Skip to main content
. 2021 Jan 14;18(2):658. doi: 10.3390/ijerph18020658

Table A2.

Output of all fitted models. Posterior probabilities (PPs) can be seen as “p-values” complementary to 1. The first column is the mean of the marginal posterior distributions (MPDs) of a parameter (OR) and the second column is with the standard deviation of that parameter. The following 5 columns are the percentiles (perc.) of MPD. Finally, the last two columns show the posterior probability (PP) that the estimated parameters are more, p(βp^>1), or less, p(βp^<1), than 1. A predictor was defined as a risk factor if it has a p(βp^>1) close to 1; conversely, a parameter associated with a protective factor will have p(βp^<1) close to 1.

(a) Model 1
A
Covariates βp^ SD(βp^) 2.5th perc. 25th perc. Median 75th perc. 97.5th perc. p(βp^>1) p(βp^<1)
(Intercept) −0.0207 0.0117 −0.0437 −0.0285 −0.0208 −0.0128 0.00221 0.0393 0.961
PM2.5 in μg/m3 0.0731 0.0227 0.0291 0.0577 0.0728 0.0882 0.118 0.999 0.00065
DEGURBA index rural vs urban 0.0313 0.0180 −0.00422 0.0194 0.0313 0.0436 0.0662 0.959 0.0413
B
(Intercept) −0.0264 0.0175 −0.0609 −0.0383 −0.0263 −0.0145 0.00776 0.0644 0.936
PM2.5 in μg/m3 0.0747 0.0233 0.0289 0.0593 0.0746 0.0902 0.121 1.00 0.000500
DEGURBA index rural vs urban 0.0316 0.0182 −0.00454 0.0193 0.0318 0.0439 0.0670 0.959 0.0414
Calendar year 0.00210 0.00488 −0.00754 −0.00117 0.00209 0.00538 0.0117 0.671 0.329
(b) Model 2
A
Covariates βp^ SD(βp^) 2.5th perc. 25th perc. Median 75th perc. 97.5th perc. p(βp^>1) p(βp^<1)
Intercept −0.0228 0.0102 −0.0426 −0.0297 −0.0228 −0.0159 −0.0026 0.0138 0.9860
PM2.5 in μg/m3 0.0726 0.0193 0.0341 0.0596 0.0726 0.0855 0.1100 1.0000 0.00005
DEGURBA index rural vs urban 0.0217 0.0142 −0.0063 0.0120 0.0217 0.0313 0.0494 0.9370 0.0628
B
(Intercept) −0.0297 0.0140 −0.0573 −0.0391 −0.0298 −0.0203 −0.0023 0.0168 0.9830
PM2.5 in μg/m3 0.0749 0.0193 0.0368 0.0617 0.0749 0.0880 0.1130 1.0000 0.0001
DEGURBA index rural vs urban 0.0226 0.0151 −0.0069 0.0123 0.0225 0.0329 0.0517 0.9310 0.0687
Calendar year 0.0018 0.0033 −0.0046 −0.0004 0.0018 0.0040 0.0083 0.7120 0.2880
(c) Model 3
A
Covariates βp^ SD(βp^) 2.5th perc. 25th perc. Median 75th perc. 97.5th perc. p(βp^>1) p(βp^<1)
(Intercept) −0.0236 0.0083 −0.0399 −0.0291 −0.0236 −0.0181 −0.0073 0.0027 0.9970
PM2.5 in μg/m3 0.0678 0.0201 0.0287 0.0544 0.0676 0.0814 0.1070 1.0000 0.0003
DEGURBA index rural vs urban 0.0284 0.0122 0.0046 0.0203 0.0285 0.0366 0.0522 0.9900 0.0102
B
(Intercept) −0.0290 0.0122 −0.0529 −0.0373 −0.0289 −0.0207 −0.0050 0.0089 0.9910
PM2.5 in μg/m3 0.0693 0.0205 0.02910 0.0556 0.0693 0.0829 0.1090 1.0000 0.0004
DEGURBA index rural vs urban 0.0297 0.0127 0.0046 0.0211 0.0296 0.0382 0.0547 0.9890 0.0109
Calendar year 0.00144 0.00425 −0.00700 −0.00142 0.00145 0.00432 0.00974 0.634 0.366
(d) Model 4
A
Covariates βp^ SD(βp^) 2.5th perc. 25th perc. Median 75th perc. 97.5th perc. p(βp^>1) p(βp^<1)
(Intercept) −0.0235 0.0103 −0.0436 −0.0304 −0.0235 −0.0166 −0.0031 0.0109 0.9890
PM2.5 in μg/m3 0.0768 0.0207 0.0360 0.0628 0.0769 0.0906 0.1180 1.0000 0.0002
DEGURBA index rural vs urban 0.0209 0.0140 −0.0067 0.0113 0.0207 0.0304 0.0483 0.9320 0.0680
B
(Intercept) −0.0300 0.0141 −0.0577 −0.0395 −0.0301 −0.0206 −0.0021 0.0182 0.9820
PM2.5 in μg/m3 0.0792 0.0212 0.0380 0.0649 0.0793 0.09330 0.1200 1.0000 0.00005
DEGURBA index rural vs urban 0.0229 0.0150 −0.0066 0.0127 0.0229 0.03280 0.0524 0.9370 0.0632
Calendar year 0.0001 0.0044 −0.0078 −0.0020 0.0010 0.0040 0.0098 0.5880 0.4120