Skip to main content
. Author manuscript; available in PMC: 2021 Feb 1.
Published in final edited form as: Med Image Anal. 2020 Dec 16;68:101908. doi: 10.1016/j.media.2020.101908

Table 1:

Comparison of performance of GMIC and the baselines on NYUBCS. For both GMIC and ResNet-34, we reported test AUC (mean and standard deviation) of top-5 models that achieved highest validation AUC in identifying breasts with malignant findings. We also measure the total number of learnable parameters in millions, peak GPU memory usage (Mem) for training a single exam (4 images), time taken for forward (Fwd) and backward (Bwd) propagation in milliseconds, and number of floating-point operations (FLOPs) in billions.

Model AUC(M) AUC(B) #Param Mem(GB) Fwd/Bwd (ms) FLOPs
ResNet-34 0.736 ± 0.026 0.684 ± 0.015 21.30M 13.95 189/459 1622B
ResNet-34-1 × 1 conv 0.889 ± 0.015 0.772 ± 0.008 21.30M 12.58 201/450 1625B
DMV-CNN (w/o heatmaps) 0.827 ± 0.008 0.731 ± 0.004 6.13M 2.4 38/86 65B
DMV-CNN (w/ heatmaps) 0.886 ± 0.003 0.747 ± 0.002 6.13M 2.4 38/86 65B
Faster R-CNN 0.908 ± 0.014 0.761 ± 0.008 104.8M 25.75 920/2019 -3
GMIC-ResNet-18 0.913 ± 0.007 0.791 ± 0.005 15.17M 3.01 46/82 122B
GMIC-ResNet-34 0.909 ± 0.005 0.790 ± 0.006 25.29M 3.45 58/94 180B
GMIC-ResNet-50 0.915 ± 0.005 0.797 ± 0.003 27.95M 5.05 66/131 194B
GMIC-ResNet-18-ensemble 0.930 0.800 - - - -
GMIC-ResNet-34-ensemble 0.920 0.795 - - - -
GMIC-ResNet-50-ensemble 0.927 0.805 - - - -