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Abstract: Mesenchymal stromal/stem cells (MSCs) are multipotent adult stem cells that support
homeostasis during tissue regeneration. In the last decade, cell therapies based on the use of MSCs
have emerged as a promising strategy in the field of regenerative medicine. Although these cells
possess robust therapeutic properties that can be applied in the treatment of different diseases,
variables in preclinical and clinical trials lead to inconsistent outcomes. MSC therapeutic effects result
from the secretion of bioactive molecules affected by either local microenvironment or MSC culture
conditions. Hence, MSC paracrine action is currently being explored in several clinical settings
either using a conditioned medium (CM) or MSC-derived exosomes (EXOs), where these products
modulate tissue responses in different types of injuries. In this scenario, MSC paracrine mechanisms
provide a promising framework for enhancing MSC therapeutic benefits, where the composition of
secretome can be modulated by priming of the MSCs. In this review, we examine the literature on the
priming of MSCs as a tool to enhance their therapeutic properties applicable to the main processes
involved in tissue regeneration, including the reduction of fibrosis, the immunomodulation, the
stimulation of angiogenesis, and the stimulation of resident progenitor cells, thereby providing new
insights for the therapeutic use of MSCs-derived products.

Keywords: Mesenchymal stromal/stem cells; priming; paracrine mechanism; cell-free therapies;
regenerative medicine

1. Introduction

Mesenchymal stromal/stem cells (MSCs) belong to the pool of adult stem cells that, in
a specific microenvironment termed the “stem cells niche”, support tissue regeneration
in both physiologic and pathologic conditions contributing to tissue homeostasis [1–3].
These cells can increase their own compound [4] and replace individual components of
the microenvironment by differentiating or attracting supporting cells to a niche [1–3]. It
has been shown that in tissues such as intestine and skin, MSCs support a high cellular
turnover [5,6]. In contrast, in other tissues such as skeletal muscle, MSCs are considered
adult stem cells that support regeneration after injury, even if they marginally contribute to
myofiber renewal during physiologic turnover [7]. Indeed, MSC-like cells with adipogenic
phenotype resident in the muscles are quiescent in intact tissue, but get activated in injured
ones, providing a momentary source of key factors that induce proliferation of myogenic
progenitor cells. Thus, these MSCs that normally have adipogenic potential, when injury-
activated, can stimulate the differentiation of the myogenic progenitor’s cells supporting
tissue repair [3,8]. A similar phenomenon has been shown in skin tissue, where MSC-like
adipose precursor cells within the skin appear to be crucial for epithelial cell regulation [9].
Therefore, MSCs can be considered as key regulatory components in the regenerating stem
cell niche (Figure 1).
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Figure 1. Role of mesenchymal stromal/stem cells (MSCs) in tissue injury and repair. After injury, the damaged tissue 

activates MSCs through different inflammatory signals (IL-1β, IFN-γ, TNF-α, LPS; hypoxia). MSC activation leads to co-

ordination of the microenvironment by both the production of immunomodulatory factors (to modulate the progression 

of inflammation) and the production of growth factors which subsequently stimulate endothelial cells, fibroblasts cells 

and tissue progenitor cells. The physiological and orderly action of these factors allows tissue repair through angiogenesis, 

remodeling of the extracellular matrix (ECM) and functional tissue restoration through tissue progenitor cells differentia-

tion. 

Tissue injury

Cells of the
immune system

A
ct

iv
at

in
g

fa
ct

o
rs

IL
-1
α

; I
L-

1β
; I

L-
17

A
;

IF
N

-γ
; T

N
F-
α

; 
LP

S;
  h

yp
o

xi
a.

Activation of MSCs

Im
m

u
n

o
regu

lato
ry

facto
rs

Fibroblast

Tr
o

p
h

ic
Fa

ct
o

rs

ECM

P
ro

lif
er

at
io

n
an

d
 

d
if

fe
re

n
ti

at
io

n

Tissue
progenitor cells

Endothelial cells

A
n

gi
o

ge
n

es
is

Proteins

microRNAs

Exosomes

Figure 1. Role of mesenchymal stromal/stem cells (MSCs) in tissue injury and repair. After injury, the damaged tissue
activates MSCs through different inflammatory signals (IL-1β, IFN-γ, TNF-α, LPS; hypoxia). MSC activation leads to
coordination of the microenvironment by both the production of immunomodulatory factors (to modulate the progression
of inflammation) and the production of growth factors which subsequently stimulate endothelial cells, fibroblasts cells and
tissue progenitor cells. The physiological and orderly action of these factors allows tissue repair through angiogenesis,
remodeling of the extracellular matrix (ECM) and functional tissue restoration through tissue progenitor cells differentiation.

These findings provide a robust rationale to investigate the role of MSCs as a therapeu-
tic product to support tissue injury responses in different diseases. MSCs are multipotent
cells with easy accessibility, few ethics-related issues, and higher adaptability to in vitro
cultures for expansion. Unlike pluripotent stem cells, multipotent MSCs have a limited
self-renewal capacity [10]. In light of this, in recent years the “stem” cell definition has
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been changed to “stromal” in order to give a more appropriate connotation to describe
MSCs. Furthermore, these cells are immuno-privileged due to their low expression of
CD40, CD80, CD86 and major histocompatibility complex I (MHC I), as well as the lack
of MHC II expression [11–14]. These features make these cells a very useful tool for cell
therapy in the field of regenerative medicine.

MSCs are found in several tissues, including bone marrow (BM) [15], adipose tissue
(AT) [16], umbilical cord (UC) [17], dental pulp [18] and placenta [19], where these cells
are surrounded by different cell types such as immune cells, epithelial cells, endothelial
cells and stromal cells, and can exhibit immunomodulatory [20,21], angiogenic [22,23] and
anti-oxidative properties [24]. Over the past decade the therapeutic action of MSCs has
been investigated in several clinical trials for the treatment of many disorders including
cardiovascular, neurodegenerative, immune, lung, liver, kidney and orthopedics diseases
(clinicaltrials.gov). In these cases, MSCs have been shown to have moderate or poor
efficacy, and the results from different clinical trials are controversial [25–29], indicating
an urgent need to optimize the therapeutic use of MSCs or to enhance MSC potency. This
inconsistent evidence is potentially related both to intrinsic differences in the use of cell-
based products and to the lack of standardized methods for MSC production that affects
their potency. MSC effects depend both on tissue source [30,31] and on how they are
produced and administered. Indeed, it has been shown that the composition of MSCs
secretome can be modulated by preconditioning of MSCs with hypoxia and cytokines
treatments, as well as the growing of MSCs under specific culture systems, including three-
dimensional (3D) culture conditions [32–35]. In response to MSC “priming”, the production
of factors is switched towards an anti-inflammatory and pro-trophic phenotype that results
in a homeostatic regulation of tissue regeneration/repair [36,37]. Currently, it is often
stated that the efficacy of MSCs therapies is probably not related to cell engraftment and
replacement but is linked to the production of crucial paracrine factors, such as cytokines,
growth factors, and exosomes (EXOs), that regulate the cell niche for their regeneration.
Indeed, in response to specific stimuli, MSCs are activated and can secrete a plethora of
regulating factors that affect tissue injury responses in a transitory and paracrine manner
to orchestrate the repairing tissue processes [20,38–44]. In a different model of injury it
has been shown that MSCs, mainly triggered by inflammation processes, induce tissue
regeneration/repair by cell niche empowerment/regulation [45–47]. In these cases, in an
inflammatory-injured tissue, MSC effects were mediated by paracrine mechanisms that lead
to regulation of fibrosis, immunomodulation, stimulation of angiogenesis and stimulation
of resident cells to coordinate both tissue regeneration and function recovery [37,48–52].
Therefore, due to the regenerative potential and trophic properties of specific MSC-derived
products, such as the conditioned medium (CM) and EXOs, these products have emerged
as possible therapeutic tools with numerous applications and are consequently being
extensively evaluated for medical use [53–55]. In addition, the clinical application of MSC-
derived products must be considered for their advantages as opposed both to the lack
of safety in the long-term use of MSCs and the risks related to transmission of infection
diseases, such as some viruses found in the transplanted allogenic cells.

In order to make the clinical application of MSC-derived products advanced in the
field of regenerative medicine, the first point is to optimize the therapeutic strategies by the
identification of the best way to prime MSCs and to improve their regenerative properties.
This review focuses on promising cell priming methods that enhance paracrine therapeutic
properties of MSCs in the main processes of tissue regeneration, such as angiogenesis,
immunomodulation, fibrosis and stimulation of tissue resident cells.

2. Main MSC Priming Strategies to Enhance the Production of Key Factors that
Stimulate Resident Cells for Tissue Regeneration/Repair

As mentioned above, MSC preconditioning has been considered an important tool to
improve the effects of MSCs in regeneration and repair of injured tissues. The different
priming strategies have been implemented according to the cell types that needed to be
targeted in the injured tissues. Indeed, while the priming of MSCs with pro-inflammatory
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cytokine and 3D cultures has been mainly tested to modulate the inflammation and stim-
ulate the angiogenesis in injured tissues, hypoxia has been applied as the major priming
method of MSCs in order to enrich their CM with soluble factors involved in the stimulation
of resident cells, such as parenchymal and tissue-specific stem cells. Thus, in the following
paragraph we will focus our attention on the literature defining the role of preconditioned
MSCs and the identified soluble factors which were associated with the stimulation of
tissue-specific resident cells.

It has been shown that in hypoxia conditions MSCs up-regulated several factors that
contributed to hepatocyte proliferation in vitro and liver regeneration in vivo in hepatec-
tomized mice [56]. In this work, Lee and collaborators demonstrated that the MSC-derived
CM was enriched in factors including interleukin 6 (IL-6), tumor necrosis factor alpha
(TNF-α), hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF),
and this secretome was able to increase proliferating cell nuclear antigen (PCNA) and Ki67
expression as well as markers of liver regeneration, such as signal transducers and activa-
tors of transcription 3 (pSTAT3), and down-regulation of suppressor of cytokine signaling
3 (SOCS3) [56]. Similarly, Yu and colleagues showed that the CM derived from hypoxia-
induced MSCs promoted liver regeneration through VEGF signaling [57]. Another study
from Leroux and co-workers showed that hypoxia preconditioning of MSCs improved
the survival of engrafted MSCs in a mouse hindlimb ischemia model. Furthermore, the
authors clearly showed that hypoxic MSCs, among others, stimulated the differentiation of
resident myoblast via Wnt4 soluble factor release in a paracrine manner [58]. Recently, in
an in vivo model of myocardial infarction, Hu and co-workers demonstrated that hypoxia
preconditioned MSCs inhibited cardiac apoptosis and stimulated cardiomyocytes prolifera-
tion [59]. Furthermore, it has been shown that EXOs from hypoxic MSCs were enriched in
miR-26a which, in turn, activated Wnt signaling to promote cardiomyocyte survival in a
rat model of cardiac ischemia-reperfusion [60].

Hypoxia priming of MSCs has been shown to promote neurogenesis in a rat model
of traumatic brain injury. In particular, Chang and colleagues demonstrated that the CM
derived from hypoxia-treated MSCs was enriched in soluble factors including HGF and
VEGF which, in turn, stimulated the proliferation of neuronal cells in rat peri-ischemic
brain regions [61]. However, the author speculated that other undefined soluble factors
in the hypoxic preconditioned MSC CM might be involved in the rescue of the neural
phenotype. In a similar manner, it has recently been demonstrated that hypoxic MSCs
enhanced axonal survival compared to normoxia culture conditions in a rat model of spinal
cord injury [62].

The role of MSC priming with regard to pro-inflammatory cytokine has also been
explored in the tissue regeneration. Indeed, as inflammation normally occurs after bone
injury, it has been suggested that cytokine treatment might stimulate stem cell osteogenic
differentiation. For instance, tumor necrosis factor alpha (TNF-α)-preconditioned CM
from MSCs has been shown to improve bone regeneration in vitro by up-regulating bone
morphogenetic protein 2 (BMP2) and thus stimulating cell proliferation and the expres-
sion of differentiation markers, such as runt-related transcription factor 2 (Runx2) and
Collagen I [63]. Furthermore, the authors clearly demonstrated that the above described
effects were associated with EXOs contained in the CM. In particular, TNF-α precondition-
ing stimulated MSCs to increase Wnt3a levels in the EXOs that, in turn, further improved
cell proliferation and bone differentiation when compared to CM from unconditioned
MSCs [64]. Regenerative properties of MSCs on bone were also shown by Novais et al.
who demonstrated that both basic fibroblast growth factor (bFGF) and hypoxic priming im-
proved MSCs proliferation and osteogenic differentiation resulting in the repair of critical
size calvarial bone defects created in nude mice [65].

The priming of MSCs with small molecules also represents a promising therapeutic
strategy for the treatment of neurodegenerative diseases. Indeed, the preconditioning
of MSCs with cyclic AMP (cAMP), bFGF, platelet-derived growth factor (PDGF) and
Heregulin β1 stimulates MSCs to secrete different neurotrophic factors (NTF), includ-
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ing glial-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF),
VEGF and HGF [66]. In vivo studies showed that MSCs secreting NTF have protective
effects in several animal models of neurodegenerative diseases, such as Parkinson’s disease,
multiple sclerosis and Huntington’s disease [67–69], where, after MSCs administration,
marked improvements of diseases were shown. Moreover, Linares et al. showed that
preconditioning of MSCs with lithium and valproic acid (VPA) exerted neuroprotective
effects. Actually, in transgenic mice with Huntington’s disease, primed MSCs adminis-
tered intranasally migrated into the brain, improving motor and behavior performance,
decreasing neuronal death and reducing huntingtin aggregates in the striatum [70].

In the field of regenerative medicine, a critical discussion is focused on the the fact that
endogenous MSCs undergo senescence, with consequent reduction of the immunomodu-
latory and wound-healing properties of those cells [71,72]. These aging-related declines
can be attributed to the intrinsic aging of stem cells [73] as well as to aging-related modifi-
cations of both the extracellular matrix and stem cell niche [74,75]. Overall, these tissue
alterations reduce MSC self-renewal, maintenance and regenerative potential, and these
dysfunctional processes have been implicated in frailty syndrome [76], which is charac-
terized by declines in both health and function of organs/tissues. To date, there is no
specific therapy available to prevent or treat frailty syndrome and, in this respect, MSCs
could represent a potential tool to ameliorate or improve frailty. MSC treatments are safe
in older/frail patients [77,78], where pro-inflammatory cytokines such as TNF-α, IL-6 and
C-reactive protein (CRP) increased during aging [76]. Interestingly, it has been shown
that, in an inflammatory environment typical of frailty patients, MSCs were primed to
show anti-aging effects because they are able to reduce the expression of pro-inflammatory
cytokines [79,80]. Moreover, some clinical trials (e.g., NCT02065245 and NCT04174898) in-
vestigated the safety and efficacy of intravenous infusion of MSCs as an innovative therapy
for treating frailty patients and, in this setting, also testing the infusion of preconditioned
MSCs to obtain superior results could be greatly interesting.

On the whole, these studies clearly suggest the importance of preconditioning MSCs in
improving their impact on organ/tissue regeneration and repair. However, up to now little
information has been available on the effects of preconditioned MSCs on parenchymal and
tissue stem cells. We are still far from a clear understanding of the underlying molecular
mechanisms, so it is now crucial to better define the paracrine factors released by MSCs
that mediate the effects on proliferation and differentiation of tissue resident cells.

3. Main MSC Priming Strategies to Enhance the Production of Angiogenic Factors

MSCs became very appealing because of the clinical promise for tissue repair in re-
generative medicine [52] and, for that reason, they are used in a high number of clinical
trials [28]. The therapeutic benefits of MSCs have also been referred to the large number of
molecules they secrete in response to specific stimuli, which then exert paracrine effects
upon neighboring cells and tissues [81]. Among the therapeutic properties of MSCs, the
angiogenic ones have been extensively studied because of their significance in many patho-
logical conditions such as myocardial infarction, brain injury and limb ischemia [31,56,57].
The totality of soluble factors, mostly growth factors and cytokines, and including a vesic-
ular component (including EXOs) carrying proteins, lipids and genetic material [82], is
known as the secretome [83] and is considered to be responsible for the paracrine effects of
MSCs on tissue regeneration processes including angiogenesis.

It has been postulated that the angiogenic potential of MSCs differs as a consequence
of their original tissue (Wharton’s Jelly (WJ), AT and BM) due to the composition and
concentration of angiogenic factors [30]. However, there are conflicting studies arguing that
different sources of MSCs show different angiogenic effect. Previously, it has been reported
that the AT-MSCs produce a higher expression of the angiogenic factors such as VEGF,
insulin-like growth factor 1 (IGF-1) and IL-8, as well as matrix metalloproteinase-3 (MMP3)
and MMP9, thus showing a greater angiogenic potential compared to BM-MSCs [84].
In contrast, a study published in 2019 on a proteomic analysis among different MSC
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secretomes assessed that BM-MSCs’ CM and WJ-MSCs’ CM retained higher angiogenic
profiles when compared with the AT-MSCs’ CM because of higher expression of AKT
serine/threonine kinase 1 (AKT1) and bFGF [85]. The fact that the paracrine activity is not
consistent across different samples may be explained by the different sources (neonatal
versus adult) and by a lack of standardization of culturing techniques. To solve these
problems, in recent years, priming approaches to activate and generate MSC products with
improved potential for different clinical applications have been investigated.

Among the soluble factors with angiogenic potential, MSCs secrete high levels of VEGF,
transforming growth factor beta (TGF-β), HGF, IL-8, bFGF, monocyte chemoattractant
protein 1 (MCP-1) and IL-6, as well as a lot of microvesicles carrying non-coding RNAs
(ncRNAs) such as microRNAs (miRNAs) with angiogenic function [86,87]. Considering the
in vivo MSC niche conditions that occur during tissue injury, hypoxia priming has been used
as the main priming strategy to lead MSCs towards a pro-angiogenic phenotype [88–96].

Gorin et al. proved that bFGF and/or hypoxia can be considered as priming treat-
ments capable of enhancing VEGF release and improving the angiogenic potential of
MSCs [97]. Moreover, hypoxia-primed MSCs up-regulated VEGF and enhanced signifi-
cantly angiogenesis when injected into the pulp cavities of rabbit molars [98]. Leroux et al.
demonstrated that MSCs cultured under hypoxic conditions had increased high angiogenic
and regenerative potentials via a paracrine wnt-dependent mechanism [58] and Xue et al.
demonstrated that, in MSCs, hypoxia enhanced angiogenetic potential up-regulated the
VEGF and protein kinase A (PKA) signaling pathway [99]. MSCs primed with hypoxia also
showed increased expression of adhesion molecules, including fibronectin 1, E-cadherin,
N-cadherin and integrins, crucial proteins for angiogenesis processes [100]. Moreover,
hypoxic preconditioning increased MSC angiogenic properties via the HIF-1α-GRP78-Akt
axis and an increased secretion of aforementioned factors such as VEGF, HGF and bFGF in
a murine model of hindlimb ischemia [101]. Hypoxic priming increases hypoxia-inducible
factor 1-alpha (HIF-1α) in MSCs that produce a conditioned medium enriched by VEGF
that lead to migration and tube formation from HUVECs [102].

Interestingly, Han et al. showed that hypoxia treatment enhances MSC survival
and their angiogenic properties through unusual mechanisms. In particular, the authors
demonstrated that hypoxia preconditioning induced up-regulation of cellular prion protein
(PrPC), which, in turn, enhanced MSCs proliferation via PrPC-dependent JAK2/STAT3
activation and inhibited oxidative stress-induced apoptosis via PrPC-dependent inacti-
vation of cleaved caspase-3. Moreover, when those cells were administered to a murine
hindlimb ischemia model, an improvement of functional recovery of the ischemic tissue
and neovascularization were observed, and the levels of epidermal growth factor (EGF),
VEGF, FGF and HGF were significantly higher in ischemic tissue treated with primed MSCs
compared to control group [103].

As described above, secreted EXOs are another angiogenic action mechanism of
MSCs [96,104] acting as cargo of miRNAs [105]. The importance of miRNAs as regulators
for translation, RNA splicing and gene expression rely on the impact they can exert on host
pathways [106]. Kane et al. in 2014 indicated miRNAs as being important regulators of
angiogenesis [107] and many studies are related to the presence of miRNAs in MSCs’ secre-
tome. Krawczenko et al. have recently demonstrated that four pro-angiogenic miRNAs,
miR-126, miR-296, miR-378 and miR-210, were found to be highly expressed in microvesci-
cles from MSCs, while there was a low expression of anti-angiogenic miRNAs such as
miR-221, miR-222 and miR-92a [86]. Interestingly, in MSCs, hypoxia preconditioning in-
duced up-regulation of miR-675 and subsequent angiogenic response by decreasing HIF-1α
negative regulators and increasing VEGF secretion and VEGF receptor 1 expression [108].
Gonzalez-King and colleagues showed that MSCs overexpressing HIF-1α secrete higher
amounts of EXOs compared to control MSCs, and these EXOs had increased angiogenic
capacity and overexpressed different miRNAs implicated in angiogenesis processes, in-
cluding miR-15, miR-16, miR-17, miR-31, miR-126, miR-145, miR-320a and miR-424 [109].
Furthermore, Zhu et al. demonstrated that hypoxia priming of MSCs induced the produc-
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tion of angiogenic EXOs that improved cardiac repair through miR-125 in a mice model
of myocardial infarction [110]. There is very little information about MSC-derived ncR-
NAs modulating angiogenesis, and the strategy of priming MSCs to modulate functional
ncRNAs to improve angiogenic potential of MSCs is very attractive.

4. Main MSC Priming Strategies to Enhance the Production of Immunomodulatory Factors

MSCs can modulate the functions of all immune cells, including T and B lymphocytes,
natural killer cells, monocyte/macrophages, dendritic cells and neutrophils [111]. T and B
cells, activated to execute their effector functions, are the primary mediators of different
inflammatory and autoimmune diseases as well as being active in transplant rejection
mechanisms and graft-versus-host disease [112]. In this context, MSCs exert a regulatory
function on both T and B lymphocytes [113,114]. Concerning inflammatory cells, MSCs
can reduce, or even inhibit neutrophils and macrophages infiltration [115], attenuate the
cytotoxic activity of NK cells [116], inhibit the differentiation of dendritic cells [117] and
induce the switch of monocytes from the pro-inflammatory M1 phenotype to an anti-
inflammatory M2 phenotype [20].

There are several pieces of evidence that show that the immunomodulatory effects of
MSCs may be mediated by paracrine factors, rather than a direct cellular action [86,92,93],
and that the anti-inflammatory properties of MSCs can be enhanced to promote the efficacy
of immunomodulation as a therapeutic strategy in the field of regenerative medicine.

The finest way of optimizing MSC action is their preconditioning (MSC priming), by
which MSCs increase their survival rate and enhance their secretory activity [118]. The most
commonly used way to prime MSCs for the improvement of immunomodulatory functions
is their pre-activation with cytokines. MSCs primed with a variety of cytokines are enabled
to produce different functional factors which exert specific immunomodulatory effects.

It has been shown that, using IL-17, MSCs increase the production of IL-6, which sup-
press T cell proliferation and inhibits Th1 cytokines production [119]. Instead, when primed
with interferon gamma (IFN-γ), MSCs mainly produce indoleamide 2,3-dioxygenase (IDO)
(a crucial factor able to suppress lymphocytes proliferation) [120], and also secrete key reg-
ulators of immunomodulation, such as prostaglandin E2 (PGE2), HGF, TGF-β and MCP-1.
Furthermore, an increase of MHC I and II expression and of co-stimulatory molecules was
also showed [121]. Interestingly, Sivanathan et al. proposed that unlike MSC-primed with
IFN-γ, the priming with IL-17 enhances T cell immunosuppression but not their immuno-
genicity, showing no induction of MHC I/II and T cell co-stimulatory molecule CD40 [122].
In the same work, functional studies revealed that MSCs primed with IL-17 showed higher
immunosuppressive potential against T cells proliferation not due to IDO, prostaglandin-
endoperoxide synthase 2 (COX-2) or TGF-β, but due to increased IL-6 expression [122].
Redondo-Castro et al. showed that when MSCs were primed simultaneously with IL-1α/β,
TNF-α and IFN-γ, these cells were able to produce granulocyte colony-stimulating factor
(G-CSF), a growth factor which has a strong anti-inflammatory effect on LPS-activated
microglia cells [36]. English et al., simultaneously co-treating IFN-γ and TNF-α, induced
MSCs to produce both IDO and PGE2, with the result of inhibiting in vitro the allogeneic
mixed lymphocyte reaction (MLR) [123].

Preconditioned MSCs are also able to induce the polarization of monocytes towards
an anti-inflammatory phenotype. Indeed, MSCs stimulated with the cocktail IFN-γ/TNF-
α/LPS or with IFN-γ/IL-1β produced respectively PGE2 [124] or IL-6 [125], and both
factors were able to induce the switch of monocyte from the pro-inflammatory M1 phe-
notype to an anti-inflammatory M2 phenotype. The same result has been obtained by
priming MSCs only with IFN-γ. In this case, these cells produced EXOs containing different
miRNAs (miR-23a, miR-26b, miR-125b, miR-130b, miR-140, miR-203a, miR-223, miR-224
and miR-320a) which not only act on monocyte polarization (switch of M1 phenotype to
M2 phenotype), but also on T cells anergy induction [20]. Moreover, miRNAs delivered
by EXOs that have both antiseptic and M2 monocytes polarization capacities have been
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shown to be produced by different kind of MSCs primed with IL-1β. Among these, miR-21
is produced by almost all IL-1β-primed MSCs [126] and miR-146a from UC-MSCs [127].

Apart from cytokines priming, specific culture conditions such as 3D cultures (cells
grown as spheroids) can also affect MSC immunomodulatory activity. Indeed, MSCs
grown as spheroids become able to produce high levels of IDO that has a strong in vitro
antiproliferative effect on T cells [128]. Moreover, placenta-derived MSC spheroids secrete
high levels of PGE2, HGF and leukemia inhibitory factor (LIF) [35] which can suppress
pro-inflammatory M1 macrophages inducing M2 macrophages phenotypes [129–131].
Therefore, cytokine-mediated conditioning and/or 3D culture of MSCs may be considered
as useful strategies to improve immunosuppressive properties maximizing the therapeutic
effects of MSCs.

5. Main MSC Priming Strategies to Enhance the Production of Anti-Fibrotic Factors

Organ fibrosis represents the common consequence of functional cell replacement
by fibrotic tissue, resulting in the reduction of the organ performance. Fibrosis involves
many organs degenerating into numerous diseases, such as liver cirrhosis, kidney and
myocardial fibrosis.

MSCs have been considered as a promising tool for treatment of various disorders
including fibrosis. Indeed, while inflammation and fibrosis have a very close reciprocal
relationship and MSCs have a strong immunomodulatory capacity, these cells appear to be
tools capable of regulating fibrosis in many compartments.

The paracrine effect of MSCs in cardiac fibrosis was observed more than a decade ago,
in a study in which MSC antifibrotic properties were linked to the regulation of matrix
metalloproteinases (MMPs) [132]. In this work, Mias et al. showed that, in a rat model,
MSC injection significantly improved morphological and functional cardiac parameters after
myocardial infarction (MI). In particular, they demonstrated that CM from MSCs reduced
the collagen secretion and increases the activity of MMP2 and MMP9 in cardiac fibroblasts.
These processes prevent fibrosis by reducing collagen accumulation and consequently the
fibrotic deposition of the extracellular matrix [132]. MSC effects have been also evaluated in
a rat model of diabetic cardiomyopathy, in which uncontrolled diabetes was characterized by
a long-term complication leading to myocardial fibrosis [133]. In this work, starting from the
observation that PGE2 is secreted by MSCs during inflammation and immune response, the
authors demonstrated the key role of this factor in fibrosis by using PGE2-deficient MSCs.

Interestingly, many MSCs priming methods, such as treatment with IFN-γ [20,121],
IL-17 [122], TNF-α [134] and the growth of MSCs as spheroids [35,135], are able to up-
regulate both MMPs and PGE2. Furthermore, different studies are evaluating hypoxia as
a priming strategy to improve MSC potential in fibrosis inhibition [136]. In particular, a
recent work in a mouse model of liver fibrosis demonstrated that hypoxia-primed MSCs
(H-MSCs) enhanced PGE2 expression [137]. They also showed increased levels of miR-210
in H-MSCs and this miRNA played different roles in fibrosis processes such as suppression
of apoptosis, arrest of cell proliferation and repression of mitochondria respiration [137].

In an injured liver tissue, several pro-fibrotic factors such as TGF-β, PDGF and IL-4
are secreted by resident tissue cells or immune cells, playing a crucial role in the activation
of hepatic stellate cells (HSCs), which are important for the production of extracellular
matrix in the liver [138]. Moreover, macrophages also play a central role in liver fibrosis,
in which during hepatic fibrogenesis, pro-inflammatory M1 macrophages secrete pro-
fibrogenic factors such as TGF-β, PDGF and MCP-1 [139,140]. In the liver, antifibrotic
activities of MSCs were attributed to either direct or indirect effects on HSCs. Indeed,
MSCs can migrate towards liver injured sites where they are exposed to inflammatory
cytokines and secrete many paracrine factors (e.g., PGE2, IDO, IL-6, IL-10), including
EXOs, resulting in the suppression of immune cells that are responsible for the fibrosis
process [141,142]. In this regard, it has been shown that MSCs primed with IFN-γ increased
their production of PGE2, IDO, IL-6 and IL-10 and produced EXOs containing specific
miRNAs capable of inducing immunomodulation by inhibiting PBMC proliferation and
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inducing the macrophage M2 phenotype [20]. Therefore, although it has not been proven
yet, MSC priming with INF-γ could represent a very important strategy to enhance the
therapeutic antifibrotic potential of MSCs in liver fibrosis.

Otherwise, genetic engineering has been used to potentiate the antifibrotic activity of
MSCs. In particular, MSC-derived EXOs loaded with miR-19 have been used in MI mouse
models [143]. This miRNA has been demonstrated to reduce cardiac fibrosis and enhance
the recovery of cardiac function in mouse models [144]. In this way, priming methods
such as hypoxic treatment have also been used to induce miR-125 expression in MSC-
derived EXOs [110]. In particular, normoxia-conditioned MSC-derived EXOs (N-EXOs)
and hypoxia-EXOs (H-EXOs) have been tested in MI mouse models. The MSC H-EXOs
have an enhanced ability to recover the cardiac function when compared to N-EXOs and
this gain of function was ascribed to the presence of EXO-derived miR-125. Indeed, after
miRNA silencing (KO), the mice treated with mi-R125ko-H-EXOs showed an increase in
the fibrotic area of the MI compared to normal H-EXOs EXOs [110]. The antifibrotic action
of this miRNA has also been demonstrated in the liver where miR-125 reduces liver fibrosis
by increasing the autophagy [145].

In vivo, liver injured tissue promotes inflammatory processes that stimulate MSCs to
release various growth factors and cytokines such as HGF, EGF, IL-6 and TNF-α [146], and
among them, HGF plays a well-established role in liver pathogenesis by attenuating liver
fibrosis in various in vivo models [147–150]. Starting from this observation, engineered MSCs
overexpressing HGF have been used in a rat model of liver fibrosis. In this model, the effect
of modified MSCs was clearly enhanced compared to normal MSCs, with the consequent
enhancement of antifibrotic activity [151]. A similar approach was used in an MI mouse
model [152] and in a radiation-induced lung injury mouse model [153]. Another group
also used the gene-modified MSCs to enhance the antifibrotic activity of these cells [154].
However, the genetic engineering approach to MSCs has some counter indications because
these methods require genetic modification and are therefore incompatible with clinical
applications. Also many papers showed with regard to this that different priming approaches,
such as 3D cultures of MSCs [35], IFN-γ [121] and TNF-α [134] treatment, enhance the MSCs
production of HGF, making them a potential therapeutic tool to treat liver fibrosis (Table 1).
Very few studies explored the application of primed MSCs in the pathogenesis of fibrosis and
this currently represents a scientific need in the field of MSC research.

Table 1. Priming treatments of MSCs and production of therapeutic factors.

MSCs Priming Treatments MSC Product Functional Factors
Detected Biological Effects Reference

AMSCs IFN-γ EXOs

miR-23a, miR-26b,
miR-125b, miR-130b,
miR-140, miR-203a,
miR-223, miR-224,

miR-320a

Regulation of T cell
activation/anergy and
induction of M2-like

polarized phenotype in
monocytes

[20]

AMSCs 3D
cultures/spheroids CM EXOs

HGF, PDGF, TGF-β,
VEGF, FGF1, GROα,

SDF-1, EGF, IL-6, PGE2,
LIF

Increased angiogenesis and
inhibition of PBMC

proliferation
[35]

BM-MSCs IL-1α/β; TNF-α;
IFN-γ CM G-CSF

Reduction in the secretion of
inflammatory mediators in

LPS-activated microglial
cells

[36]

AdMSCs Hypoxia CM IL-6, TNF-α, HGF, VEGF Induced liver regeneration [56]

BM-MSCs Hypoxia CM VEGF Induced liver regeneration [57]

BM-MSCs Hypoxia CM Wnt4
Improvement of vascular
and skeletal muscle fiber

regeneration
[58]
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Table 1. Cont.

MSCs Priming Treatments MSC
Product

Functional Factors
Detected Biological Effects Reference

BM-MSCs Hypoxia CM - Induced cardiomyocytes
proliferation [59]

MSCs Hypoxia EXOs miR-26 Improvement of cardiomyocyte
survival [60]

BM-MSCs Hypoxia CM HGF, VEGF Improvement of neuronal cells
proliferation [61]

UC-MSCs Hypoxia CM HGF, BDNF, VEGF Improvement of axonal survival [62]

AdMSCs TNF-α CM BMP2 Improvement of bone
regeneration [63]

AdMSCs TNF-α EXOs Wnt3a
Promoted the proliferation and

osteogenic differentiation of
primary osteoblastic cells

[64]

DP-MSCs bFGF; Hypoxia CM - Improvement of bone formation [65]

BM-MSCs cAMP, bFGF, PDGF,
Heregulin β1 CM GDNF, BDNF

Induction of striatal
dopaminergic nerve terminals

regeneration
[67]

BM-MSCs cAMP, bFGF, PDGF,
Heregulin β1 CM GDNF, BDNF

Reduction of striatal volume
changes associated with
quinolinic acid lesions

[68]

BM-MSCs Lithium, VPA CM -

Improvement of motor and
behavior performance, and

reduction of neuronal death and
huntingtin aggregates in the

striatum

[70]

DP-MSCs bFGF; Hypoxia CM VEGF Improvement of vascularization [97]

DP-MSCs Hypoxia CM VEGF Improvement of vascularization [98]

AdMSCs Hypoxia EXOs - Increase of migration and tube
formation by HUVEC [99]

AdMSCs Hypoxia CM VEGF, HGF, bFGF Increase of MSC angiogenic
potential [101]

WJ-MSCs Hypoxia CM Angiogenin and VEGF Increase of migration and tube
formation angiogenesis [102]

AdMSCs Hypoxia CM EGF, VEGF, FGF, HGF

Improvement of functional
recovery and

neovascularization of the
ischemic tissue

[103]

MSCs Hypoxia CM VEGF - [108]

BM-MSCs Hypoxia EXOs miR-125 Improvement of cardiac
function [110]

BM-MSCs IL-17 CM IL-6

Suppression of T cell
proliferation; inhibition of both

T cell activation and Th1
cytokines

[119]

AdMSCs
BM-MSCs
CB-MSCs

IFN-γ CM IDO Suppression of human
lymphocyte proliferation [120]

BM-MSCs IL-17 CM IL-6 T cell immunosuppression [122]

BM-MSCs IFN-γ; TNF-α CM PGE2, IDO Inhibition of allogeneic MLR [123]
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Table 1. Cont.

MSCs Priming Treatments MSC
Product

Functional Factors
Detected Biological Effects Reference

BM-MSCs IFN-γ; LPS; TNF-α CM PGE2

Induction of monocytes
polarization toward an
anti-inflammatory M2

phenotype

[124]

BM-MSCs IL-1β; IFN-γ CM IL-6

Induction of monocytes
polarization toward an
anti-inflammatory M2

phenotype

[125]

MSCs IL-1β EXOs miR-21
Induced macrophage M2

polarization and ameliorates
sepsis

[126]

UC-MSCs IL-1β EXOs miR-146a

Amelioration of murine sepsis
and induction of monocytes

polarization toward an
anti-inflammatory M2

phenotype

[127]

BM-MSCs IFN-γ; Spheroids CM IDO Suppression of T-cell activation
and proliferation in vitro [128]

BM-MSCs Hypoxia CM PGE2, miR-210
Induced macrophage M2

polarization and ameliorates
fibrosis

[137]

MSCs: mesenchymal stem cells; BM-MSCs: bone marrow-derived MSCs; AMSCs: amnion-derived MSCs; UC-MSCs: umbilical cord-
derived MSCs; AdMSCs: adipose-derived MSCs; CB-MSCs: cord blood-derived MSCs; GMSCs: gingival-derived MSCs; WJ-MSCs:
Wharton’s Jelly-derived MSCs; DP-MSCs: dental pulp-derived MSCs.

6. Conclusions and Future Perspective

In the last decade, the growing scientific interest in MSCs has clearly shown that
these cells may have a significant therapeutic potential that can be applied in the field of
regenerative medicine. Their action appears to be mediated by the release of paracrine
modulators that orchestrate tissue repair/regeneration in a wide variety of diseases and
disorders. Indeed, the emerging idea is that the CM derived from MSCs or its components
(for example EXOs) may itself be sufficient for therapeutic activity.

There are currently a valuable number of clinical trials studying the effects of MSCs in
many disorders (1213 studies at the time of writing, clinicaltrials.gov) and this number is
increasing. However, clinical results suggest that MSCs have moderate or poor efficacy,
thus being not very convincing in their applicability. MSC cultures might differ in their
therapeutic capacity, and their heterogeneity also affects the MSC-derived secretomes
that cause diverse effects on target cells. Therefore, it is essential that critical steps taken
during the MSC production process should be more reproducible. Specific methods used to
condition MSCs in stimulating their therapeutic functional properties could appropriately
modify the therapeutic effects of the MSC secretome (Figure 2). For this reason, the
strategy of strengthening the therapeutic potential of MSCs to direct their phenotype in
therapeutically desirable ways is very appealing. Furthermore, the production of MSC-
derived products provides a useful technology to enhance MSCs’ therapeutic potential and
standardize the production of products intended for clinical use.

There is potential for improvement in MSC treatment and pretreating cells prior to
use as therapeutic tool appear to be a promising strategy. A wide range of factors has been
implicated in the paracrine therapeutic action of MSCs and further studies in this field
must identify the best treatments and techniques that hold promise within specific disease
models. Therefore, future experimental studies should define protocols for generation

clinicaltrials.gov
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of MSC-derived products for each type of MSC population and for specific pathological
conditions before MSC products can be applied in the field of regenerative medicine.
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Figure 2. Schematic representation of the molecular effects after priming of MSCs. MSCs can be primed through different
stimuli, including hypoxia, three-dimensional cultures, growth factors and cytokines, to enhance their therapeutic potential.
In these cases, MSCs produce inducible regulatory factors such as growth factors, cytokines, chemokines and exosomes
(which contain both proteins and microRNAs). Primed MSCs promote tissue regeneration/repair regulating different
processes including inflammation and angiogenesis, the production of the extracellular matrix (ECM) and the regeneration
of functional cells by differentiation of their progenitor cells.
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Abbreviations
3D Three-dimensional
AdMSCs Adipose-derived MSCs
AKT1 AKT serine/threonine kinase 1
AMSCs Amnion-derived MSCs
AT Adipose tissue
BDNF Brain-derived neurotrophic factor
bFGF Basic fibroblast growth factor
BM Bone marrow
BMP2 Bone morphogenetic protein 2
cAMP Cyclic AMP
CB-MSCs Cord blood-derived MSCs
CM Conditioned medium
COX-2 Prostaglandin-endoperoxide synthase 2
CRP C-reactive protein
DP-MSCs Dental pulp-derived MSCs
EGF Epidermal growth factor
EXOs Exosomes
FGF1 Fibroblast growth factor 1
G-CSF Granulocyte colony-stimulating factor
GDNF Glial-derived neurotrophic factor
GMSCs Gingival-derived MSCs
H-EXOs Hypoxia-conditioned MSC-derived EXOs
HGF Hepatocyte growth factor
HIF-1α Hypoxia-inducible factor 1-alpha
H-MSCs Hypoxia-primed MSCs
HSCs Hepatic stellate cells
IDO Indoleamide 2,3-dioxygenase
IFN-γ Interferon gamma
IGF-1 Insulin-like growth factor 1
IL-6 Interleukin 6
LIF Leukemia inhibitory factor
MCP-1 Monocyte chemoattractant protein 1
MHC I Major histocompatibility complex
MI Myocardial infarction
miRNAs MicroRNAs
MLR Mixed lymphocyte reaction
MMP3 Matrix metalloproteinase-3
MMPs Matrix metalloproteinases
MSCs Mesenchymal stromal/stem cells
ncRNAs Non-coding RNAs
N-EXOs Normoxia-conditioned MSC-derived EXOs
NTF Neurotrophic factors
PCNA Proliferating cell nuclear antigen
PDGF Platelet-derived growth factor
PGE2 Prostaglandin E2
PKA Protein kinase A
PrPC Cellular prion protein
pSTAT3 Signal transducers and activators of transcription 3
Runx2 Runt-related transcription factor 2
SDF-1 Stromal cell-derived factor 1
SOCS3 Suppressor of cytokine signaling 3
TGF-β Transforming growth factor beta
TNF-α Tumor necrosis factor alpha
UC Umbilical cord
VEGF Vascular endothelial growth factor
VPA Valproic acid
WJ Wharton’s Jelly
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