Skip to main content
. 2021 Jan 14;18(2):658. doi: 10.3390/ijerph18020658

Table A1.

Summary statistics of marginal posterior distribution of the exponential transformation of regression parameters of our best proposed model. Posterior probabilities (PPs) can be seen as “p-values” complementary to 1. In the first column, there is the mean of the marginal posterior distributions (MPDs) of a parameter (OR), and in the second column, the standard deviation of that parameter. In the following 5 columns, there are the percentiles (perc.) of MPD. Finally, in the last two columns, there are the posterior probability (PP) that the estimated parameters are more, p(βp^>1), or less, p(βp^<1), than 1. A predictor was defined as a risk factor if it has a p(βp^>1) close to 1; conversely, a parameter associated with a protective factor will have p(βp^<1) close to 1.

Covariates eβp^ SD(eβp^) 2.5th perc. 25th perc. Median 75th perc. 97.5th perc. p(βp^>1) p(βp^<1)
(Intercept) 0.977 0.009 0.958 0.970 0.977 0.984 0.997 0.013 0.986
PM2.5 in μg/m3 1.075 0.020 1.034 1.061 1.075 1.089 1.116 0.999 0.000
DEGURBA index rural vs urban 1.022 0.014 0.993 1.012 1.021 1.031 1.050 0.937 0.062