a given gene, the TIS with
the highest fractional usage (i.e., ranked #1) is referred to as
the major TIS, whereas all others are referred to as minor TISs.
Intuitively, the major TIS should be the TIS preferred by nat-
ural selection. Because natural selection against translation
initiation error intensifies with the translational amount,
the fractional usage of each preferred TIS should increase,
whereas that of each unpreferred TIS should reduce as the
translational amount increases. We first examined human
HEK293 cells. Again, we considered only genes with at least
ten QTI-seq reads to ensure a certain level of accuracy in TIS
usage estimation. Indeed, the fractional usage of the major TIS
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in a gene tends to increase with its translational amount
(upper-left plot in fig. 2A). By contrast, each minor TIS exam-
ined shows the opposite trend, suggesting that none of them
is preferred. For example, among all genes with at least two
TISs, the fractional usage of the second most frequently used
TIS in a gene decreases with the translational amount of the
gene (lower-left plot in fig. 2A). A similar negative correlation
is observed for the third most frequently used TIS among
genes with at least three TISs (upper-right plot in fig. 2A)
and for the fourth most frequently used TIS among genes
with at least four TISs (lower-right plot in fig. 2A). We verified
the above results by the supergene approach that equalizes
the translational amount among supergenes (fig. 2B). Further,
the trends remain unchanged when only AUG TISs are con-
sidered (supplementary fig. S5A, Supplementary Material on-
line) and when the analysis is extended to the fifth, sixth,
seventh, and eighth most frequently used TISs among genes
with at least five, six, seven, and eight TISs, respectively (sup-
plementary fig. S6A and B, Supplementary Material online).
Other human and mouse samples show similar patterns
(fig. 2C and supplementary figs. S5B and S6C,
Supplementary Material online).

Translation of uORFs of a gene has been proposed as an
adaptive strategy to negatively regulate the translation of the
main ORF. To evaluate whether translating uORFs is adaptive,
we considered all upstream minor TISs of a gene together but
found that the total fractional usage of these upstream TISs
declines with the translational amount of the gene (supple-
mentary fig. S7A, Supplementary Material online), and this
trend remains even when only AUG TISs are considered (sup-
plementary fig. S7B, Supplementary Material online) or when
the annotated TIS of a gene is considered the main TIS in
defining uORFs (supplementary fig. S7C, Supplementary
Material online). The same trend is observed when transla-
tional amount is replaced with mRNA concentration in these
correlations (supplementary fig. S7A–C, Supplementary
Material online). Together, these findings strongly suggest

that, for most genes, only the major TIS is selectively preferred,
whereas all other TISs are unpreferred, arguing against the
adaptive hypothesis of translating uORFs.

We also validated the above human results using paralo-
gous genes and again used the downsampling approach
aforementioned. For HEK293, the major TIS is used more
often in the relatively highly translated paralog than in the
relatively lowly translated one in 67% of the 189 pairs of
paralogous genes analyzed, significantly more than the ran-
dom expectation of 50% (supplementary fig. S8A,
Supplementary Material online). By contrast, for the second,
third, and fourth most frequently used TISs respectively, sig-
nificantly smaller than 50% of gene pairs show this pattern
(supplementary fig. S8A, Supplementary Material online).
Similar results were observed across all human and mouse
samples (supplementary fig. S8B, Supplementary Material
online).

Out-of-frame translation from minor TISs is likely to be
more deleterious than in-frame translation from minor TISs.
Consistently, the fraction of minor TISs that are out-of-frame
is only 3.9% (supplementary fig. S9A, Supplementary Material
online) and the fraction of translation initiations from minor
TISs that are out-of-frame is only 6.3% (supplementary fig.
S9B, Supplementary Material online).

Variations in TIS Usage between Cell Types Support
the Error Hypothesis
Under the error hypothesis of ATLI, differences in TIS usage of
the same gene between cell types are due to the stochastic
nature of translation initiation error. Hence, upon natural
selection against error, the differences should decrease with
the translational amount, because the sensitivity of fitness to
a change in relative TIS usage increases with the translational
amount. By contrast, no such prediction is made a priori by
the adaptive hypothesis, because the difference in ATLI be-
tween cell types would depend on the specific cell types and
genes. To investigate whether the error hypothesis is

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rank #1
ρ=0.33, P= 7.8 × 10−80

A

2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rank #2
ρ=−0.39, P= 1.8 × 10−109

Fr
ac

tio
na

l u
sa

ge
 o

f T
IS

s

Translational amount (log10RPM)

Rank #3
ρ=−0.50, P= 4.5 × 10−174

2.0 2.5 3.0 3.5 4.0

Rank #4
ρ=−0.50, P= 1.7 × 10−147

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rank #1
ρ=0.94, P= 1.3 × 10−6

B

2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rank #2
ρ=−0.84, P= 2.1 × 10−6

Fr
ac

tio
na

l u
sa

ge
 o

f T
IS

s

Translational amount (log10(median RPM))

Rank #3
ρ=−0.96, P= 1.1 × 10−6

2.0 2.5 3.0 3.5 4.0

Rank #4
ρ=−0.96, P= 1 × 10−6

−1
.0

−0
.5

0.
0

0.
5

1.
0

1 2 3 4 5 6 7 8 9

C

Human samples Mouse samples

C
or

re
la

tio
n 

be
tw

ee
n 

fra
ct

io
na

l u
sa

ge
of

 T
IS

s 
an

d 
tra

ns
la

tio
na

l a
m

ou
nt

 (ρ
)

Rank #1
Rank #2
Rank #3
Rank #4

FIG. 2. Increased fractional use of the most frequently used TIS and decreased fractional use of each other TIS when translational amount rises. (A)
Spearman’s correlation between the translational amount of a gene and the fractional uses of ranked TISs of the gene in human HEK293 cells. Each
dot represents a gene. (B) Spearman’s correlation between the median translational amount of a supergene and the fractional uses of its ranked
TISs in HEK293. Each dot represents a supergene. (C) Spearman’s correlation between the median expression level of a supergene and the fractional
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Supplementary Material online. P< 0.05 in all cases.
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supported by between cell type comparisons, we compared
the QTI-seq data of HeLa and HEK293, the only different cell
types of the same species in our data (other comparisons
would involve the environment, mutations, and/or a tissue
that is a mixture of multiple cell types). We considered only
genes with at least ten QTI-seq reads in both cell lines to
ensure a certain level of accuracy in TIS usage estimation. We
used the downsampling approach instead of the supergene
approach, because the latter could not pair the same gene
from different cell types. For each gene, we randomly picked
ten reads from each cell line to measure the distance in frac-
tional uses of TISs between the two cell lines (see Materials
and Methods) and then correlated this distance with the
average translational amount of the gene in these cell lines.
We found that between HeLa and HEK293, the correlation is
significantly negative (q¼�0.30, P¼ 1.7� 10�26; fig. 3A), as
predicted by the error hypothesis.

Because a gene may have different translational amounts
in different cell types, the error hypothesis predicts that its TIS
diversity should be lower in the cell type where its transla-
tional amount is higher. To verify this prediction, we com-
pared the TIS diversity of each gene between HeLa and
HEK293. We used downsampled data to guard against the
influence of unequal sequencing depths between cell lines.
Indeed, significantly more than 50% of genes exhibit lower TIS
diversities in the cell line where their translational amounts
are higher, regardless of whether the Simpson or Shannon
index of TIS diversity is used (fig. 3B).

Furthermore, the error hypothesis predicts that, for each
gene, the fractional use of the major TIS tends to be higher
and that of each minor TIS tends to be lower in the cell type
where the translational amount of the gene is higher. To
verify this prediction, for each gene, we defined the major

and minor TISs in each cell line separately and then com-
pared the fractional usage of each TIS between HeLa and
HEK293 based on the downsampled data. Indeed, 57% of
genes show higher fractional use of the major TIS in the cell
line where the translational amount is higher (fig. 3C), sig-
nificantly more than the random expectation of 50%,
whereas only 38–41% of genes show the similar pattern
for each minor TIS examined, significantly lower than the
random expectation (fig. 3C).

Although our evidence so far suggests that, for most
genes, each cell type has only one selectively preferred
TIS, it remains possible that the selectively preferred TIS
varies among cell types such that the variation in translation
initiation among cell types is adaptive. To assess this possi-
bility, the simplest approach is to count genes that have
different major TISs in different cell types, but this assess-
ment would be inaccurate due to sampling error caused by
limited sequencing depths. To rectify this problem, for each
gene with different major TISs in the two cell lines com-
pared, we randomly shuffled its QTI-seq reads from HeLa
and HEK293 without altering the number of reads in each
cell line. We repeated this process 10,000 times and esti-
mated the fraction of times (f) when the number of major
TISs observed in the shuffled data is 2. Here, f is an estimate
of the one-tailed P value in testing the null hypothesis that
the two cell lines share the same major TIS. We converted
the P values to Q values to guard against false positives due
to multiple testing and used Q< 0.05 to call significance. Of
1,198 genes examined, only 212 genes have significantly
more than one major TIS in the two cell lines. Thus, selec-
tion appears to have favored different TISs in the two cell
lines for only a minority (24.3%) of genes, consistent with
the hypothesis that among cell-type variations in translation
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FIG. 3. Comparison of TIS usage between human HeLa and HEK293 cells. (A) Distance in TIS usage between the two cell lines for a gene decreases
with the mean translational amount of the gene in these cell lines. (B) Fraction of genes for which the Simpson/Shannon index of TIS diversity is
lower in the cell line where the translational amount of the gene is higher. Both fractions significantly exceed the random expectation of 50%
(P< 0.05, binomial test). (C) Fraction of genes for which the percent usage of the TIS of a particular rank is higher in the cell line where the
translational amount of the gene is higher. All fractions deviate significantly from the random expectation of 50% (P< 0.05, binomial test).
Downsampled data are used in all panels.
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initiation are largely nonadaptive. It would be interesting
and important to revisit this issue when comparable data
from more cell types become available. In terms of the
molecular mechanism, the variation of TIS usage between
cell types for the same gene can be achieved by differences
in the concentrations of trans-regulatory factors of transla-
tion initiation in different cell types.

Patterns of Natural Selection on Kozak Regions of
Various TISs
The Kozak region is a ten-nucleotide DNA segment including
the translation start codon, its upstream six nucleotides, and
its downstream one nucleotide (Kozak 1984). This region
plays a major role in translation initiation because its se-
quence affects the initiation efficiency (Kozak 1986). Our find-
ing of the relative uses of various TISs predicts that, as the
translational amount of a gene rises, the mean strength of
Kozak regions of all minor TISs in initiating translation relative
to the strength of the Kozak region of the major TIS should
decline. To verify this prediction, we used translation initia-
tion strengths of various Kozak sequences measured in a re-
porter assay (Noderer et al. 2014; Diaz de Arce et al. 2018).
Indeed, a significant, negative correlation was observed in the
vast majority of human and mouse samples (supplementary
fig. S10, Supplementary Material online). This is true regard-
less of whether we considered all TISs observed or only those
that appeared in the downsampled data (supplementary fig.
S10, Supplementary Material online).

Our finding that, for most human and mouse genes, the
major TIS is likely selectively preferred, whereas all minor TISs
are likely unpreferred predicts that Kozak regions correspond-
ing to major TISs are evolutionarily constrained, whereas
those corresponding to minor TISs are unconstrained. To
verify this prediction, we merged all QTI-seq reads of five
independent human samples to determine the global major
and minor TISs of each gene. For each observed TIS, its Kozak
region is�6 toþ3 nucleotides, where the coordinates of the
start codon are 0 to þ2 (fig. 4A). For comparison, we define
pseudo-Kozak regions, which inmmediately flank but are on
the oppsoite strand of observed Kozak regions and contain a
potential start codon (AUG or one of its nine near-cognate
codons) at appropriate positions (fig. 4A). Pseudo-Kozak
regions presumbly do not initiate translation so are compa-
rable with Kozak regions in all aspects except natural selection
in relation to the function of translation initiation (fig. 4A; see
Materials and Methods). Because a Kozak region in the 50

UTR of a transcript may be located in the coding or intron
region of another transcript of the same gene, we considered
only Kozak regions that have never been annotated as coding
sequence, intron, or 30 UTR in any transcript; the same crite-
rion was used for pseudo-Kozak regions. The error hypothesis
predicts purifying selection acting on the Kozak regions of
major TISs but not on the Kozak regions of minor TISs nor
pseudo-Kozak regions. Purifying selection reduces the single-
nucleotide polymophism (SNP) density and derived allele
frequencies (DAFs) but increases the PhastCons conservation
score from among-mammal comparions (Siepel et al. 2005).

Note that we examine both intraspecific polymorphsims and
interspecific divergences, because the former is potentially
affected by selection of neighboring sites whereas the latter
is not. Indeed, on average, Kozak regions of major TISs have a
significantly lower SNP density (fig. 4B), a significantly lower
DAF (fig. 4C), and a significantly higher PhastCons score
(fig. 4D) than Kozak regions of minor TISs and pseudo-
Kozak regions, whereas no significant difference exists be-
tween the latter two regions in any of the three measures
(fig. 4B–D).

Although the above comparison takes the entire Kozak
region into consideration, variation in purifying selection
among sites within a Kozak region can also be informative.
Specifically, a functional Kozak region spans from the rela-
tively unconserved UTR (i.e., nucleotide positions�6 to�1)
to the relatively conserved protein-coding region (i.e., posi-
tions 0 to þ3) (fig. 4A). By contrast, a nonfunctional Kozak
region should not show this feature. To this end, we com-
pared SNP density, DAF, and PhastCons score between the
TIS codon and its immediate upstream (TIS-up) codon
(fig. 4A). As predicted by the error hypothesis, the difference
in SNP density between the TIS-up codon and the TIS codon
is significantly greater for Kozak regions of major TISs than for
Kozak regions of minor TISs and pseudo-Kozak regions,
whereas no significant difference is observed between the
latter two regions (fig. 4E). The same is true in terms of the
difference in DAF between TIS-up and TIS (fig. 4F).
Furthermore, the difference in PhastCons between TIS-up
and TIS is significantly more negative for Kozak regions of
major TISs than for Kozak regions of minor TISs and pseudo-
Kozak regions, whereas no significant difference is observed
between the latter two regions (fig. 4G), again consistent with
the error hypothesis of ATLI.

Non-AUG Initiation Is Generally Nonadaptive
As mentioned, in addition to AUG, its nine near-cognate
codons often serve as start codons (Peabody 1989; Ingolia
et al. 2011). Because some non-AUG initiations appear to
be beneficial (Gerashchenko et al. 2010; Starck et al. 2012,
2016), it has been proposed that non-AUG initiations gener-
ally increase the proteome diversity and are adaptive (Kearse
and Wilusz 2017). However, whether non-AUG initiations
generally reflect initiation errors or adaptations is unclear.
Although our above analyses suggest that most ATLI is non-
adaptive, they do not directly answer the question about
non-AUG initiations because our analyses were based on
TISs, not start codon identities. To this end, we followed
the analysis in figure 1 but lumped all TISs with the same
initiation codon identity (see Materials and Methods). Using
the supergene approach, we estimated start codon diversity
by the Simpson or Shannon index and the fractional use of
each of the ten possible start codons. Among 25 supergenes,
we observed a negative correlation between start codon di-
versity and median translational amount in HEK293 (fig. 5A)
as well as other human and mouse samples (fig. 5B).
Additionally, among the supergenes, only the fractional use
of AUG increases with the median translational amount,
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whereas the fractional use of each of the nine near-cognate
codons decreases with the median translational amount
(fig. 5C). Thus, it appears that only AUG is generally selectively
preferred as the start codon, whereas all nine near-cognate
codons are generally unpreferred.

We further examined individual genes to estimate the
prevalence of using a non-AUG codon as the major start
codon of a gene. In the nine samples examined, AUG is the
major start codon in 61.1% of genes on average (blue bars in
fig. 5D). In some genes, although AUG is not the major start
codon, the major start codon is not used significantly more
often than AUG (purple bars in fig. 5D). In only a small

fraction (on average �10%) of genes did we observe a signif-
icantly higher use of a non-AUG than AUG start codon (red
bars in fig. 5D).

Discussion
Genome-scale discoveries of abundant ATLI in mammals
(Ingolia et al. 2011; Fritsch et al. 2012; Lee et al. 2012)
prompted the prevailing view that ATLI generates proteome
diversity and regulate protein synthesis so is generally adap-
tive (Kochetov 2008; Bazykin and Kochetov 2011; Ivanov et al.
2011, 2017; Lee et al. 2012; Ingolia 2014, 2016; de Klerk and ’t
Hoen 2015; Kearse and Wilusz 2017). In this study, we

5'-------CCAAGGTCGCGCGACCATGGCCATCGTGGCTTACCGTAGCGCCACCATGG---------3'
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FIG. 4. Purifying selection on human Kozak regions of various TISs. (A) A schematic showing the Kozak region of a major TIS, Kozak region of a
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proposed and tested an alternative hypothesis that ATLI
arises largely from nonadaptive, translation initiation errors.
Analyzing genome-wide data of translation initiation in sev-
eral human and mouse cell line and tissue samples, we ob-
served that 1) the TIS diversity of a gene declines with its
translational amount, 2) the fractional use of the major TIS
increases, but that of each minor TIS decreases with the
translational amount, and 3) Kozak regions of major TISs
but not those of minor TISs are selectively constrained. The
first two observations also apply to the diversity of start co-
don identity. Together, these findings strongly support the
error hypothesis and refute the common view that ATLI is
generally adaptive. That ATLI is mostly deleterious does not
preclude its occasional adaptive use, as has been found in a

small number of cases (Strubin et al. 1986; Liu et al. 1999;
Brubaker et al. 2014; Zhang et al. 2018). But the general pat-
tern revealed in this study argues that ATLI should be con-
sidered nonadaptive unless proven otherwise.

It is reasonable to assume that the fractions of beneficial,
neutral, and deleterious ATLI for a gene before the action of
natural selection are independent of the gene’s translational
amount. Deleterious ATLI is expected to be purged by natural
selection, especially for genes with large amounts of transla-
tion. Assuming that deleterious ATLI has not been purged in
genes with the lowest translational amounts but has been
completely removed in those with the highest translational
amounts, we can treat the extent of ATLI of the most weakly
translated genes as the total ATLI (T) and that of the most

A B

C D

FIG. 5. Non-AUG initiation is generally nonadaptive. (A) Simpson or Shannon index of TIS codon diversity of a supergene in human HEK293 cells
declines with the median translational amount of genes belonging to the supergene. Each circle or triangle represents a supergene. (B) Spearman’s
correlation between translational amount and Simpson/Shannon index of TIS codon diversity among supergenes in each sample examined.
P< 0.01 for all correlations. (C) Spearman’s correlation between the fractional use of each of the ten possible start codons in a supergene and the
median translational amount of genes belonging to the supergene, shown by different colors. * indicates a statistically significant correlation
(P< 0.05). (D) Fraction of genes in each sample for which the most frequently used translation start codon is AUG (blue), is not AUG but the AUG
usage is not significantly lower than that of the most commonly used start codon (Q� 0.05; purple), and is not AUG and the AUG usage is
significantly lower than that of the most frequently used start codon (Q< 0.05; red), respectively. In (B) and (C), sample IDs listed in the X-axis refer
to those in supplementary table S1, Supplementary Material online.
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strongly translated genes as nondeleterious ATLI (ND). Thus,
the fraction of ATLI that is deleterious is (T � ND)/T¼ 1 �
ND/T. We used the Simpson index of TIS diversity to measure
the amount of ATLI because both the number of TISs and
their relative usages are considered. In figure 1C, the most
weakly translated supergene has a Simpson index of 0.76 (T),
whereas the most strongly translated supergene has a
Simpson index of 0.25 (ND). Hence, the fraction of deleterious
ATLI is 1� ND/T¼ 1� 0.25/0.76¼ 67%. A similar fraction of
deleterious ATLI (1 � 0.60/1.74¼ 66%) is estimated using
Shannon index of TIS diversity. If we compare 20 most weakly
translated genes with 20 most strongly translated genes (Xu
et al. 2019), the fraction of deleterious ATLI is �75%. Thus,
two-thirds to three quarters of ATLI are deleterious. Note that
the above estimate is conservative, because slightly deleteri-
ous ATLI may not have been fully removed by selection in the
most strongly translated genes and because some strongly
deleterious ATLIs may have been removed by selection even
in the most weakly translated genes. The above finding is
broadly consistent with our estimate that only 24.3% of genes
have evidence for different selectively favored TISs in different
cell types and explains why Kozak regions of minor TISs are
generally unconserved.

The negative correlation between the translational
amount of a gene and its ATLI diversity is a primary line of
evidence supporting the error hypothesis. One might argue
that this negative correlation can be explained if ATLI is
largely neutral or deleterious in genes with large amounts
of translation but adaptive in genes with low amounts of
translation. This hypothesis is at odds with multiple observa-
tions. For example, it could not explain why the average se-
lective constraint on the Kozak regions of minor TISs is not
greater than that on pseudo-Kozak regions. Previous studies
reported that the total number of upstream TISs of all genes
tends to be lower than expected by chance (Iacono et al.
2005; Lynch et al. 2005; Zur and Tuller 2013). We found
that this trend is also true for every bin after we stratified
genes by their translational amounts (supplementary fig. S11,
Supplementary Material online), supporting the lack of pos-
itive selection for ATLI even in genes with low translational
amounts.

Minor TISs in this study include both upstream and down-
stream TISs relative to the major TIS. Use of upstream TISs
leads to the translation of uORFs that are thought to suppress
the translation of the main ORF (Wethmar et al. 2014;
Johnstone et al. 2016). Our results suggest that this suppres-
sion is unlikely to be an adaptive strategy of translation reg-
ulation, because we found that the fractional use of upstream
TISs decreases with the translational amount of the gene
(supplementary fig. S7A–C, Supplementary Material online).
One might contend that this negative correlation could be a
result of uORFs’ repression of translation instead of a result of
natural selection against initiation error. This hypothesis is
untenable for two reasons. First, translation of uORFs sup-
presses translation but has only modest impacts on mRNA
concentrations (Calvo et al. 2009), so this hypothesis cannot
explain the strong negative correlation between upstream TIS
usage and mRNA concentration across genes (supplementary

fig. S7A–C, Supplementary Material online). Second, under
this hypothesis, an increase in the use of upstream TISs and
uORFs from 5% to 15% on average suppresses translation by
�100-fold (supplementary fig. S7D, Supplementary Material
online), but experimentally confirmed effect of uORF trans-
lation on the translational amount of the main ORF, based on
the comparison between constructs with and without the
uORF, is typically no more than 5-fold (Calvo et al. 2009).
Some authors observed the use of uORFs as a cellular re-
sponse to stress (Chen et al. 2010; Barbosa and Romao
2014; Gao et al. 2015), but this stress response may not be
adaptive; it could be a passive consequence of the disruption
of cellular homeostasis under stress (Ho and Zhang 2018).
Although several uORFs of mammals are evolutionarily con-
served (Churbanov et al. 2005; Chew et al. 2016; Spealman
et al. 2018), using uORFs as an adaptive strategy is unlikely to
be general (Churbanov et al. 2005; Neafsey and Galagan 2007),
because the number of upstream TISs and 50UTR length tend
to be lower than expected by chance (Iacono et al. 2005;
Lynch et al. 2005; Zur and Tuller 2013). Apart from upstream
TISs, some downstream TISs were reported to be evolution-
arily conserved, but such cases are rare (e.g., in �10.6% of
human genes) (Bazykin and Kochetov 2011). Thus, the pre-
vious studies are not inconsistent with our finding that ATLI
is largely nonadaptive.

Recent ribosome footprint mapping revealed that non-
AUG start codons are widespread (Ingolia et al. 2011; Lee
et al. 2012; Gao et al. 2015; Kearse and Wilusz 2017) and these
non-AUG initiations are thought to play special functional/
regulatory roles (Kearse and Wilusz 2017). Our results do not
support this adaptive view; instead, they suggest that most
non-AUG initiations are errors (fig. 5), consistent with the fact
that near-cognate non-AUG start codons have much lower
initiation efficiencies than AUG (Diaz de Arce et al. 2018). Our
conclusion, of course, does not preclude the existence of a
small number of cases where non-AUG initiations are bene-
ficial (Gerashchenko et al. 2010; Starck et al. 2012, 2016) or
non-AUG start codons are conserved (Ivanov et al. 2011;
Spealman et al. 2018).

It should be noted that we did not classify ATLI by how it is
generated. Leaky scanning, reinitiation, and IRES-dependent
initiation are well-known mechanisms of ATLI (Kochetov
2008). In addition, alternative transcriptional start and alter-
native splicing can provide different transcripts to the trans-
lation machinery to create additional ATLI (de Klerk and ’t
Hoen 2015). QTI-seq data do not allow differentiating among
these mechanisms. Hence, relative contributions of the vari-
ous mechanisms to translation initiation error remain
unknown.

Our results on ATLI echo recent findings about variations
in multiple steps of transcription and translation that gener-
ate transcriptome and/or proteome diversities, including, for
example, alternative transcriptional start (Xu et al. 2019), al-
ternative splicing (Saudemont et al. 2017), RNA editing (Xu
and Zhang 2014; Liu and Zhang 2018a, 2018b; Jiang and
Zhang 2019), alternative polyadenylation (Xu and Zhang
2018, 2020), translational stop-codon read-through (Li and
Zhang 2019), and posttranslational modification (Landry
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et al. 2009; Park and Zhang 2011). They have all been shown
to be largely the results of molecular errors instead of adaptive
regulations. Thus, despite the central importance of the pre-
cision of transcription and translation in cellular life, errors are
present and abundantly observed via modern high-
throughput sequencing technologies. Although the most
harmful errors have likely been suppressed by natural selec-
tion, many slightly deleterious errors still exist presumably
because selection against them is too weak and/or the cost
of removing these errors exceeds the benefit. The astonishing
imprecision of key molecular processes in the cell, revealed
here and elsewhere, contrasts the common view of an exqui-
sitely perfected cellular life and has fundamental implications
for our understanding of biology (Lynch 2007; Warnecke and
Hurst 2011; Lynch et al. 2014; Zhang and Yang 2015).

Materials and Methods

Translation Initiation Sites
In this study, we used QTI-seq data to identify TISs in human
and mouse. Unlike ribo-seq that captures all ribosome-
protected mRNA fragments, QTI-seq captures and sequences
only the mRNA fragments protected by initiating ribosomes;
QTI-seq outperforms other methods that identify TISs (Gao
et al. 2015).

We analyzed nine QTI-seq samples, including five human
samples and four mouse samples (supplementary table S1,
Supplementary Material online). QTI-seq reads were down-
loaded from the SRA database or provided by the original
authors. We used FastQC (https://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc/; last accessed March 13, 2020) to
control the data quality and used Trimmomatic (Bolger et al.
2014) to filter out low-quality reads when necessary. The fil-
tered reads with lengths between 25 and 35 nucleotides were
mapped to the human genome (hg19) or mouse genome
(mm9) with Ensembl gene annotation release 75 using
TopHat2 (Kim et al. 2013) with default parameters.
Nonuniquely mapped reads were discarded. Ribo-TISH,
which outperforms several established methods in both effi-
ciency and accuracy (Zhang et al. 2017), was employed to
identify TISs. Briefly, Ribo-TISH first evaluates data quality and
estimates the P-site position in a read, then utilizes data-
driven methods to model the background distribution of
QTI-seq data, and finally determines a TIS according to the
P or Q value (statistical significance before and after the con-
trol for multiple testing) calculated for each TIS from the
distribution (Zhang et al. 2017).

Translation can start from AUG or its near-cognate codons
that differ from AUG by one nucleotide (Peabody 1989;
Kearse and Wilusz 2017). Thus, only AUG and its near-
cognate codons are considered as true translation start
codons in the TIS prediction by Ribo-TISH. The coordinate
of the 50 most nucleotide of a translation start codon was
used to represent the TIS. In total, 114,655 and 69,517 TISs
found in at least one sample were identified for human and
mouse, respectively.

Translational Amount of a Gene
The number of QTI-seq reads of a gene is proportional to the
number of translational initiation events per unit time.
Because the number of initiation events should be propor-
tional to the number of protein molecules synthesized under
the assumption of equal probabilities of complete protein
synthesis among genes, the number of QTI-seq reads of a
gene is proportional to the number of protein molecules
synthesized per unit time (i.e., translational amount) for the
gene. To make the number of QTI-seq reads of a gene com-
parable among samples, we report the number of reads per
million total reads in the sample (RPM).

Because the number of translation initiation events per
unit time for a gene equals its mRNA concentration multi-
plied by the translation initiation rate per mRNA molecule,
mRNA concentration is strongly positively correlated with
the number of translation initiation events per unit time.
We used RNA-seq to measure mRNA concentrations and
downloaded RNA-seq data from SRA (supplementary table
S1, Supplementary Material online). Upon the quality control,
reads were mapped to human (hg19) or mouse (mm9) ge-
nome using TopHat2 (Kim et al. 2013). Fragment per kilobase
of transcripts per million mapped reads (FPKM) of a gene was
first calculated by cufflinks (Trapnell et al. 2012) and then
converted to TPM using the formula of TPM ¼ (FPKM �
106)/(sum of FPKM) (Li and Dewey 2011).

Statistical Methods for Correcting Unequal Surveys of
TISs among Genes
Due to different translational amounts among genes, their
TISs are not surveyed to the same depth by QTI-seq. To
remove the potential influence of this unequal survey, we
used two different approaches. The first is the supergene ap-
proach. Briefly, we first ranked all genes by their translational
amounts. We then grouped the genes into 25 bins represent-
ing 25 supergenes, requiring the total translational amount
per bin to be the same for all bins. Within a bin, reads from
the most commonly used TIS of each gene were combined to
represent reads of the most commonly used TIS of the su-
pergene. Similarly, reads from the second most commonly
used TIS of each gene were combined to represent reads of
the second most commonly used TIS of the supergene, and
so on. The supergene approach may not be usable under
certain circumstances (e.g., for a comparison between two
paralogous genes). Under these circumstances, we used the
second approach—downsampling. Briefly, we randomly
picked ten QTI-seq reads per gene from all genes with at least
ten reads unless otherwise mentioned to calculate TIS diver-
sities and fractional usages. The supergene approach is pre-
ferred over downsampling when both are usable, because the
former uses all data, whereas the latter uses only part of the
data.

Measures of TIS Diversity
Following our recent studies of alternative polyadenylation
and alternative transcriptional initiation (Xu and Zhang 2018;
Xu et al. 2019), we used the Simpson index (Simpson 1949)
and Shannon index (Shannon 1948) to quantify TIS diversity
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of each gene in a sample. Both indices are commonly used in
biodiversity researches and tend to rise with the number of
TISs as well as the evenness of the relative uses of these TISs,
but the Simpson index gives more weights to the frequently
used TISs than does the Shannon index. For a single gene,
Simpson and Shannon indices of TIS diversity are respectively
defined by 1�

PS
i ¼ 1 p2

i and�
PS

i ¼ 1 pi ln pi, where S is
the number of TISs in a gene and pi is the fractional use of the
ith TIS. When the above formulas are used to calculate the TIS
diversity of a supergene, S is the maximum number of TISs of
any gene belonging to the supergene, whereas pi is the sum of
the number of reads mapped to the TIS of rank #i of each
gene belonging to the supergene, divided by the total number
of reads mapped to all TISs of all genes belonging to the
supergene.

Computer Simulation
To confirm that the patterns observed in figure 1A–C are not
statistical artifacts, we performed computer simulations as
follows. We randomly generated each gene whose transla-
tional amount (measured by the total number of reads
mapped to all TISs of the gene) and relative TIS usages (mea-
sured by the numbers of reads mapped to various TISs of the
gene), respectively, follow the gene translational amount dis-
tribution and relative TIS usage distribution of the data from
HEK293. Specifically, the total read number of a simulated
gene was randomly sampled from the collection of actual
read numbers of all genes with replacement, whereas the
numbers of reads mapped to the TISs of the gene were mul-
tinomial random variables drawn according to the TIS usages
of a randomly picked real gene. We then analyzed the read
data from the simulated genes as if they were the actual data.

Distance in TIS Usage between Cell Lines
To measure the difference in TIS usage for a gene between
samples A and B, we used a net correlational distance defined
by dAB � 0.5dA � 0.5dB. Here, dAB equals 1 minus Pearson’s
correlation coefficient between samples A and B in the frac-
tional uses of all TISs of the gene, dA is the same as dAB except
that the two samples used are two QTI-seq bootstrap sam-
ples derived from sample A, and dB is the same as dAB except
that the two samples used are two QTI-seq bootstrap sam-
ples derived from sample B (Xu and Zhang 2018; Xu et al.
2019). We set zero usage in sample A for TISs found in sample
B only, and vice versa. The appropriateness of the distance
measure used here was previously confirmed (Xu and Zhang
2018).

Paralogs
Human paralogous genes were downloaded from Ensembl
(release 89; May 2017). We obtained 3,678 human gene fam-
ilies, including 51,657 pairs of human paralogous protein-
coding genes. We randomly selected from each gene family
only one paralogous pair that exhibits a 2-fold or greater
difference in translational amount to allow a sufficient statis-
tical power.

Kozak Strength
The Kozak strengths used were from studies reporting the
translation initiation efficiencies of all potential Kozak
sequences (Noderer et al. 2014; Diaz de Arce et al. 2018).
These studies combined fluorescence-activated cell sorting
and high-throughput DNA sequencing to measure the trans-
lation initiation efficiency associated with every start codon
(AUG and its nine neighbors) in combination with every
possible nucleotide sequence at the adjacent �4 to �1
andþ3 positions. The value of translation initiation efficiency
was relative to that of CACCAUGG, then multiplied by 100.
Each TIS identified by QTI-seq was assigned a Kozak strength
value according to its eight-nucleotide Kozak sequence. Here,
we considered eight nucleotides instead of the typical ten-
nucleotide Kozak region, because the above assay considered
only �4 to þ3 positions.

Conservation Score and Polymorphisms
To assess purifying selection acting on TISs and Kozak regions,
we downloaded from UCSC (http://hgdownload.cse.ucsc.
edu/goldenpath/hg19/phastCons46way/placentalMammals/;
last accessed March 13, 2020) PhastCons scores (Siepel et al.
2005) computed from genome alignments of 46 placental
mammals including the human (hg19). Human polymor-
phism data, including allele frequencies, from Interim Phase
3 of the 1000 Genomes project (Sudmant et al. 2015), were
downloaded from ftp://
ftp.1000genomes.ebi.ac.ukVol03707ftp/release/20130502/ on
June 29, 2018. This data set comprises the genotypes of
2,504 individuals from 26 populations and includes a total
of 78,136,341 autosomal SNPs. Only SNPs were included in
the analysis. The nucleotide observed at a SNP was catego-
rized as ancestral if it is the same as the nucleotide of the “AA”
field in the polymorphism VCF file; other nucleotides at the
SNP are derived. The DAF at a SNP is the frequency of the
derived allele at the SNP.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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